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Abstract. With the recent advancement in the deep learning tech-
nologies such as CNNs and GANSs, there is significant improvement in
the quality of the images reconstructed by deep learning based super-
resolution (SR) techniques. In this work, we propose a robust loss func-
tion based on the preservation of edges obtained by the Canny operator.
This loss function, when combined with the existing loss function such
as mean square error (MSE), gives better SR reconstruction measured
in terms of PSNR and SSIM. Our proposed loss function guarantees im-
proved performance on any existing algorithm using MSE loss function,
without any increase in the computational complexity during testing.
Keywords: Loss function, CNN, GAN, Super-resolution, mean square
error, mean square Canny error, edge preservation, PSNR, SSIM

1 Introduction

Super-resolution is the process of obtaining a high resolution (HR) image from
one or more low resolution (LR) images. Classical reconstruction based image
super-resolution requires multiple low-resolution images with sub-pixel misalign-
ment at the same scale, whereas single image super-resolution requires a database
of LR and HR matched pairs to learn a mapping function between the patch
pairs at different scales [1]. Given a low resolution image during testing, this
learned function or representation can be used to reconstruct the corresponding
HR image.

Since the advent of deep learning technologies in the past decade, super-
resolution algorithms have shown remarkable improvement in the quality of the
reconstructed image. Most of the work reported in the literature have used mean
square error (MSE) loss function to minimize the error between the reconstructed
model output and the ground truth image [2] [3] [4] [5] [6] [7]. Minimizing this
loss function may reduce the high frequency content in the reconstructed image
and thus may blur the edges in it. Also, the reconstructed image may not lie
precisely in the manifold of the HR image. Researchers have endeavored to find
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ways to solve this problem to a good extent as can be seen in SRGAN [8], where
the authors claim that the reconstructed output lies precisely in the manifold of
HR images, even if the reconstructed images have less peak signal to noise ratio
(PSNR) and structural similarity (SSIM). Ledig et al. [8] have used a weighted
combination of MSE loss, content loss [9] and adversarial loss to reconstruct
the HR image. This approach requires a deep architecture, such as the VGG
net [10], to obtain the local covariance structure in the image. Most of the image
transformation tasks use mean square error as loss function, which provides
smooth transformed images.
Our main contributions in this paper are as follows:

— We have performed a large number of experiments to obtain a robust loss
function that improves the performance of the existing algorithms that em-
ploy MSE loss function.

— While training, we apply Canny edge detector [11] the reconstructed output
(in batches) and also separately on the corresponding ground truth image to
compute the proposed mean square Canny error (MSCE) and assign weights
(convex combination) based on our experiments i.e. the loss function can be
given as: p X MSE + (1 —pu) x MSCE.

— Our approach guarantees performance improvement in terms of PSNR and
SSIM over the existing approaches, if the model is trained on one dataset
and tested on different datasets as mentioned in Tables 1 and 2.

— Our model does not incur additional overhead in terms of computation dur-
ing testing to obtain the performance gain reported in Tables 1 and 2 due
to our proposed MSCE loss function.

2 Related work

Super-resolution and image denoising can be assumed as image transformation
tasks. In super-resolution, a LR image is fed to a transformation network such as
a multilayer neural network to generate a HR image. Most of the image process-
ing tasks such as image denoising and super-resolution minimize a per-pixel loss
function to obtain reconstruction. In this work, our focus is on improving the
quality of existing super-resolution algorithms such as SRCNN [2] and ESPCN [3]
that use per-pixel loss function. Recently proposed perceptual loss function has
shown significant improvement in the perceptual quality of the images. Simonyan
et al [12] use perceptual loss for feature visualization. Gatys et al. [13] and [14]
use perceptual loss for texture synthesis and style transfer, respectively. These
approaches solve an optimization problem and hence, are slower.

Justin Johnson et al [15] and Pandey et al [16] use the benefits of per-
pixel as well as perceptual loss funtions and propose a computationally effi-
cient, optimization-free approach that provides results for image transformation
tasks that are qualitatively similar to those of the above optimization-based
approaches. The super-resolution algorithm SRGAN [8] uses a weighted combi-
nation of three different loss functions, namely mean square error, perceptual and
adversarial loss to obtain a sharper reconstruction. The images reconstructed by



these methods perceptually look sharper, even if they have low values of PSNR
and SSIM.

In this work, our focus is on improving the perceptual quality, PSNR and
SSIM without incurring any additional computational overhead during testing
by the addition of a new, robust loss function that aims to preserve the edge
information.

