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We present a new algorithm to estimate hemodynamic response function (HRF) and drift components of
fMRI data in wavelet domain. The HRF is modeled by both parametric and nonparametric models. The
functional Magnetic resonance Image (fMRI) noise is modeled as a fractional brownian motion (fBm).
The HRF parameters are estimated in wavelet domain by exploiting the property that wavelet transforms
with a sufficient number of vanishing moments decorrelates a fBm process. Using this property, the noise
covariance matrix in wavelet domain can be assumed to be diagonal whose entries are estimated using
the sample variance estimator at each scale. We study the influence of the sampling rate of fMRI time
series and shape assumption of HRF on the estimation performance. Results are presented by adding
synthetic HRFs on simulated and null fMRI data. We also compare these methods with an existing
method,1 where correlated fMRI noise is modeled by a second order polynomial functions.
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1. Introduction

Functional Magnetic Resonance Imaging (fMRI) is
a non-invasive imaging technique that can be used
to study the function of brain. fMRI measures
changes in blood oxygenation and blood volume that
result from neural activity. This Blood Oxygen Level
Dependent (BOLD) response gives a contrast which
distinguishes between activated and non-activated
regions of the brain for a given task.

A typical fMRI experiment consists of periodic
blocks of baseline and activation. During the base-
line, the subject is at rest or at baseline condition and
during the activation period, the subject performs
a specified cognitive task. fMRI images are contin-
uously acquired during both periods. One baseline
followed by activation and then followed by baseline

is termed as a cycle. One common way of model-
ing the fMRI time-series is by a convolution model2:
The observed time-series at each voxel is the out-
put of a linear filter with the boxcar function, rep-
resenting the design paradigm, as the input. The
impulse response of the filter is called as Hemody-
namic Response Function (HRF).

Significant work has been done so far,3,4 in iden-
tifying the activated regions for a given task. With
the increase in time resolution of fMRI data, there
is a significant interest in estimating the temporal
characteristics of fMRI data.5 Estimation of HRF is
important in not only identifying the regions of acti-
vation but also in finding the relative time of activa-
tion of different brain regions. This can be achieved
by determining the delay time of HRF at various
brain regions. Amplitudes of the response at different
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locations give the strength of response at these loca-
tions for a given task. Estimation of HRF also helps
in event-related design paradigms5 where HRFs will
be different for events and the task. Several para-
metric models like gamma,2 poisson and gaussian
functions5 have been used to model HRF.

BOLD signal in fMRI time-series is corrupted by
physiological noise due to cardiac and respiratory
cycles and their aliased versions, thermal and scan-
ner noise. Physiological noise components appear as
trends or fluctuations in the voxel time-series. It is
observed that fMRI time-series under null condi-
tions exhibit long term dependence (or 1/f prop-
erty) which can be modeled by fractional Brownian
motion (fBm).3 In this work, We model HRF by
both parametric (Gaussian function) and nonpara-
metric models and the noise is modeled by fBm. We
study the influence of sampling time (TR) and shape
assumption on the estimation performance. We also
compare our method with the method of Ref. 1,
where correlated fMRI noise is modeled by a second
order polynomial functions. Results are presented
by adding synthetic HRFs on simulated and null
fMRI data.

2. Fractional Brownian Motion

fMRI voxel time-series exhibits serial dependence
even in the absence of experimental effects. This col-
ored fMRI noise typically has disproportionate spec-
tral power at low frequencies, i.e., its spectrum has
1/f -like behavior. Physical systems in which many
particles are relaxing from excited states at differ-
ent rates are well known generators of 1/f -like noise.
The coloring in fMRI noise in the absence of physio-
logical causes can be attributed to physical effects.6

Fractional Brownian motion (fBm) is a good tool to
model these processes. Below, we give a brief review
of fBm processes and the details can be obtained
from Refs. 7 and 8.

A fBm B(t) is a zero mean, non stationary, and
non-differentiable function of time. The mean square
difference between values of the function at any two
time points is proportional to the time difference ∆
raised to the power of twice the Hurst exponent, H .
For fBm processes, H has value between 0 and 1; i.e.,

E(B(t) − B(t − ∆)2) ≈ |∆|2H (1)

If ∆ = 0, the variance of the process is non
stationary

E(B2(t)) ≈ t2H (2)

The covariance between the process at two times
t and u is given by,

E(B(t), B(u)) = 0.5σ2(|t|2H + |u|2H − |t − u|2H)

0.5σ2 = Γ(1 − 2H)cos(πH)/πH (3)

From the Eq. (3), it can be shown that B(t) is
self-affine, i.e., rescaling the process in time by an
arbitrary scalar s > 0 yields a process B(st) with
statistical properties identical to those of the process
sHB(t) generated by rescaling its values on the orig-
inal time scale by the scalar sH . From this self-affine
property, it follows that the fractional dimension D

of the process is simply related to its Hurst compo-
nent by

D = T + 1 − H (4)

where T is the topological dimension of the data. For
a time-series, T = 1; therefore D = 2− H . Ordinary
Brownian motion is the special case of fBm occurring
when H = 0.5.

