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A wavelet domain nonlinear filtering method for improving the signal-to-noise ratio (SNR)
of the evoked potentials (EP) is proposed. The method modifies the selective filtering technique
proposed for edge detection in images by Xu et al. for the case of signals which require a
smooth transition at the edge points. It identifies the significant features of a noisy signal based
on the correlation between the scales of its nonorthogonal subband decompositions. The signal
transition information from interscale correlation coupled with the change in variance around
the identified transition region is used to differentiate between noise and the signal. A nonlinear
function such as a Gaussian smoothing function applied around the identified edge in the
wavelet domain leads to smoothing in the signal space also. Numerical results obtained by
applying the proposed nonlinear filtering method on middle latency responses of auditory
evoked potentials show that the method is well suited for signal enhancement applications.
q 2000 Academic Press

1. INTRODUCTION

Evoked potentials (EP) are the responses of the brain and result by stimulating
a sensory pathway. These responses can be measured using surface electrodes
placed at specific locations on the scalp. The spontaneous activity of the brain,
called electroencephalogram (EEG), is the major source of corrupting noise while
measuring the EP signals. The amplitude of the noise is much higher than that of
EP response. The EEG noise is predominant in a recorded EP with typical SNR
ranging from 25 down to 220 dB. Classical filtering techniques are not suitable
because the spectra of EP and the background EEG significantly overlap. The most
common method used for recovering the EP signal from the background EEG
noise is by synchronous averaging of a number of single sweeps time-locked to
external stimuli. Basic assumptiosn of synchronous averaging are that the signal
and noise are stationary, uncorrelated random processes, noise has zero mean across
the ensemble, and the signal is determinstic. To obtain a satisfactory estimate, a
few hundreds to a few thousands of response trials are required to be averaged,
depending on the modality of the stimulus and the type of diagnostic test being
conducted.

There is believed to be a need for reduction in the time needed to obtain a
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reliable estimate of the EP for certain applications. In surgeries involving spinal
cord, such as scoliosis correction, it will be a boon if the EPs can be obtained
with much fewer sweeps. This will facilitate continuous monitoring of the integrity
of the neural pathways in the spinal cord. In clinical situations involving short-
acting anesthesia, such as electroconvulsive therapy, if one is interested in studying
the dynamic changes in neural conduction for those 5- to 10-min periods, one
needs EP estimates much faster than is possible through ensemble averaging. There
is also interest in studying changes in spinal conduction velocities during yogic
postures involving spinal flexions and twists. Figure 1 shows a single sweep
auditory evoked potential and an ensemble average of 30 sweeps in which the
characteristic components are visible. However, the quality of the extracted signal
is not adequate.

To obtain a reliable signal estimate with fewer sweeps, several algorithms have
been proposed which claim to improve the signal-to-noise ratio of the averaged
evoked potentials. In a posteriori Wiener filtering, de Weerd and Martens (5) have
deduced signal and noise power spectra from the observations to design an optimal
filter to be used to improve the signal-to-noise ratio of the averaged EP. To account
for the nonstationary components of the EP signal, they used a bank of filters
cascaded together to implement time-varying filter structures. Time domain tech-
niques which use a priori knowledge of the signal and noise statistics to design
an optimal filter transfer function (8) and a posteriori optimal filter which does
not require any such knowledge (6) have been attempted to achieve the same
goal. These methods vary in their approaches for estimation of signal and noise
autocorrelation functions which are used in defining the filter transfer functions.
Wavelet domain filtering by Bertrand et al. (4) attempts to use Wiener filtering in
a time–frequency domain using the wavelet spectra. This is much simpler to design
and also is invertible. In the absence of knowledge about the noise statistics,
transform domain filtering, which takes local statistics into consideration rather
than global signal structure, is a better choice. Wavelet decomposition is very well
suited for the cases in which signal and noise have overlapping frequency bands.
In the wavelet domain, noise attenuation can be optimized locally with a negligible
distortion of the signal details. Wavelet domain filtering is well suited for EP
signals for the following reasons.

● The significant events in a EP signal are the nonstationary components that
appear along with the stationary correlated noise.

● Some local portions of the signal have important and significant components
while there are considerable noise components in the same band.

● Temporally varying thresholding with local estimation of noise variance im-
proves the filter performance.

● The content and the accuracy of the diagnostic information may be improved
by using selective filtering.

