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ABSTRACT because they originate in brainstem. They are more stable

We propose a spatially selective Wiener (SSW) filtering method

in the wavelet domain for enhancement of evoked poten-
tials corrupted by stationary correlated noise. The proposed
filtering scheme uses inter-scale correlation in the wavelet
domain to identify signal and noise regions and uses their
strengths to compute the Wiener filter transfer function. This
computed function is used in a spatially selective fashion to
filter noisy brainstem auditory evoked potential (BSAEP)
signals. The filter entails signal component enhancement
while avoiding visual artifacts around the edges. Results
for both simulated and actual BSAEP signals indicate a sig-
nificant improvement in the signal-to-noise ratio (SNR) of
filtered sweeps.

1. INTRODUCTION

Evoked potentials (EP) are electrical responses of the cen-
tral nervous system to sensory stimuli applied in a con-
trolled manner. The stimuli are applied in the form of au-
ditory clicks, visual patterns or electrical pulses, depend-
ing upon the neural pathway being tested. The resulting
responses are called auditory (AEP), visual (VEP) and so-
matosensory evoked potentials (SEP), respectively. These
responses are essentially electrical potential differences and
are picked up at different identified locations on the scalp
using surface electrodes. The amplitudes, occurrence times
and durations of the various characteristic components of
the EP’s convey diagnostically important information about
the corresponding sensory neural pathway. Based on the
analysis time segment chosen from the time of application
of the stimulus, evoked responses are classified as short,
middle and long latency responses. Short latency auditory
responses have both high and low frequency components in
the analysis time length and have very low SNR in com-
parison with the other modalities of EPs. They are more
complex with more number of components and hence are
better suited to study any filtering or estimation algorithm,
Hence, we restrict our attention to this subclass of EPs,
namely,short latency auditory evoked potentials, which are
also known as brainstem auditory evoked potentials (BSAEP)

and are clinically used to distinguish between conductive
and sensory hearing loss.

EP occurs as an additive process to the natural
brain activity known as electroencephalogram (EEG) and
other physiological noise. The major problem in the acqui-
sition of evoked potentials lies in their unfavourable signal-
to-noise ratio (SNR) as the evoked signal is very low in am-
plitude in comparison with the spontaneous brain activity,
namely the electro encephalogram (EEG). Usually, stimulus-
synchronous averaging of a few hundreds to few thousands
of responses to identical stimuli is carried out to increase the
SNR. This is effective, since the stimulus induced changes
in the EEG are negligible. Various attempts have been made
by different research groups either to reduce the number
of sweeps to be averaged to obtain a meaningful signal in
order to reduce the recording time or to recover the infor-
mation lost by averaging. Some of the other EP estima-
tion methods include linear filtering in time domain [3], fre-
quency domain [7], other non-parametric methods [6]. The
AEP’s consist of low-frequency components of relatively
long duration and higher frequency components of shorter
duration. For a correct description of the signal power, we
must take into account not only its spectral distribution, but
also its temporal distribution. In other words, although EP is
considered stationary across an ensemble, it can be consid-
ered as non-stationary within a sweep, during which the fre-
quency characteristics of the various temporal components
vary. Hence, the analysis of EPs requires filters possessing
time-varying characteristics.

Wavelets have become increasingly popular tools
to efficiently deal with such nonstationary signals. Wavelet
transform is found to be most suitable for analysis of the
time varying structure of EP signals having both high and
low frequency components [4, 5]. Thakor et al. [8] used
multi-resolution wavelet analysis of the EP signals using or-
thogonal wavelets to characterize complex changes in their
shape during neurological injury. The present work sug-
gests methods to improve the SNR of ensemble averaged
AEP’s by reducing the residual noise. The objective is to
obtain a smoother and improved estimate, which facilitates



component measurement. We use a combination of two dif-
ferent wavelet methods for signal estimation, namely, a hi-
erarchical Wiener filtering which is a parametric approach,
and a thresholding method which is a non-parametric ap-
proach. Initially we briefly explain the different wavelet do-
main signal estimation methods in the following section.

2. SIGNAL ESTIMATION METHODS IN WAVELET
DOMAIN

Signal estimation approaches in the wavelet domain may
broadly be classified as thresholding approaches and filter-
ing approaches. Thresholding algorithms are based on the
energy compaction property of the wavelet transform and
assume noise to be white with Gaussian distribution. In fil-
tering approaches, the fundamental philosophy is to con-
sider the set of wavelet coefficients as a stationary random
process and use statistical estimation techniques for denois-
ing the signal. Both these schemes tend to manipulate indi-
vidual wavelet coefficients in order to denoise the observed
signals. We briefly explain these two approaches in the fol-
lowing subsections.