In Refs. 9 and 10, it was shown that wavelet
transform with a sufficient number of vanishing
moments decorrelates a fBm process. This means
that the wavelet coefficients across and within scales
are uncorrelated or weakly correlated even if the sig-
nal is correlated in the time domain. It was further
shown in Refs. 7 and 11 that wavelet decomposition
also possesses optimally decorrelating or Karhunen-
Loeve properties for the wider class of 1/f -like sig-
nals. For fBm processes, the expected correlation
between any two wavelet coefficients wj,k and wj′,k′

is (first index refers to scale and the second to time)

E(wj,k, wj′,k′) ∝ O(|2jk − 2j′k′|2(H−R)) (5)

Thus, the expected correlation between any two
wavelet coefficients at the same scale wj,k and wj,k′

is

E(wj,k, wj′,k′) ∝ O(|k − k′|2(H−R)) (6)

where R is the number of vanishing moments of the
mother wavelet. These results imply that the sec-
ond order stochastic properties of wavelet coefficients
are stationary within and across the scales, even
if the original time-series is non stationary. Since
the Hurst component H < 1 and if R ≥ 2, the
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correlation between any two pairs of wavelet coef-
ficients decays rapidly as inverse square of their sep-
aration within and across scales. More precisely, it
is shown in Ref. 12 that provided R > 2H + 1, the
inter coefficient correlations decay hyperbolically fast
within levels and exponentially fast between levels.
This suggests that the minimum number of vanishing
moments required to decorrelate fBm process with
0 < H < 1 is 4. Wavelet filters with a large number
of vanishing moments have long filter lengths. Since
fMRI time-series typically have short lengths, bound-
ary correction results in artefactual inter coefficient
correlations. For this reason, we use fourth-order
daubechies wavelet, which is the most compactly
supported wavelet with four vanishing moments.

We use the decorrelating property of wavelet
transforms to build a probability model for fMRI
time-series. This model, in turn, is used to estimate
the hemodynamic response function in the wavelet
domain.

3. Probability Model for fMRI
Time-Series

BOLD response of the brain for a given task can be
modeled as the convolution of the HR function and
the input task.2 The input task x(t) is considered as
a binary function of time which has a value of ‘1’
during the task and a ‘0’ during the rest period.

ym(t) =
K∑

k=1

x(t − k)hm(k) + βm(t) + em(t),

t = (K + 1) · · ·N (7)

where, ym(t) is the observed mth voxel time-series,
hm(t) is the system impulse response, βm(t) is the
trend, em(t) is the additive noise component and K

is the length of the system response. We model the
system response hm by both Gaussian function and
smooth FIR filters. For convenience, we omit the sub-
script “m” denoting HRF for each voxel time-series.
Note that HRF is computed separately at each voxel.
Also, the noise components e(t) and β(t) are mod-
eled separately for each voxel time-series. The above
equation can be written in matrix form as:

y = Xh + β + e (8)

where X is a (N − K × K) convolution matrix and
y, β, e are (N −K × 1) vectors. We model the noise

component e as a fBm process. Therefore, the prob-
ability of y given h is

p(y|h) ∼ N(Xh + β,C) (9)

where C is the covariance matrix whose elements are
given by (3). Multiplying WT matrix WT (or apply-
ing discrete wavelet transform) on both sides of (8),
we have

WTy = WTXh + WT β + WTe (10)

where, WTy, WT β and WTe are, respectively, the
wavelet coefficients of the observed signal, drift and
noise. Let yw = WTy, Xw = WTX, βw = WT β

and ew = WTe. Then the above equation can be
written compactly as:

yw = Xwh + βw + ew (11)

For example, for J scales (J = log2N , where N is
length of the vector), yw is

yw =
[
ayJ

1 , dyJ
1 , dyJ−1

1 , . . . , dyJ−1
2−JN

,

. . . , dy1
1 , . . . , dy1

2−1N

]t
(12)

where, ayj
k and dyj

k (subscript k denotes time index
and superscript j indicates scale) are approximate
and detail coefficients, respectively. The columns of
Xw can be obtained by applying wavelet transform
to each column of X. Therefore, the probability
model for yw given h is

p(yw|h) ∼ N(Xwh + βw, Λ) (13)

where, Λ is a diagonal matrix assuming that WT
decorrelates the noise process w. The diagonal ele-
ments of Λ are variances of wavelet coefficients at
each scale.