Noise reduction techniques based on wavelet and subband decompositions mostly
work on thresholding the wavelet coefficients. The success of these methods
depends entirely on the estimated noise variance in wavelet domain which is used
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FIG. 1. Typical auditory middle latency response. (a) Single sweep. (b) Ensemble average of 30
sweeps. [X axis, Sample No.; Y axis, amplitude in relative units.]
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to fix the threshold. In the present paper, an attempt is made to improve the SNR
of the ensemble average and enhance the significant components of the signal,
namely, the peaks and valleys by using nonlinear filtering in a wavelet domain. It
adapts the spatially selective filtering technique suggested by Xu et al. (2) for EP
signal enhancement. Their algorithm is modified by using a nonlinear shrinkage
function around the identified edges in the wavelet domain to obtain a smooth
transition region. We have used an undecimated nonorthogonal discrete wavelet
transform (UDWT) using à trous algorithm in which the decomposed signal is
correlated across scales. A sharp transition in the signal gives rise to a maximum
in several adjacent scales. Hence the correlation between adjacent scales is used
to identify the signal transition regions. Instead of retaining just the identified
edges, and masking out the rest of the wavelet coefficients, a Gaussian function
is placed at the identified edge, scaling wavelet coefficients around the edges. This
ensures retention of not only the signal peak information but also the surrounding
information. To distinguish and remove transient and spurious noise, the variance
of the wavelet coefficients in a window region around the identified transition
region is made use of. This filter may be viewed as a low-pass filter that passes
selected high-frequency data.

This paper is organized as follows. In Section 2 we briefly explain the orthogonal
and nonorthogonal wavelet decomposition using the two popular algorithms,
namely, Mallat’s pyramidal algorithm and thè a trous algorithm. Selective filtering
in wavelet domain and the suggested modification is explained in Section 3. The
results obtained using evoked potential data are presented in Section 4 with a
discussion and conclusion following in Section 5.

2. WAVELET DECOMPOSITION

The wavelet representation provides a multiresolution/multifrequency descrip-
tion of a signal with localization in both time and frequency. Basically, the transfor-
mation amounts to projecting a signal on a family of elementary functions, obtained
by translating and dilating a single basic function, c(x), called analyzing wavelet,

ca,b(x) 5 .a.21/2 c1x 2 b
a 2 (a, b) P Z, [1]

where a and b are the scale and the translation parameters, respectively. The
definition of the wavelets as dilations of the function ca,b(x) means that high-
frequency wavelets correspond to a , 1 or narrow width, while low-frequency
wavelets have a . 1 or wider width. The basis functions used in wavelet transforms
are locally supported; they are nonzero over the part of the domain represented.

Wavelet transform decomposes a nonstationary signal into a set of multiscale
components where each component is relatively more stationary. In discrete wavelet
transform (DWT), only a discrete set of scale parameters is used. The multiresolu-
tion scheme proposed by Mallat (3) is based on a fixed dyadic grid to obtain the
basis wavelets. Mallat’s multiresolution decomposition and the à trous algorithm
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are two separate implementations of the discrete wavelet transform. Both algorithms
are observed to be special cases of a single filter bank structure.

2.1. Multiresolution Decomposition—Pyramidal Algorithm

In multiresolution decomposition, a signal is decomposed into a set of different
frequency channels of constant bandwidth on a logarithmic scale. In this, in addition
to the analyzing wavelet function, c, a scaling function, f, is introduced. The
dilated and translated versions of the scaling function may be obtained as

cj,k(x) 5 22j/2f(22jx 2 k). [2]

The space spanned by cj,k for a fixed j is denoted by Vj. A function f (x) P L2(5)
is projected, at each step j, onto the subset Vj ( j % 0). This projection, sj,k, is
defined as the scalar product of f (x) with the scaling function f(x)

sj,k 5^ f (x), 22jf(22jx 2 k)&. [3]

k and j are the translation and dilation parameters, respectively. The successive
approximation spaces, . . . , V2 , V1 , V0 , V21 , V22 . . . , each have a
resolution 2j. This results in a decreasing sequence of closed subspace, Vj P Z
which approximate L2(5). f(x) has the following property

1
2

f1x
22 5 o

n

h(n)f(x 2 n). [4]