2.1. Thresholding methods

Wavelet thresholding procedures exploit the energy com-
paction property for effective signal denoising, and are op-
timal in a minimax mean-square-error (MSE) sense for a
variety of signal classes. In general, the wavelet coefficients
of a function are large in regions where the function is ir-
regular and small in smooth regions. If a function is cor-
rupted by additive noise, the noise dominates the wavelet
coefficients at small scales. Thus, most of those coefficients
contain the noisy part of the signal and only a few large co-
efficinets are related to strong singularities in the underlying
function. The thresholding schemes generally assume iden-
tically and independently distributed white Gaussian noise
with unit variance corrupting the signal of interest. Due to
this, small coefficients are more likely to be due to noise,
while the large coefficients are due to important signal fea-
tures. The essence of a threshold is that it should be large
enough to eliminate noise, but small enough to keep the sig-
nal features.

In the most basic form of wavelet thresholding
for denoising, if a coefficient is smaller than the threshold,
it is set to zero; otherwise, it is kept or modified. The pro-
cess of thresholding wavelet coefficients can be divided into
two steps. The first step is the choice of the thresholding
scheme. Two standard choices are: hard and soft thresh-
olds [9]. The second step is the choice of the threshold, A.
Hard-thresholding zeroes every coefficient that falls below a
defined threshold, while in soft-thresholding, a smooth and

continuous non-linear function is applied to the transform
coefficients. The most straight forward approach is to addi-
tionally shrink all the surviving coefficients by the value of
the threshold. Let

zi(n)=s(n)+vi(n)’ n= 17"'7N (1)

be a finite length 5*” noisy EP observation wherein the evoked
signal s; is corrupted by i.i.d. zero-mean, white Gaussian
noise v; with standard deviation €. If {d; x } are the wavelet
coefficients of the signal z;(n), where j is the scale parame-
ter and k is the translation parameter in the wavelet domain.
Different thresholding functions are defined as follows:

e "Hard thresholding:”
TIARD (dj0) = dje, [1dj el > A+

e ”Soft thresholding:”
T3P (djx) = sgn(d;e)(Idjx| — M)+

A variety of methods have been proposed for the estimation
of A. The earliest method proposed by Donoho and John-
stone [9] is a universal threshold, which is a function of the
noise variance and the length of decomposition. It is defined
as,

A =o+/2log(n),

MAD is the median absolute deviation of the coefficients of
the finest scale and n is the number of data samples. Often,
the initial noise variance is estimated from the wavelet co-
efficients at the finest transform level, and a normalization
by the MAD is applied. This method assumes the noise-to
be white with Gaussian distribution and the underlying sig-
nal of interest to be sufficiently smooth such that only noise
is present at high frequencies. A level dependent threshold-
ing of wavelet coefficients is more appropriate for correlated
noise. Threshold selection is determined by the manner
in which the denoising procedure is optimized: in a mean
squared error, minimax, or visually appealing (Visu-shrink)
[9] sense. The success of these methods depends entirely on
the noise variance used to fix the threshold.

where,0 = MAD/0.6745,

2.2. Filtering methods

The filtering approaches adopted for characterizing the sig-
nal vary slightly in different methods. Empirically designed
wavelet-domain filters perform superior to those of other de-
noising algorithms using wavelet thresholding. The two im-
portant filtering approaches that are widely investigated in
wavelet domain are Wiener filtering and spatially selective
filtering, both of which exploit the statistical distribution of
the wavelet coefficients. The design of the Wiener filter re-
quires the knowledge of the strength of signal coefficients.
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In the case of evoked potentials, this is obtained by using a
posteriori data. A suboptimal Wiener filter transfer function
in the frequency domain is written as,

H(w) = A—IE-(—UJ)— )
Py(w) + Py (w)

where P, (w) and P, (w) are the estimated power spectra of

the signal and the noise, respectively. Similarly, an approx-

imate form of the Wiener filtering in the wavelet domain

may be written as [5],

06,4) = sl _ ®
Ts(i,5) + To(2)

where 6(i, j) is the Wiener filter transfer function at reso-
lution level i and time j. ['4(¢,7) and ['y(5) are the esti-
mated energy density of the signal and noise components
at resolution level ¢ and time j. Filtering by ( 3) preserves
time-frequency regions where the signal power is stronger
than that of the noise, and attenuates regions where the noise

predominates.