Λ = diag
[
σ2

J , σ2
J , σ2

J−1, . . . , σ
2
1

]
(14)

4. Estimation of HRF and Drift

4.1. Gaussian model for HRF

Hemodynamic response refers to the local change in
blood oxygenation as an effect of increased neuronal
activity. This response can be modeled as an output
of a linear filter for an input of unit impulse. In this
section, we model the system response (HRF) by a
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Gaussian function, where the parameters give a phys-
iological interpretation.5 The HRF is represented as:

h(t) = η exp(−(t.TR − µ)2/σ2) (15)

where, µ is the time lag from the onset of the stim-
uli to the peak of HR; σ reflects the rise and decay
time and η is the amplitude of the response and TR

is the sampling period. Let θ = [µ, σ, η] denote the
unknown parameters of the HRF.

Now, the estimation of HRF boils down to esti-
mating the unknown parameter θ, for which we use
maximum a posteriori estimation (MAP). For this,
the parameter θ is modeled as a random variable with
a known priori pdf. This method allows to incorpo-
rate the prior knowledge of the parameter through
the prior pdf. If the prior is properly chosen, one can
expect a better estimate of θ. We model µ, σ and η

as independent Gaussian random variables.

f(θ) = p(µ, σ, η) = f(µ)f(σ)f(η)

= (2π)−0.5|Vθ|−0.5

× exp(−0.5(θ − mθ)tV −1
θ (θ − mθ) (16)

where mθ is the vector of means of µ, σ and η and
Vθ is a diagonal matrix whose entries are variances
of the above random variables.

The prior probability parameters mθ and Vθ are
chosen using the prior knowledge of the HRF. It
is observed that when a stimulus of small duration
(unit impulse) is applied, the HRF follows after some
delay and attains peak after 2–6 seconds of applica-
tion of the stimulus. Also, HRF lasts for a duration
between 7 to 12 seconds. It is also observed that the
amplitude of the response η is around 3–5% of the
signal intensity. Accordingly, the priors for µ, σ and
η can be chosen as 5:

p(µ) ∼ N(mµ, σµ) = N(6, 1.732)

p(σ) ∼ N(mσ, σσ) = N(2, 2.24)

p(η) ∼ N(mη, ση) = N(4, 2.24)

where, mµ, mσ and mη are means, and σµ, σσ and
ση are standard deviations of µ, σ and η, respec-
tively. Therefore, the prior probability p(θ) can be
specified as:

p(θ) ∼ N(mθ, Vθ), where

mθ = [mµ, mσ, mη]t = [6, 2, 4]t

Vθ = αdiag(σ2
µ, σ2

σ, σ2
η) = diag(3, 5, 5)

The unknown parameters to be estimated are
parameters of HRF θ and the drift component β.
The origin of drift in fMRI time-series is not known.
But it is observed that it is a low frequency signal.
In this work, we estimate the drift in the wavelet
domain using the information that it is a low fre-
quency signal. Therefore, its wavelet coefficients at
lower scales (high frequencies) should be negligible
and can be assumed to be zero. Hence the wavelet
coefficients for the drift component can be written as:

βw =
[
ayJ

1 , dyJ
1 , dyJ−1

1 , . . . , dyJ−1
2−JN

,

. . . , dyJo
1 , . . . , dyJo

2−JoN , 0, 0 . . .0
]′ (17)

where, Jo is the lowest scale up to which the drift
component is significant. aβj

k and dβj
k are, respec-

tively, approximate and detail coefficients of βw. We
observed from null fMRI data that the drift com-
ponent is significant only at first two higher scales.
Therefore we assume Jo = J − 2. We use the fol-
lowing iterative algorithm to estimate the unknown
parameters:

1. Initialize the algorithm assuming a linear trend.
Estimate its parameters using the data in the
rest blocks of the design paradigm. Subtract
this component from the data. Let ywd are
the wavelet coefficients of the detrended voxel
time-series.

2. Find a least square estimate of h

ĥls =
(
Xt

wXw

)−1
Xt

wywd (18)

3. Remove the signal component from the time-
series

ỹw = yw − Xwĥls (19)

4. Estimate the drift component β̂w by equating the
wavelet coefficients to zero from scale Jo− 1 to 1.

5. Now, use the estimated drift in the wavelet
domain and find the MAP estimate of θ as:

θMAP = arg maxθ p(yw|h)p(θ)

= arg minθ (yw − Xwh(θ) − β̂w)t(Λ)−1

× (yw − Xwh(θ) − β̂w) + θtV −1
θ θ (20)

where, the prior probability p(θ)∼N(mθ,Vθ) is
defined in the previous section. Let ĥMAP =
h(θMAP ).

6. Repeat the steps (3)–(4) by replacing ĥls by
ĥMAP until convergence.
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This algorithm converges in 2 to 3 iterations. The
above algorithm is applied at each voxel time-series.