The sequence {h(k), k P Z} P L2(5) is the impulse response of a low-pass filter.
The complementary subspace, Wj is generated by a wavelet f(x) with integer
translation and dyadic dilation. The projection of f(x) on subspace Wj is defined as

dj,k 5^ f (x), 22jc(22jx 2 k)&. [5]

The analyzing function c(x) has the following property:

1
2

c1x
22 5 o

n
g(n)f(x 2 n). [6]

The behavior of the computed discrete wavelet transform is governed by the choice
of the filters [7]. The filters h(n) and g(n) in pyramidal algorithm are quadrature
mirror filters. This decomposition is translation variant because of decimation. It
is found to be very useful for coding applications because it removes redundant in-
formation.
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2.2. Undecimated Wavelet Transform—À Trous Algorithm

In this algorithm, the decomposition is not decimated and only the filters are
dilated at each projection. Therefore, each wavelet’s scale has N points correspond-
ing to the N data points. For the scale i, these points correspond to 2i different
decompositions obtained with the decimated transform using all the circulant shifts
of the signal. These decompositions, each one composed of N/2i points, are inter-
twined. This overcomes the dependence of the transform on the position of the
input signal. Hence, it is translation invariant unlike the decimated wavelet trans-
form. Figure 2 shows the system block diagram showing the computation of the
undecimated wavelet transform. In this algorithm, the sampled data are assumed
to be corresponding to zeroeth scale and is denoted as {c(0, k)}. This can be
viewed as a scalar product of a function f (x) with a scaling function f(x) which
corresponds to a low-pass filter. The subsequent smoothed sequences are given by,

c(i, k) 5 o
l

h(l)c(i 2 1, k 1 2i21l) [7]

and the discrete wavelet transform coefficients are given by the difference between
two successive smoothed sequences

w(i 1 1, k) 5 c(i 1 1, k) 2 c(i, k). [8]

The coefficients {h(k)} are derived from the scaling function f(x)

1
2

f1x
22 5 o

l
h(l)f(x 2 l). [9]

The reconstruction is the sum of all wavelet scales and the smoothed signal at the
coarsest scale

c(0, k) 5 o
L

i51
w(i, k) 1 c(L, k) [10]

with L number of decomposition scales.

FIG. 2. Undecimated wavelet transform.
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The conditions necessary for perfect reconstruction in the case of decimated
wavelet transform need not be met in this algorithm because the coefficients are
not downsampled. The B3-spline scaling function is used as the base wavelet in
our calculations. The associated filter H(z) is given by,

H(z) 5
1
16

z22 1
1
4

z21 1
3
8

1
1
4

z 1
1
16

z2. [11]

In applications where correlation between scales is used, thè a trous algorithm
using nonorthogonal wavelets is found to be well suited. Interscale correlation
information in an undecimated wavelet transform (UDWT) has been used for edge
detection and also for denoising (1, 2). In the case of images, it was found that
an edge occurs at a position where there are maxima in the nonorthogonal wavelet
transform at several adjacent scales. This property is used to identify and enhance
significant component regions of the EP signal in a nonlinear fashion as explained
in the following section.

3. NONLINEAR FILTERING IN A WAVELET DOMAIN

A simple and efficient technique for edge detection in a wavelet domain for
images has been suggested by Xu et al. (2). They have proposed a spatially selective
wavelet filtering approach based on interscale correlation using UDWT. Direct
spatial correlation between adjacent scales, corr2(m, n) is defined to be

corr2(m, n) 5 w(m, n)w(m 1 1, n) n 5 1, 2, . . . , N. [12]

Their method is based on the fact that sharp edges have large amplitude over many
wavelet scales, and noise dies out swiftly with increasing scale. A large spatial
correlation between the scales is used to detect edges. A binary mask is used to
retain or discard wavelet coefficients. We found that using a binary mask for
selecting the wavelet coefficients at each scale gives rise to oscillations or visual
artifacts at the point of discontinuity. Hence, we attempted to optimize noise
attenuation locally with a negligible distortion of the signal details using a Gaussian
mask rather than a binary mask. This helps in avoiding Gibb’s oscillations or visual
artifacts around the identified significant features. The proposed filtering method
works in three stages. Initially, it identifies the significant features by finding the
regions where correlation between adjacent wavelet scales is high. Then, as a
second step, it uses the change in variance in the local neighborhood of the identified
edge to exclude detection of the correlated noise edges. Finally, a Gaussian shrink-
age function centered at the edge point scales the wavelet coefficients to enhance
the nonstationary signal components.