3. EP ESTIMATION USING SELECTIVE WIENER
FILTERING IN WAVELET DOMAIN

The design of the Wiener filter in the wavelet do-
main requires the knowledge of noise-free signal coefficients
which necessitate a data adaptive or empirical approach that
infers the filter directly from the noisy observations. The
challenging part is the estimation of smaller signal coeffi-
cients. It is felt that a spatially selective filtering strategy
is needed because a uniform threshold may not be good
enough if the noise is correlated. If we can use additional
information, extracted from the noisy observations, to dis-
tinguish between the signal and noise coefficients, then spa-
tially adaptive thresholds can be used to reap the benefits of
keeping the important signal features while removing most
of the noise.

Mallat et al. [12] introduced the concept of com-
plete signal representation by WT domain maxima. They
were able to distinguish signal maxima from noise max-
ima by analyzing the singularity properties of WT domain
maxima of a signal across various scales. Witkin [11] first
introduced the idea of using space-scale correlation of the
subband decompositions of a signal to filter noise from the
signal. They used the nonorthogonal wavelet decomposi-
tion using undecimated wavelet transform (UDWT. Mallat’s
multiresolution decomposition [12] and the a trous algo-
rithm [14] are two separate implementations of the discrete
wavelet transform. Mallat’s method is based on the prin-
ciple of reducing the redundancy of the information in the
transformed data. Moreover, the transform is shift variant.
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The a trous algorithm results in a non-orthogonal and redun-
dant data set. Depending on the application, each of these
models can be advantageously used. Both the algorithms
are observed to be special cases of a single filter bank struc-
ture [14]. A good improvement is possible in the case of
denoising applications by giving up orthogonality and using
a redundant and shift invariant discrete wavelet transform.
Using direct multiplication of the coefficients across sub-
band decompositions, Witkin was able to distinguish ma-
Jjor edges from noise. Xu et al. [10] studied spatial filters
in the wavelet domain using inter-scale correlation in the
wavelet domain as an alternative to Fourier domain filters.
They proposed a spatially selective filter (SSF) based on the
space-scale correlations of the subband decompositions of a
noisy signal. The major transitions in the signal are tracked
from coarse scales to fine scales, thereby distinguishing ma-
Jjor signal edges from the background noise. The method re-
lies on the persistence property of the wavelet transform to
accomplish the task of filtering noise from signals. A large
spatial correlation between the scales is considered to indi-
cate a signal edge. Direct I** order spatial correlation across
scales, corri(m,n) is defined to be
corry(m,n) =H£;3w(m+i,n), n=12,---,N
C)]
where [ is the number of scales involved in the direct multi-
plication and m < M — [ + 1, where M is the total number
of scales. An edge is identified at any position n for which

|corri(m,n) > |w(m,n)] (5)

This algorithm, which iteratively identifies the important
wavelet coefficients in each scale, is well explained in [10].
For the Wiener filter formulation, we use the inter-
scale correlation in the wavelet domain as an index to group
the wavelet coefficients in each scale into signal and noise
dominant coefficients. The powers of signal and noise in
each of these groups in each scale are used in ( 3) to compute
a real, scale-dependent Wiener transfer function, in addition
to discarding the noise dominant coefficients. The block di-
agram of the proposed scheme is presented in Fig. 1. The
procedure is simple and easy to implement:

e step 1: Transform the data into the wavelet domain
viathe DWT: y = W .x

e step 2: At each resolution level j, group the empir-
ical wavelet coefficients into disjoint blocks {S7 =
w(i, §), lw(i, j)| > corra(i,§)} and {V7 = w'(i, j),
lw'(3, 5)| < corra(3,5)}.

e step 3: Compute the signal power from {Sjl asT,(5,5) =
w?(4, j) and the noise power from {V7} as I';(i, j) =
w'2(i, §) to be used in the transfer function in (3).
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Fig. 1. Block diagram of the spatially selective Wiener fil-
tering in the wavelet domain.

e step 4: Hard threshold the scale coeffcients obtained
in step 2 to eliminate the noise dominant coefficients
and retain significant coefficients.

o step 5: Use the computed scale-dependent weighting
factor in the significant signal regions to attenuate the
noise.