4.2. Smooth FIR filter model for
hemodynamic response function

In this section, we model the HRF by a smooth FIR
filter using the approach of Ref. 1. In Ref. 1, the noise
space is assumed to be spanned by second order poly-
nomial functions. In this work, we model fMRI noise
component as a fBm process.

The observed time-series model for a voxel with
the wavelet transformed drift component βw esti-
mated and removed is given by:

yw = Xwh + ew (21)

where, h is modeled by a smooth FIR filter. The pdf
of yw given h is

p(yw|h) ∼ N(Xwh,Λ) (22)

where, Λ is a diagonal matrix given by 14.

In modeling HRF by a FIR filter, no specific
shape for HRF is assumed. The task is to estimate
filter coefficients for each voxel time-series. Since
HRF lasts for about 12–20 seconds, the number of
filter coefficients (K) are chosen as K = 20/TR.
Since the number of coefficients to be estimated is
large, this estimation problem is ill-posed. In Ref. 1,
the problem is regularized by imposing a smoothing
constraint on HRF. The HRF is assumed to be a
smooth function of time. This smoothness informa-
tion is translated into the constraint that the norm
of second derivative of the HRF ||h(t)′′||, should be
small, and then a corresponding pdf is specified as in
Ref. 1. The prior pdf of h takes the following form

p(h|ε) ∝ ε(K−1)

× exp

(
− ε2

2TR2

K∑
k=0

(hk+1 − 2hk + hk−1)2
)

p(h|ε) ∝ ε(K−1)exp

(
− ε2

2
htMph

)
(23)

where, Mp is a concentration matrix given by:

Mp =
1

(TR)4




5 −4 1 0 . . . . . . . . . 0 0

−4 6 −4 1 0 . . . . . . 0 0

1 −4 6 −4 1 0 . . . . . . 0

0 1 −4 6 −4 1 0 . . .
...

0
. . . . . . . . . . . . . . . . . . . . .

... 0 1 −4 6 −4 1 0

... . . . 0 1 −4 6 −4 1

0 1 −4 6 −4

0 . . . . . . 0 0 1 −4 5




. (24)

The relative weight of this prior to data is controlled
by the hyper parameter ε. Also the starting and
final values of HRF are assumed to be zero. (i.e.,
h(0) = h(K) = 0). Hence, only (K − 1) filter param-
eters are to be estimated.

Jeffrey’s prior is assumed for ε as given below,1

since there is no prior knowledge of ε.

p(ε) = (ε)−1 (25)

Using Bayes rule, the joint posterior pdf for h and ε

can be written as:

p(h, ε|yw) ∝ p(yw|h, ε)p(h|ε)p(ε) (26)

Therefore, the required marginal posterior pdf for h
is given by:

p(h|yw) =
∫

p(h, ε|yw)dε (27)

There is no closed form solution to this marginal pdf
and numerical optimization is required to find the
MAP estimate of h. To overcome this problem, ε is
first estimated by MAP and then the a posteriori pdf
for h is approximated as:

p(h|yw) ≈ p(h|yw, ε = ε̂) (28)
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where ε̂, the MAP estimate of ε is given by:

ε̂ = argε max p(ε|yw) (29)

The marginal posterior probability for ε is easy to
evaluate and is given by:

p(ε|yw) ∝ (det(M(ε))−1/2ε
(K−1)

2

× exp
(− 1/2

(
yw

tΛ−1yw

− µ̂B
tM(ε)µ̂B

)
where, M(ε) = Xt

wΛ−1Xw + ε2Mp

and, µ̂B = M(ε)−1(Xt
wΛ−1yw) (30)

Now, the task is to estimate the HRF h. The fMRI
model

yw = Xwh + ew (31)

is a classical Bayesian linear model.13 The posterior
probability of h given yw and an estimate of ε can be
easily evaluated using the standard results.13 Since
the process ew and the prior pdf of h are Gaussian,
the posterior pdf of h will also be Gaussian with pos-
terior mean and covariance given by

E(h|yw, ε̂) =
(
Xt

wΛ−1Xw + ε̂2Mp

)−1
Xt

wΛ−1yw

(32)

Ch
y

=
(
Xt

wΛ−1Xw + ε̂2Mp

)−1 (33)

The conditional expectation of h, E(h|y, ε̂) is its
minimum mean square estimator (MMSE). The fac-
tor α = ε̂2 determines the relative weight of the prior
information. We get a maximum likelihood estimate
(MLE) for α = 0.

The algorithm given in the previous section can
be used to estimate the HRF h and the drift compo-
nent β by replacing ĥMAP in that algorithm by the
MMSE estimate of h given by (32).