An edge is identified if .corr2(m, n). . .w(m, n).. To differentiate a signal edge
from a sharp correlated noise edge, we define a small region in each scale, m,
before and after the identified edge location, n, and compare the variance in both
the regions. Defining s1(n) 5 var(win1 5 w(m, n 2 k: n 2 1)), and s2(n) 5
var(win2 5 w(m, n 1 1: n 1 k 1 1)), both windows of width k, in scale m,
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if abs(s1(n) 2 s2(n)) , e

discard the edge (indicates noise edge)

else

retain the edge (indicates signal edge)
end

where e P R is fixed as a small fraction of s1(n) and is positive. The absence of
edges or other significant features in a localized region of the signal allows the
noisy background to be removed, thereby equating the wavelet coefficients in that
region to zero. The Gaussian shrinkage function h(w(m,n)) centered at the identified
edge k, with a standard deviation p(n) 5 0.1s1(n) is defined as

h(w(m, n)) 5
1

p (n)!2p
e21(w(m, n) 2 k)2

p2(n) 2. [13]

The wavelet filter has feature-sensitive selectivity in passing high-frequency data
at low SNR. The small-scale data are passed at positions where the correlation is
large and suppressed if the correlation is small.

4. EXPERIMENTAL RESULTS

The proposed filtering method is applied on the clinically recorded middle latency
auditory responses (MLR) and brain stem auditory evoked potentials (BAEP).
Components occurring within the first 10 ms of the application of stimulus are
called the early components or BAEP and components occurring between 10 and
60 ms are termed middle latency components. The signals are recorded at the
vertex with a reference on the ipsilateral mastoid and are obtained with repetitive
application of auditory clicks of 0.5 ms at 100 dB above auditory threshold at a
rate of 10 Hz. The subject is asked to keep his eyes closed throughout the session
to minimize ocular artifacts. MLR responses have four characteristic peaks, as
shown in Fig. 1b. However, because of the low SNR, the characteristic peaks are
not visible in single responses. Its decomposition into four scales with a B3-spline
scaling function using nonorthogonal UDWT as per the à trous algorithm is shown
in Fig. 3. From the correlation between adjacent scales which is also shown in the
same figure, it can be seen that the significant features in the original signal such
as sharp peaks and valleys appear stronger in the correlation domain than in the
wavelet domain. By using the spatial selective filtering algorithm suggested in (2),
a binary mask to be applied on the different wavelet scales is obtained. To avoid
detection of spurious noise as a significant feature, the variance in a small window
region before the identified edge is compared with the variance in a region after
the edge. Because the noise is assumed to be a stationary process, this measure
eliminates detection of transient noise edges mistakenly as significant features.
The masks obtained after using the variance check along with the Gaussian shrink-
age function used in place of the binary mask to smooth the surrounding region
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FIG. 3. Nonorthogonal decomposition of the signal and the correlation between its adjacent scales.
(a) The signal. (b–e) Components at scales 1, 2, 3, and 4, respectively. (f–i) Correlation between
scales 0 and 1, 1 and 2, 2 and 3, and 3 and 4, respectively. [X axis in all cases, Sample No.; Y axis
in b–e, amplitude in relative units; in f–i, correlation in relative units.]
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FIG. 4. Wavelet coefficients retained using binary mask and Gaussian mask. (a) Correlation
between scales 2 and 3, (b) Binary mask obtained using selective filtering. (c) Gaussian mask using
our method. (d–f) Corresponding figures for correlation between scales 3 and 4. [X axis in all cases,
Sample No.; Y axis in a and d, correlation in relative units; in b, c, e, and f), magnitude in relative units.
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FIG. 5. Wavelet coefficients using UDWT at different scales before and after nonlinear filtering
using Gaussian functions. (a, f) Original signal. (b–e) The wavelet decompositions at scales 1, 2, 3,
and 4, respectively. (g–j) The corresponding filtered decompositions. [X axis, Sample No.; Y-axis;
amplitude in relative units.]
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of a significant feature are shown in Figs. 4c and 4f for two different correlation
levels, namely, corr2 (2, 3) and corr2 (3, 4). Figure 5 shows the decomposition of
the MLR using UDWT into different scales and the modified wavelet coefficients
using the nonlinear filtering method.