It is observed that such a two level filtering results in an
improved signal estimate. The algorithm is simpler than the
one proposed in [13], which is based on multiple orthogonal
bases. We present the results obtained using the proposed
SSW filter in the next section.

4. DATA USED FOR THE STUDY

The filter technique is tested extensively on simulated and
real AEP data. The simulation and the acquisition details of
real data are presented in the following subsections.

4.1. Simulated data

A BSAEP which was obtained with the traditional tech-
niques of averaging 512 sweeps of actual human responses
sampled at 40 KHz, is used as the original signal, s{n) in (1.
To this, simulated EEG is added to generate an ensemble of
noisy EP sweeps. The background EEG superimposed on
the evoked signal was simulated as an autoregressive pro-
cess [?] as follows:

(k) = 1.5084v(k — 1) — 0.1587v(k — 2) —
0.3109v(k — 3) — 0.0510v(k — 4) + (k)  (6)

where 6(k) is white Gaussian noise. The power spectrum
of the simulated EEG noise is comparable to actual EEG.
This is termed as BSAEP-Sim signal. In our experiments,
ensembles of different SNR’s are simulated by adding dif-
ferent amounts of noise to s(n).
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4.2. Real data

Beckman silver-silver chloride electrodes are applied
with conductive paste to sites C,, P,, O, and I,, according
to the 10-20 system. All the electrodes are referenced to
linked mastoids; the forehead is used as ground. The re-
sponses are recorded by repetitive sound stimuli applied as
auditory clicks to the ear. In the case of BSAEP signals,
the stimulus pulse of 0.1 ms duration is applied with an
intensity of 60 dB above normal hearing level. Stimulus
click rate is 17 Hz. The low voltage of AEP signals com-
bined with relatively high background noise requires the
use of highly sensitive amplifiers and computer averaging
equipment. The data is first amplified, then sampled at 40
KHz and quantized to 12 bits. For each stimulus, the first
512 points (or equivalently 12.5 msec) of the response is
recorded. The low filter is set to 100 Hz and the high filter
to 3000 Hz. We evaluated the performance of the proposed
estimator with data simulated at different SNR’s. In the case
of real data, since there is very little difference between the
results obtained on the different normal data, we present the
results for one typical case of BSAEP signal.

5. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on both synthesised
and real BSAEP signal. Experimental results show that this
spatially varying wavelet thresholding yields significantly
superior estimation of the signal. We have used mean square
error (MSE) to evaluate the performance of the proposed es-
timator. If s is the required actual signal and § is the estima-
tor’s output, the MSE is defined as, -

MSE = E|[(s - §)% (N

We compute MSE for different SNR’s of the input noisy sig-
nal both for simple ensemble average and compare it with
the performance of the proposed estimator’s output and also
with the output obtained using hard, thresholding in wavelet
domain to objectively evaluate the performance of the pro-
posed technique.

5.1. Results for simulated data

The BSAEP-Sim signal estimated using the proposed
technique for different input SNRs is illustrated in Fig. 2.
The SNR’s of the input noisy signals shown in the first
row of Fig. 2 are 1.75 dB, 3.0 dB and 5.0 dB, respectively.
The corresponding signals, estimated using SS-W filter, are
shown in the second row. The third row displays the original
signal for comparison. The significant components of the
BSAEP are clearly visible in the estimated output, and fa-
cilitate measurement even at a low input SNR of 1.75 dB, al-
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Fig. 2. Signals estimated from BSAEP-Sim at different
SNR’s. Row (a): BSAEP-Sim signal with input SNRs of
1.75 dB, 3.0 dB and 5.0 dB, respectively. Row (b): Signals
estimated using SS-W filtering. Row (c): Original signal.
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Fig. 3. Comparison of signals estimated from simulated
BSAEP using two different techniques. (a) Ensemble av-
eraged BSAEP-Sim signal at a SNR of 3 dB. (b) Output of
hard thresholding. (c) Output of SS-W.

though it shows a small amount of residual noise. The resid-
ual noise in the estimated signal reduces with increase in the
SNR of the input. Figure 3 compares the results obtained by
our technique on BSAEP-Sim signal simulated at a SNR of
3 dB to the results achieved by simple hard thresholding.
Fig. 3(a) presents the noisy input signal; the correspond-
ing signals estimated using hard thresholding and the SS-W
filter are shown in Figs. 3 (b) and (c), respectively. The out-
put of the hard threshold estimator has a large amount of
impulse noise and spurious fluctuations at the boundaries
of the thresholding masks. This phenomenon is observed
for input SNRs less than 3 dB. However, this noise is not
present in the signals estimated using our technique.