4.3. Estimation of covariance matrix

We need the covariance matrix Λ for the above algo-
rithm. The diagonal elements of Λ are nothing but
variance of wavelet coefficients at each scale and are
related to the Hurst component σ2

j = σ2
b2−(2H+1)j ,

where j is the scale and σb is an unknown param-
eter. Therefore variance of wavelet coefficients can
be estimated by estimating H and σb using a large
number of algorithms in the literature.7 But these
algorithms are found to be not reliable for H > 0.14

Another way of estimating the variance at each scale
is to use simple sample variance estimator.15 fMRI

time-series are typically of length 128 or less. The
length of wavelet coefficients at scale j will be N/2j.
Hence, sample variance estimator will be unreliable
due to small data lengths. In Ref. 15, it is shown that
variance estimators will be more reliable using the
undecimated wavelet transforms (UWT) compared
to the conventional non-redundant discrete wavelet
transforms (DWT). In UWT, the length of wavelet
coefficients will be N irrespective of the scale. In
this work, we use DWT for estimating the unknown
parameters θ and β and UWT for estimating the
variances at each scale.

5. Test Bed

We test the above algorithms first on a synthetic
fMRI noise and then on a real fMRI data obtained
when the subject is at rest performing no cognitive
or physical task. We call such data as “null” data.
Below, we briefly discuss the method used for gener-
ating the synthetic fBM noise.

5.1. Generation of synthetic data

Time-series with 1/f -like power spectrum (also
called as 1/f process) can be generated using sev-
eral methods. Wavelet transforms which decorrelate
these class of signals can be used to synthesize these
signals. We use a wavelet based method suggested
in Ref. 9. The variance of detailed coefficients dj ,
at each scale j is related to the Hurst component
(H) as

var(dj) = σ2
b (2j)2H+1 (34)

This relation is used to generate 1/f process. At
each scale j, Gaussian noise with above variance
is generated. The required time-series is gener-
ated by taking inverse wavelet transform. We use
orthogonal daubechies-4 wavelet with four levels of
decomposition. The parameter σ2

b is decided by the
required signal to noise ratio (SNR). The SNR is
calculated as:

SNR = 10 log10 Es/σ2
w (35)

where, Es is the BOLD signal energy and σ2
w is the

noise power. We fix the value of H as 0.4. Es is
estimated as h′h, where h is HRF, modeled as a
Gaussian function with typical parameters θ =
[6, 2, 4]. Since orthogonal transformation preserves
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energy, the noise power σ2
w is the sum of variances in

each scale j.

σ2
w = σ2

J∑
j=1

(2j)2H+1 (36)

where, J is the maximum scale allowed. The param-
eter σ2

b can be calculated for a given SNR. Using the
above method, We generate synthetic fMR images
with size 16×16, where each voxel is a time-series of
length 64. The fMR data is generated at SNRs = 5, 0,
−5 and −10dB. A quadratic trend is added to this
data to simulate low frequency trends in the fMRI
data. We assume sampling rate (TR) of 1 second and
data at TR = 2 and TR = 3 are generated by sub-
sampling the data generated for the sampling period
of 1 second.

5.2. Null data

The null data is acquired at National Institute
of Medical Health and NeuroSciences, Bangalore,

India, using a 1.5 Tesla Siemens machine. The scan-
ning sequence was a single-shot gradient-echo (T 2∗

weighted) with 66ms echo time and 90 degrees RF
flip angle with a matrix size of 128 × 128. The data
is acquired when the subject is at rest. The sampling
time interval between two consecutive acquisitions is
1 second (TR = 1).

We assume that the subject is at rest from 1
to 10 seconds, followed by activation from 10 to 20
seconds and then again rest. Thus the experimen-
tal paradigm is modeled as a boxcar function with
ones from 10 to 20 seconds and zeros at the other
times. The BOLD signal is modeled as a convolu-
tion of this boxcar function with HRF as shown
in the Fig. 1. In the parametric method, we model
HRF by a Gaussian function. To study the influ-
ence of this model on other HRF shapes, we use
Poisson and Gamma functions to simulate HRF in
addition to Gaussian function and model them all
by Gaussian function. The convolution of these HRF
functions with boxcar function is added to both
synthetic and null fMRI data. In the nonparametric
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Fig. 1. Linear model for blood oxygen level dependent (BOLD) signal (a) HR function (b) Input activation profile or
design paradigm (c) BOLD response: convolution of HR and input activation.



May 3, 2006 17:10 00055

132 R. Srikanth & A. G. Ramakrishnan

case, we test whether the FIR filter model for HRF is
able to model parametric HRF models like Gaussian,
Poisson and Gamma functions. We also study the
influence of sampling rate on HRF estimation. The
performances of these two methods are characterised
by the performance indices defined in the next
section.

6. Results and Discussion

We compare the performance of the above two algo-
rithms on synthetic and real (null) fMRI data using
the following performance indices.

6.1. Performance measures

We use the following performance indices to quan-
tify the performance of the proposed methods. We
use Gaussian model to fit other parametric functions
like Poisson and Gamma.