3 The proposed edge-preserving MSCE loss function

We employ Canny edge detector [11] to detect the edges in the reconstructed
and ground truth images. We have chosen this algorithm, since Canny operator
provides the most reliable edges amongst all the edge detection algorithms in
the literature, and also satisfies all the general edge detection criteria.

Most of the recent papers on image super-resolution and denoising use mean
square error as the loss function. This loss function may smooth the edge com-
ponents in an image. We thought of preserving the edges by defining the loss
function as a convex combination of mean square error loss and our edge pre-
serving loss as follows:

Suppose the training set consists of image pairs {L;, H;} ; ¢ = 1...N, where
N is the total number of training examples. The model @, parameterized by A,
predicts the output O; for a given input L;. Let C denote the Canny operator.
Let C(©x(L;))) be the resultant image obtained by applying Canny operator on
the predicted output image, O; = ©x(L;). The proposed edge preserving loss
function, called the mean square Canny error - (MSCE) is given by :

N N
Loss = p % % ST Oa(Ly) — Hy llr+ (1 — p) x %Z I C(Ox(Ly)) — C(Hj) |IF (1)

i=1 i=1

MSE Loss (Imse) Edge preserving loss (legge)

The first term in the equation above is the mean square loss function used
to minimize the error between the reconstructed output and the ground truth
image. The second term in the loss function is the edge preserving loss function.
After a large number of experiments, the weighing factor p has been fixed to lie
in the range 0.8 < p < 0.99. To minimize this loss function, Adam optimizer [17]
is used with learning rate (Ir) = 0.001, 8; = 0.999 and 5 = 0.99.

3.1 Choosing the value of u

— Exhaustive Experimentation : We performed experiments varying p in
the range 0.8 < p < 0.99 by incrementing its value by 0.01 each time. We
found that the models were consistently giving better results for the par-
ticular values of p = 0.84, 0.85 and 0.86. For the results reported in the
Figures 1, 2, 3 and 4 and Tables 1 and 2, the value of u used is 0.85.
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— Dynamic choice of p: While performing the experiments, we found that
sometimes, values of p (still in the range 0.8 < p < 0.99) other than the
three specific ones mentioned above, gave better results. We made a list of
those different values of p and tried each of them parallely in each epoch. For
the subsequent epoch, we select the model corresponding to the least value
of the loss function. Let /,,s and lcqge denote the mean square error loss
and our edge-preserving loss, respectively, as mentioned in equation 1. Let
{\, /i } be the optimal model parameters and u be the weighing parameter
currently chosen during training. In each epoch, we selected the value of p
that minimized the loss function in the right hand side of equation 2:

fo=argmin{p X Lyse + (1 — 1) X legge } (2)
I

We used the earlier approach for calculating the loss in our experiments,
results for which have been reported in the Tables. A dynamic choice of the
value of u gives similar results in less number of epochs. It can be experi-
mented further to possibly achieve still better results.

4 Datasets used for training and testing

The models are trained on DIV2K [18] training dataset with the original architec-
ture (without changing the architectural details of the existing model) proposed
in the respective papers. We have performed testing on different datasets such
as Set5 [19], Set14 [20], BSD [21] and URBANI100 [22] for the different scale
factors of 2, 3, 4 and 8. We have found that there is consistent performance gain
over the original models, in terms of PSNR and SSIM, on all the datasets on
which our MSCE loss function has been tested so far. These results are seen
quantitatively in Tables 1 and 2.

5 Experiments and Discussion

We have performed extensive experiments on different super-resolution algo-
rithms proposed recently, by augmenting the original loss function with our
proposed mean square Canny error loss function.

We have validated the effectiveness of our proposed MSCE loss function on
the recent techniques of SRCNN [2] and ESPCN [3]. We found that the addition
of our MSCE loss leads to better results and the improvement is consistent on
both methods across different upscaling factors of 2, 3, 4 and 8.

6 Results

Figures 1, 2, 3 and 4 show both the results qualitatively: one obtained by passing
the input image directly to the original models SRCNN [2] and ESPCN (3]



with the loss functions used in the original papers, and the other obtained by
augmenting the loss function with our MSCE loss function.

Tables 1 and 2 list the quantitative results obtained by the two superres-
olution methods on the datasets Set5, Set14, URBAN and BSD for different
upscaling factors and the corresponding values obtained after they are modified
by our MSCE loss function.