The signal obtained by the proposed method is compared with the one obtained
using the binary mask in Fig. 6. It can be seen that the small variations which are
present while using binary mask filtering are removed well with the nonlinear
filtering which considers the variance around the identified edge region to retain

FIG. 6. Comparison of outputs obtained using binary and Gaussian masks. (a) Middle latency
AEP shown in Fig. 1a. (b) Filtered output obtained using binary masks. (c) Output obtained using
Gaussian masks. [X axis, Sample No.; Y axis, amplitude in relative units.]
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or suppress the wavelet coefficients. The technique applied on a typical middle
latency visual evoked potential is shown in Fig. 7. In this figure too, it can be
observed that the nonlinear filtering around the identified edge helps in enhancing
the edge information and smoothing the insignificant small variations around
the edges.

Comparison of the proposed filtering technique with the conventional ensemble
average (EA) of various ensemble lengths is carried out, since ensemble averaging

FIG. 7. Comparison of filtered outputs using binary and Gaussian masks. (a) Middle latency
visual evoked potential. (b) Output obtained using binary filtering masks. (c) Output obtained using
Gaussian filtering masks. [X axis, Sample No.; Y axis, amplitude in relative units.]
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is the most widely used method in clinical practice. In Fig. 8 we present the results
obtained for the MLR data shown in Fig. 1b using the proposed filtering technique
for different ensemble lengths. It can be seen that the method results in enhanced
and smoother component peaks. In the case of BAEP signals, because the SNR
of these signals is very low, for clinical diagnosis, at least 512 sweeps are averaged
to estimate these signals. In Fig. 9, ensemble averaged BAEP signals at different
ensemble lengths are shown along with the processed signals. It can be noted that
for any ensemble length that is considered, the filtered signal results in an improved
estimate suppressing the wriggle in the component peaks, thereby facilitating
accurate measurement of diagnostically important measures such as latencies and
amplitude. It may be observed from both Figs. 8 and 9 that changes in the EA are
also reflected in the processed output.

Because the computation of wavelet is merely a multistage filtering operation,
it is neither computationally complex nor expensive. The interstimulus interval is
shortest for the ABER, which is 100 ms. Of this 75 ms is available for computation
after the acquisition of individual sweep of 25 ms. Computation of our algorithm
takes only 0.853 ms using a Pentium 300 MHz processor under Windows NT

FIG. 8. Comparison of filtered outputs with EA at different ensemble lengths for MLR data.
(a–c) The ensemble averages. (d–f) The corresponding filtered sweeps.
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FIG. 9. Comparison of filtered outputs with EA at different ensemble lengths for AEP data. (a–c)
The ensemble averages. (d–f) The corresponding filtered sweeps.

Operating System in MATLAB environment. With the inclusion of ensemble aver-
aging, total computation time is around 1 ms out of the available 75 ms. Thus,
the algorithm can be integrated into any EP system.

5. CONCLUSION

The EP signal does not have very sharp edges, unlike the case of images. This
calls for an approach different from merely hard thresholding of wavelet coefficients
at edge locations. The wavelet domain nonlinear filter is superior because of its
edge and feature-sensitive selectivity in passing and scaling the wavelet coefficients.
The small variations around the identified edge are suppressed to enhance the
signal component regions. Temporally varying the threshold with local estimation
of noise variance can account for slow transition regions better. The features that
were the same size as the noise are distinguished by using the change in variance
around the identified edge. By using this additional measure, false detection of
sharp noisy edges can be avoided.

When the signal is corrupted by correlated noise which cannot be separated in
either frequency or time domain, a signal based local filtering of the noisy signal
in transform domain is a promising solution for improving the balance between
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detail preservation and noise attenuation. We have used a nonlinear filtering method
in wavelet domain for enhancement of evoked potentials corrupted by stationary
correlated noise. Hard thresholding the regions where correlation is high between
adjacent scales of nonorthogonal wavelet tranform causes visual artifacts and Gibbs
oscillations at the significant regions. A nonlinear Gaussian function at the transition
region is found to be better suited for signals whose nonstationary regions are not
too sharp unlike edges in images. The proposed method can be used in cases where
the signal is nonstationary and a proper noise model is not available and is most
suitable as a postprocessing tool for EP signal enhancement.
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