1. Time to peak tp is an important parameter of
HRF. It characterises the delay in response to a
given task. This parameter can be used to find
the relative time of activation of various regions.
In our case, since Gaussian function is used to
model all the types of HRFs, the mean µ of the
estimated Gaussian function represents the time
to peak. The percentage error in the estimation
of time to peak is defined as:

δtp =
|µ̂ − µ|

µ
× 100 (37)

where, µ̂ is the estimated time to peak and
µ is the actual time to peak. Mean of the
Gaussian function and parameter of the Pois-
son model, respectively, characterize the time to
peak. In the Gamma model, the ratio of Gamma
function parameters characterizes the time to
peak.

2. The amplitude of the response η to a given stimu-
lus is also an important parameter which charac-
terizes the strength of the response at each voxel.
The percentage error in the estimation of this
parameter is defined as:

δη =
|η̂ − η|

η
× 100 (38)

where, η̂ is the estimated amplitude and η is the
actual amplitude of HRF.

3. The overall error in the estimation of the HRF
is characterized by the sample mean square error
(MSE) which is defined as:

MSE = (ĥ − h)t(ĥ − h)/K (39)

where, ĥ and h are, respectively, the estimated
and actual HRF and K is the length of the
response.

4. The sample correlation (ρ) between the estimated
(ĥ) and actual HRF (h) measures the match
between them. The range of ρ is from 0 to 1, where
1 corresponds to a perfect match.

In the smooth FIR model, we calculate the time to
peak (tp or group delay) of HRF using

tp =
∑K

k=0 kh(k)∑K
k=0 h(k)

(40)

The amplitude of HRF is estimated as the peak of
the estimated HRF.

6.2. Synthetic data

Tables 1 and 2 summarize the performances of
the parametric and FIR filter methods for differ-
ent SNRs, TRs and HRF functions. The paramet-
ric method results in 15–20% error each in the
estimation of time to peak and amplitude, respec-
tively, at TR = 1 for all HRF models and SNRs.
The performance is robust for decreasing SNR. The
sample correlation is more than 0.8. In the case
of FIR model, the estimation error is about 3–8%
and 7–18% in the estimation of time to peak and
amplitude, respectively, at TR = 1 for all HRF
models and SNRs. The sample correlation is more
than 0.9. Hence, FIR filter performance is better
than that of Gaussian model for TR = 1. How-
ever, at TR = 2, the performance of FIR filter
model is poorer than the parametric method. Also,
performance decreases with the decrease in SNR.
At TR = 3, the estimation of HRF becomes very
unreliable.
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Table 1. Performance comparison of parametric method at different SNRs and TRs. Poisson,
Gamma and Gaussian simulated hemodynamic response functions are modeled by a Gaussian
Function. fMRI noise is modeled by fractional Brownian motion. poi: Poisson, gam: Gamma, gau:
Gaussian, δtp: percent error in time to peak, δη: percent error in amplitude, MSE: Mean square
error in HRF estimation and ρ: sample correlation between actual and estimated HRFs.

SNR TR δtp δη MSE ρ
(dB) (sec)

poi gam gau poi gam gau poi gam gau poi gam gau

5 1 19 20 16.4 12 11 13.2 1.95 1.8 1.12 0.85 0.83 0.84
5 2 26 28 24 22 24.7 24.2 2.3 2.5 1.96 0.6 0.5 0.62
5 3 26 27 28 28 27.4 29 2.76 3 2.98 0.55 0.48 0.46

0 1 18.6 20.3 16.5 17 16 18.58 1.96 1.88 1.31 0.81 0.82 0.81
0 2 20 21 18.2 25 24 25.35 2.1 2.11 2.4 0.63 0.68 0.61
0 3 26 27 29 23 22.1 23.13 3.35 3.1 2.9 0.53 0.49 0.48

−5 1 18 20 16.6 21 20 19 2 1.96 1.4 0.82 0.81 0.81
−5 2 23 25 27 24 27 26 2.73 2.88 2.9 0.62 0.64 0.65
−5 3 31 32 33 30 33 34 3.4 3.5 3.2 0.46 0.45 0.43

−10 1 17 18 15 18 16.4 15 1.76 1.73 1.4 0.81 0.79 0.78
−10 2 24 23 24 27 28 24 2.75 2.9 2.82 0.55 0.58 0.59
−10 3 33.7 34 32 32 33.2 34 3.7 3.5 3.4 0.47 0.46 0.43

Table 2. Performance comparison of nonparametric method at different SNRs and TRs. Pois-
son,Gamma and Gaussian simulated hemodynamic response functions are modeled by a smooth
FIR filter. fMRI noise is modeled by fractional Brownian motion. poi: Poisson, gam: Gamma, gau:
Gaussian.