The performance of the two estimators is also
studied in terms of the MSE of the estimated output for dif-
ferent input SNRs. The results of comparison are presented
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Fig. 4. MSE of the estimated output for different input
SNRs. Solid line: SSW filter. Dashed line: Hard thresh-
olding. Dotted line: EA. Input: BSAEPSim.

in Fig. 4, along with the MSE of the simple ensemble av-
erage. At any instant, the input to the SS-W filter is the
ensemble average up to the current sweep, which may also
be termed as current ensemble average (CEA). The SNR for
the CEA increases with larger ensemble length. In Fig. 4,
the x-axis shows the different input SNR’s studied and the
y-axis shows the corresponding MSE obtained. It can be
seen that for any given CEA or SNR, the MSE of the signal
estimated using SS-W is smaller than that obtained using
the hard threshold estimator.

5.2. Results for real data

The proposed technique has been tested on a set of real
brainstem AEP and middle latency responses. The results
obtained are presented in Fig. 5, along with those of hard
thresholding. Good and well defined components have been
estimated from the noisy observations with the proposed
technique. As seen from the figure, the SS-W is clearly
superior in estimating the signal.

6. DISCUSSION

Thresholding in a shift-invariant or translation-invariant (TT)
expansion eliminates some of the unpleasant artifacts in-
troduced by modifying the coefficients of the orthogonal
wavelet expansion. Hence denoising in a shift-invariant, re-
dundant representation outperforms that by the orthogonal
basis [?]. The wavelet transform based Wiener filter as
described above improves the EP data from repeated trials.
A substantial reduction in noise has been observed. This re-
duction is expected to improve subsequent quantitative anal-
ysis for extracting characteristics such as amplitude, width
and onset time of individual responses. Spatially selective
Wiener filtering is found to be giving better results both vi-
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Fig. 5. Real BSAEP signals estimated using SS-W and hard
threshold estimators for ensembles of different lengths. row
(a): EA of 200, 300 and 400 sweeps, respectively. row (b):
Signals estimated using hard thresholding. row (c) Signals
estimated using SS-W filter.

sually and in terms of mean square error in comparison with
hard thresholding.

Fig. 5 clearly illustrates the effectiveness of the
proposed technique. For example, the first column shows
that the filtering scheme is able to recover all the signal max-
ima and minima even from a highly noisy average of an en-
semble of just 200 sweeps. Compared to the normal case of
a BSAEP which requires a minimum of 2000 sweeps, this
is a reduction by a factor of 10. Further, as seen from Fig. 3,
hard thresholding introduces unwanted sharp spikes in the
resultant waveform, because of which the principal peaks
and valleys of the response are not always unambiguously
identified. This is because of the phenomenon akin to the
Gibbs oscillations. Hard thresholding is equivalent to ap-
plying a rectangular window in the wavelet domain, which
entails the oscillations seen in the signal (time) domain. On
the other hand, the proposed spatially selective Wiener filter
results in smooth, clear peaks and valleys, from which mea-
surements can be made easily. For the same input SNR, the
MSE of the SSW estimate is always less than that obtained
with hard thresholing by a factor of at least 5. This is a sig-
nificant improvement in performance. In fact, as seen from
Fig. 4, at low input SNR’s of the order of 0.5 dB, S5-W filter
gives rise to a very low MSE, which is comparable to that
given by the hard threshold estimator at SNR’s of around 4
dB. Results shown in Figs. 5 and ?? confirm that the tech-
nique produces equally valid results for real data too.

7. CONCLUSION

In this chapter, we have proposed a two level filtering method
for estimating AEP signals. A Wiener filter is formulated
exploiting the inter-scale correlation in the wavelet domain.
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The wavelet transform data at a given scale is compared to
its correlation with the data at larger scales. Signal features
are identified and retained because they are strongly corre-
lated across scales in the wavelet domain; noise is removed
since it is poorly correlated across scales. The signal fea-
tures remain relatively undistorted because they are very
well localized in space in the wavelet domain. The spuri-
ous fluctuations normally caused near the end points of the
thresholding window in the hard thresholding scheme, and
the smearing of the high frequency data due to Wiener fil-
tering are both nullified by using a combination of the two
approaches, resulting in an estimated signal far superior to
that obtainable by either of them individually.
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