Note 1: Table 1 lists the results obtained from the LR images created by
downsampling using normal bicubic interpolation. Whereas, the results reported
in Table 2 are obtained by blurring the image by a Gaussian filter with radius
2 and then downsampling by bicubic interpolation to obtain the LR images at
different scales.
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(a) SRCNN original (b) SRCNN MSCE (c) ESPCN original (d) ESPCN MSCE

Fig. 1. Qualitative comparison of the results for an upscale factor of 2, when the ppt
image from Setl4 is directly fed to the original model and the model modified with
MSCE loss trained by us. (a) The output image reconstructed by the original SRCNN
model. (b) The output image reconstructed by SRCNN model modified with MSCE
loss function. (c¢) Image reconstructed by the original ESPCN model. (d) Output image
reconstructed by ESPCN model modified with MSCE loss function.

7 Conclusion

A large number of research papers have been published in the recent past by
designing different models or algorithms that work reasonably well. The unique
contribution of our work is that it improves the performance of any existing
method, rather than proposing another technique. In this paper, we have pro-
posed a robust edge-preserving loss function that adds performance gain in terms
of PSNR and SSIM to any existing model, without increasing the computational
cost involved in testing. We train the existing model by adding weighted Canny
edge based loss. Minimizing this loss function helps to preserve the edges by
giving more weightage to the edges. As shown by the Tables of results, the
PSNR and SSIM values obtained after including our MSCE loss function are
consistently better.
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(a) SRCNN original (b) SRCNN MSCE (c¢) ESPCN original (d) ESPCN MSCE

Fig. 2. Comparison of the results for an upscale factor of 3, when the comic image
from Setl4 is directly fed to the original model and the model modified with MSCE
loss trained by us. (a) Output image reconstructed by the original SRCNN model.
(b) Output image reconstructed by SRCNN model modified by MSCE loss function.
(¢) Output image reconstructed by the original ESPCN model. (d) Output image
reconstructed by ESPCN model modified by MSCE loss function.

(a) SRCNN original (b) SRCNN MSCE (c) ESPCN original (d) ESPCN MSCE

Fig. 3. Comparison of the results for an upscale factor of 4, when the baby input image
from Setb is directly fed to the original model trained by us and the model modified
with MSCE loss trained by us. (a) Output image reconstructed by the original SRCNN
model. (b) Output image reconstructed by SRCNN model modified by MSCE loss
function. (c¢) Output image reconstructed by the original ESPCN model. (d) Output
image reconstructed by ESPCN model modified by MSCE loss function.
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(c) ESPCN original (d) ESPCN MSCE

Fig. 4. Comparison of the results for an upscale factor of 8, when the baboon input
image from Setl4 is directly fed to the original model trained by us and the model
modified with MSCE loss trained by us. (a) Output image reconstructed by the orig-
inal SRCNN model. (b) Output image reconstructed by SRCNN model modified by
MSCE loss function. (¢) Output image reconstructed by the original ESPCN model.
(d) Output image reconstructed by ESPCN model modified by MSCE loss function.

Table 1. P, and S, are the PSNR and SSIM values obtained by the method * for the
upscaling factors of 2, 3, 4 and 8, whereas P¢ and S§ are the corresponding PSNR and
SSIM values obtained after augmenting the loss function by the MSCE loss function
designed by us. All the models other than bicubic (non-learnable) have been trained
on DIV2K training dataset. For testing, we have used 4 datasets, namely Setb, Set14,
Urban and BSD.

Dataset Pbicubic Sbicubic Psrcnn Ssrcnn Pgrcnn S:rcnn PES;DCTL Sespcn Pgspcn Sgspcn
2x| 27.02 0.92 |28.44 0.93 | 28.57 0.93 |26.48 0.92 | 26.59 0.92
Set5 3x| 25.41  0.89 |26.59 0.90 |26.75 0.91 |25.882 0.91 [25.888 0.91
4x| 21.96  0.79 |23.22 0.82 |23.37 0.83 |22.35 0.81 | 2249 0.82
8x| 18.10 0.61 |18.740 0.63 [18.743 0.63 | 18.33 0.62 | 18.43 0.62
2x| 24.10 0.86 |25.22 0.88 |25.32 0.88 |23.50 0.87 | 23.56 0.87
Set14 3x| 22.65 0.81 |23.62 0.84 |23.68 0.84 |23.06 0.84 | 23.06 0.84
4x| 20.01 0.70 |[20.96 0.73 |[21.04 0.73 |20.12 0.71 | 20.32 0.72
8x| 17.13 0.53 | 17.57 0.56 | 17.58 0.56 |17.20 0.56 | 17.27 0.56
2x| 20.66 0.84 |22.26 0.87 |22.44 0.87 |21.38 0.87 | 21.42 0.87
Urban 3x| 20.22  0.79 |21.47 0.83 |21.53 0.83 |21.18 0.83 | 21.18 0.83
4x| 16.92 0.65 |17.81 0.69 |17.84 0.69 |17.54 0.70 | 17.59 0.70
8x| 14.63 0.48 |15.04 0.50 | 15.04 0.50 |14.94 0.507 | 14.99 0.509
2x| 25.88 0.89 |25.96 0.90 |26.18 0.90 |23.36 0.87 | 23.41 0.88
BSD 3x| 21.86  0.77 |22.49 0.81 |22.54 0.81 |22.34 0.81 | 22.35 0.81
4x| 21.43  0.73 | 22.08 0.77 |22.13 0.77 |21.28 0.76 | 21.41 0.77
8x| 18.43 0.57 | 18.78 0.59 | 18.81 0.59 |18.47 0.587 | 18.58 0.589
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(a) SRCNN 2x  (b) SRONN MSCE 2x  (c) ESPCN 2x  (d) ESPCN MSCE 2x