SNR TR δtp δη MSE ρ
(dB) (sec)

poi gam gau poi gam gau poi gam gau poi gam gau

5 1 3 2.7 2.3 7.2 12 14 0.38 0.35 0.43 0.97 0.96 0.95
5 2 26 27 23.4 26 29 36 2.9 2.77 2.84 0.51 0.52 0.54
5 3 33 31 27 29 31 32 3.4 3.8 3.7 0.44 0.42 0.49

0 1 4.1 4.6 5 7.4 15.5 15 0.8 0.8 0.84 0.93 0.93 0.9
0 2 28 29 25.4 28 30 37 3.1 3.2 3.3 0.53 0.52 0.51
0 3 31 37 42 34 35 31 4.2 4.3 4.4 0.38 0.39 0.41

−5 1 5.2 5.5 5.3 7.7 17 18 1.5 1.6 1.72 0.87 0.85 0.82
−5 2 32 33 39 27 29 30 3.7 3.6 3.5 0.46 0.45 0.47
−5 3 41 49 66 34 37 35 6.5 6.4 6.2 0.3 0.35 0.34

−10 1 6.2 7.5 8 12 17.2 17.1 3.28 3.38 3.4 0.8 0.74 0.73
−10 2 — — — — — — — — — — — —
−10 3 — — — — — — — — — — — —

6.3. Null Data

Now, we apply both parametric and nonparamet-
ric methods on the null fMRI data. Figures 2 and
3, respectively, show the performance of parametric
and FIR modeling methods at TR = 1, 2 and 3 sec-
onds. At TR = 1 sec, the errors in the estimation
accuracies of time to peak and amplitude are about

14–18% and 12–14%, respectively, for all the three
simulated HRFs for the parametric method. FIR fil-
ter method is able to estimate these parameters with
accuracies of about 3% and 10%, respectively. The
sample correlation ρ between the estimated and the
actual HRFs is about 0.82 for parametric case and
is about 0.9 for nonparametric model. Hence at low
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Fig. 2. Performance measures for parametric modeling of HRF as a function of TR. fMRI noise is modeled by fractional
Brownian motion. (a) Percentage error in the estimation of time to peak (δtp × 100) (b) MSE (c) Percentage error in the
estimation of amplitude of HRF (δη × 100) (d) Correlation between estimated and actual HRF (ρ).
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Fig. 3. Performance measures for nonparametric modeling of HRF as a function of TR. fMRI noise is modeled by frac-
tional Brownian motion. (a) Percentage error in the estimation of time to peak (δtp × 100) (b) MSE (c) Percentage error
in the estimation of amplitude of HRF (δη × 100) (d) Correlation between estimated and actual HRF (ρ).
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Fig. 3. (Continued)

TRs, both parametric and FIR filter models are able
to recover HRFs with good accuracy. But at higher
TRs, the ability of FIR filter to model HRFs dimin-
ishes as compared to parametric model which is also
evident from the simulated data. At TR = 2 sec, the
errors in the estimation accuracies of time to peak
and amplitude are about 18% and 17%, respectively,
for all the three simulated HRFs for the parametric
method, whereas FIR filter method is able to esti-
mate these parameters with accuracies of only 25%
and 17%, respectively. The sample correlation for
parametric case is about 0.7 and for FIR case, it is
only 0.5. Hence parametric model performs better at
higher TRs.

6.4. Overall comparison

We also compare the performance of fBm noise
model for the smooth FIR filter method with the
method of Ref. 1. In Ref. 1, the drift component is
modeled by polynomial bases and the noise compo-
nent by white Gaussian noise. The model is given by

y = Xh + Pλ + e (41)

where y is the observed time-series, X is the
convolution matrix, the columns of P represent poly-
nomial bases of degree 2, λ are the unknown coordi-
nates of component along the polynomial bases and
e is white Gaussian noise with an unknown variance.
The HRF h is modeled by a smooth FIR filter. We
apply this method on both synthetic and null fMRI
data. Table 3 summarizes the performance of this
method on the synthetic data at different SNRs and

TRs. By comparing this Table with Table 2, the fol-
lowing conclusions can be drawn. The performance
using fBm model is superior to the polynomial model
of Ref. 1. For example, at SNR = 0 dB and TR = 1
second, the estimation errors in time to peak δtp is
about 4.5% for fBm model for all the simulated HRF
parametric models (Gaussian, Poisson and Gamma).
On the other hand, polynomial noise model gives
about 10% error. The mean square error values of
0.8 using fBm model, is less compared to the value
of 1.2 achieved by the polynomial model. At this
SNR and TR, the value of the correlation coeffi-
cient ρ, 0.9, obtained by fBm model is superior to 0.8,
achieved by the polynomial model. Performances of
these two models degrade with the decrease in SNR

and increase in TR. The degradation in performance
is more severe in the polynomial model. Table 4 sum-
marizes the results obtained for SNR = 0 dB and
TR = 1 second for fBm and polynomial models.

In the case of null data, for TR = 1 second,
the fBm model is able to estimate the time to peak
with an accuracy of 3%. Polynomial model gives an
accuracy of about 7%. At this TR, MSE using fBm
model is about 0.9, which is less than the value of
1.1 achieved by the polynomial model. The values
of fidelity index ρ, obtained by fBm model, is about
0.92, which is superior to the value of 0.85 achieved
by the polynomial model. Figure 4 shows the perfor-
mance of the model involving polynomial bases. For
both the models, HRF estimation becomes unreliable
with increase in TR. From this, we can conclude that
the fBm noise model is superior to the adhoc polyno-
mial bases, for modeling the baseline drifts and fMR
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Table 3. Performance comparison of nonparametric method at different SNRs and TRs. Poisson, Gamma and
Gaussian simulated hemodynamic response functions are modeled by a smooth FIR filter. Trends are modeled by
polynomial bases of degree 2. poi: Poisson, gam: Gamma, gau: Gaussian, δtp: percent error in time to peak, δη:
percent error in amplitude, MSE: Mean square error in HRF estimation and ρ: sample correlation between actual
and estimated HRFs.

SNR TR δtp δη MSE ρ
(dB) (sec)

poi gam gau poi gam gau poi gam gau poi gam gau

5 1 8.54 8.61 11.3 8.5 12.7 21 0.87 1 1.3 0.91 0.88 0.81
5 2 24 25 24 25 29.3 29 2.97 2.4 2.73 0.51 0.52 0.56
5 3 26 27 30 31 32 31 3.67 3.44 3.7 0.38 0.39 0.4

0 1 8.7 9.2 12 6.4 9.4 19 1 1.2 1.5 0.89 0.85 0.8
0 2 20 21 25 27 28.2 27.3 2.3 2.6 3 0.51 0.55 0.53
0 3 25 28 31 32 31.6 34 3.8 4 4.7 0.4 0.39 0.38

−5 1 10 11.4 11 14 12 11 2 2.2 2.4 0.8 0.8 0.7
−5 2 20 17 21 29 28 27 4.5 4 4.6 0.47 0.44 0.49
−5 3 31 35 33 34 33 31 13 9 7 0.31 0.34 0.4

−10 1 12 8 24 14 11 12 5 5 5.6 0.7 0.65 0.55
−10 2 — — — — — — — — — — — —
−10 3 — — — — — — — — — — — —

Table 4. Comparison of fMRI models on synthetic data at SNR = 0 dB and TR = 1 sec. HRF is
modeled by Smooth FIR filter.

Methods δtp δη MSE ρ

poi gam gau poi gam gau poi gam gau poi gam gau

fBm 4.1 4.6 5 7.4 15.5 15 0.8 0.8 0.84 0.93 0.93 0.9
Poly. Bases 8.7 9.2 12 6.4 9.4 19 1 1.2 1.5 0.89 0.85 0.8

1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

TR (secs)

δ
tp

Gaussian
Poisson
Gamma

1 1.5 2 2.5 3
0

5

10

15

TR (secs)

M
S

E

Gaussian
Poisson
Gamma

(a) (b)

Fig. 4. Performance measures for nonparametric modeling of HRF as a function of TR. Trends are modeled by polyno-
mial bases of degree 2. (a) Percentage error in the estimation of time to peak (δtp × 100) (b) MSE (c) Percentage error
in the estimation of amplitude of HRF (δη × 100) (d) Correlation between estimated and actual HRF (ρ).
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Fig. 4. (Continued)

Table 5. Comparison of fMRI models on Null data at TR = 1 sec. HRF is modeled by Smooth
FIR filter.

Methods δtp δη MSE ρ

poi gam gau poi gam gau poi gam gau poi gam gau

fBm 2 3 3 10 8 12.4 0.9 0.97 1.15 0.93 0.92 0.9
Poly. Bases 6.64 6.4 8.35 8.6 13 21 0.9 1.0 1.24 0.9 0.88 0.81

noise. Table 5 summarizes the results obtained at
TR = 1 second on the null data for both the models.

7. Conclusions

We proposed wavelet based methods for the esti-
mation of hemodynamic response function for both
Gaussian and FIR filter models. The fMRI noise
which exibhits 1/f -like spectrum is modeled as a
fractional Brownian Motion. The probability mod-
els are built on the assumption that wavelet trans-
forms with sufficient number of vanishing moments
decorrelate a fBm process. The baseline drifts are
also estimated along with HRF. We also compared
fBm model with the exisisting method of 1 which
uses polynomial bases for modeling baseline drifts
and smooth FIR filter model for HRF. fBm model
using smooth FIR filter model for HRF are found to
be superior to the method of Ref. 1. At lower TRs,
nonparametric model performs better than the para-
metric methods.
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