(i) SRONN 4x  (j) SRCNN MSCE 4x (k) ESPCN 4x (1) ESPCN MSCE 4x

(m) SRONN 8x  (n) SRCNN MSCE 8x (o) ESPCN 8% (p) ESPCN MSCE 8x

Fig. 5. Comparison of the results obtained on down-sampled (by bicubic interpolation
without blurring) images on different upscaling factors. (a), (b), (¢) and (d) have been
down-sampled by a factor of 2 and reconstructed. (e), (f), (g) and (h) have been down-
sampled by a factor of 3 and reconstructed. (i), (j), (k) and (1) have been down-sampled
by a factor of 4 and reconstructed. (m), (n), (o) and (p) have been down-sampled by
a factor of 8 and reconstructed.



Table 2. P, and S. are the PSNR and SSIM values obtained by the method * at
the different upscaling factors of 2, 3, 4 and 8, whereas Py and S; are the corre-
sponding PSNR and SSIM values obtained by augmenting the loss function by the
MSCE loss function designed by us. All the models other than bicubic (non-learnable)
are trained on DIV2K (blurred by Gaussian blurring, then downsampled by bicubic)
training dataset. For testing, we use 4 datasets, namely Set5, Set14, Urban and BSD.

Dataset |Pyicubic Svicubic|Psrenn Ssrenn Pgrcnn Sgrcnn Pespcn Sespcn Pgspcn Sgspcn
2x| 21.10 0.77 |[23.96 0.83 |24.06 0.84 |21.21 0.75 | 21.87 0.79
Set5 3x| 21.63 0.79 |22.38 0.85 | 24.75 0.86 |[22.50 0.80 | 22.88 0.83
4x| 20.12  0.72 | 21.92 0.78 | 21.94 0.78 |21.53 0.77 | 21.92 0.78
8| 17.72 0.59 |18.17 0.61 | 18.34 0.61 | 18.48 0.613| 18.56 0.614
2x| 19.35 0.67 |21.75 0.76 | 21.78 0.76 |19.50 0.67 | 20.08 0.70
Set14 3x| 19.84 0.69 |20.64 0.77 |22.25 0.78 |20.63 0.73 | 20.99 0.74
4x| 18.67 0.62 |20.02 0.69 | 20.07 0.69 [19.75 0.68 | 20.04 0.69
8x| 16.84 0.52 |17.16 0.54 | 17.29 0.54 |17.35 0.55 | 17.43 0.54
2x| 16.57 0.63 |18.87 0.74 | 1886 0.74 |16.93 0.63 | 17.33 0.66
Urban 3x| 17.63 0.66 |18.96 0.76 | 20.03 0.76 |18.68 0.71 | 18.87 0.72
4x| 15.85 0.58 |17.05 0.65 | 17.07 0.65 |16.96 0.64 | 17.05 0.64
8x| 14.42 047 |14.74 0.49 | 14.81 0.49 [14.96 0.49 | 1497 048
2x| 21.00 0.71 |23.27 0.80 | 23.28 0.80 {20.92 0.71 | 21.67 0.75
BSD 3x| 19.82  0.66 |20.27 0.75 | 21.59 0.75 [20.30 0.70 | 20.60 0.72
4x| 20.13  0.67 |21.32 0.73 | 21.35 0.73 |21.06 0.73 | 21.38 0.73
8x| 18.18 0.56 |18.38 0.58 | 18.51 0.58 |[18.70 0.58 | 18.70 0.58
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