
Voice source transform for speaker identification page 1 of 11 Ramakrishnan, JASA-EL

Voice source characterization using
pitch synchronous discrete cosine

transform for speaker identification

A.G. Ramakrishnan and B. Abhiram
Department of Electrical Engineering, Indian Institute of Science, Bangalore, India 560012

ramkiag@ee.iisc.ernet.in, abhiram1989@gmail.com

S.R. Mahadeva Prasanna
Department of Electrical and Electronics Engineering, I.I.T.-Guwahati, India 781039

prasanna@iitg.ernet.in

June 2, 2015



Voice source transform for speaker identification page 2 of 11 Ramakrishnan, JASA-EL

Abstract: A characterization of the voice source (VS) signal by the

pitch synchronous (PS) discrete cosine transform (DCT) is proposed.

With the integrated linear prediction residual (ILPR) as the VS esti-

mate, the PS DCT of the ILPR is evaluated as a feature vector for

speaker identification (SID). On TIMIT and YOHO databases, using

a Gaussian mixture model (GMM)-based classifier, it performs on par

with existing VS-based features. On the NIST 2003 database, fusion

with a GMM-based classifier using MFCC features improves the identi-

fication accuracy by 12% in absolute terms, proving that the proposed

characterization has good promise as a feature for SID studies.

PACS numbers: 43.72.Ar, 43.72.Pf, 43.70.Bk
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1. Introduction

In the production of voiced speech, the derivative of the glottal flow is called the voice

source (VS) signal. In the source-filter model, speech is modeled as the output of the

vocal tract filter, excited by the VS. The VS pulse synthesized by models1 and the VS

estimated by inverse filtering the speech signal have been used as the source signal for

speech synthesis2. The VS estimate is also used for analyzing pathological voices3 and

features extracted from its shape, for speaker identification (SID)4;5;6. Further, studies

like7 show that the VS pulse shape influences the perceived voice quality. Time-domain

models have been proposed to characterize the VS pulse8. The spectrum of the VS pulse

has also been parameterized9. In other works, the samples of the VS estimate have been

directly used10 or its frequency or cepstral-domain representation4;5.

The objective of this study is to propose an alternate way of characterizing the

VS, and to evaluate it as a feature for SID. Thus, the focus is not on the speaker modeling

and classification. The discrete cosine transform (DCT) is a reversible transformation,

with an excellent energy compaction property, and hence has the ability to capture the

time-domain pulse shape of the VS within its first few coefficients. Since the pulse shape

of the VS has been successfully exploited for SID4;5, its DCT is explored as an alternate

characterization of the VS for SID.

2. Discrete cosine transform of the integrated linear prediction residual

In earlier studies like 4;5, the closed-phase covariance technique of linear prediction

(LP) analysis11 was used to obtain the VS estimate. For proper estimation, this technique

requires the glottal cycle to have a sufficiently long closed-phase, which is not the case in

breathy phonation, where the vocal folds do not close fully12. To avoid such dependence

on the speech signal, we use the integrated linear prediction residual (ILPR)7 as the VS

estimate, since it only involves estimating the LP coefficients from the pre-emphasized

speech signal and using them to inverse filter the non-pre-emphasized speech signal,

without the need to estimate the closed-phase prior to inverse filtering.

The vowel /a/ shown in Fig. 1(a) is synthesized from the VS pulse (dotted line

in Fig. 1(b)) simulated using the model in 13. The ILPR (solid line), also shown in Fig.

1(b), bears a close resemblance to the original VS pulse, except for small ripples in the

closed phase of the glottal cycle, resulting from improper formant cancellation,
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Fig. 1. Shift variance of the DCT: (a) A segment of synthetic vowel /a/; (b) The ILPR (solid line)
closely resembles the VS pulse train (dotted line) used for synthesis; (c) The first 20 coefficients
of the pitch synchronous (PS) DCT of the ILPR in Fig. 1(b); (d) The first 20 coefficients of the PS
DCT of the circularly shifted version of the ILPR in Fig. 1(b) are different from those in (c).

2.1. Pitch synchronous discrete cosine transform and the number of coefficients

It is desirable that the representation of the VS is independent of shift and scale changes.

However, the DCT is shift-variant and Figs. 1(c) and (d) show that the DCT coefficients

of a segment of the ILPR shown in Fig. 1(b) and its circularly shifted version are quite

different. This problem is avoided if the DCT is obtained pitch synchronously, using pitch

marks. Pitch synchronous DCT has been used for pitch modification14. The DCT has also

been demonstrated to be a good feature extractor for a few recognition problems15.

Since the VS is by nature low-pass13, it is not necessary to retain the DCT co-

efficients corresponding to high frequencies. Consider the DCT of an ILPR sequence of

length N equal to one pitch period (typically 50-160 samples for fs = 16 kHz). Let the

first M DCT coefficients (excluding the 0th) be retained. To choose M , a segment of the

ILPR from a TIMIT utterance is reconstructed using the N -point inverse DCT by varying

M (forcing the remaining N − M coefficients to zero). Fig. 2 shows the reconstructed

ILPR pulses (for M = 12, 24 and 50) overlaid on the original. As M increases, the re-
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Fig. 2. A single pitch period of the ILPR (dotted line) of a segment of a TIMIT utterance and its
reconstruction (solid line) from DCT truncated to 12, 24 and 50 coefficients. The gross shape of
the ILPR is captured by only 12 of the more than 80 DCT coefficients.
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Fig. 3. Block diagram of the method to obtain DCT of ILPR.

construction gets closer to the original. This behaviour is similar to that of the principal

components of the VS proposed in16. The gross shape of the ILPR is captured by only

12 coefficients. However, this is just an example, and we require statistics from an SID

experiment to determine the optimal value of M .

The block diagram to obtain the DCT-based characterization (henceforth re-

ferred as the DCTILPR) is shown in Fig. 3. An algorithm for glottal closure instant (GCI)

detection17 is used for pitch marking. Since only the voiced regions are of interest,

a voiced/unvoiced (V/UV) classification scheme based on maximum normalized cross

correlation is used to retain only the voiced regions, as in18. The ILPR is obtained by

inverse filtering three successive pitch periods, retaining only the middle period of the

output, and repeating the process by shifting the analysis frame by one pitch period till

the entire voiced speech segment is traversed. A first order difference filter is used for

pre-emphasis and a Hanning window, for LP analysis. Each ILPR cycle is normalized by

its positive peak amplitude, before applying the DCT-II pitch synchronously.
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Fig. 4. (a) Two periods of ILPR and the PS DCT (of one period) from different phonetic contexts
in voiced segments from three different utterances of a single TIMIT speaker. The shapes of the
ILPRs are similar and so are their DCTs. (b) ILPR and PS DCT from vowel /a/ in the word ‘wash’
for three TIMIT speakers. The ILPR shape, and hence the DCT vectors vary across speakers.
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2.2. Speaker variability: modeling using Gaussian mixture models

Fig. 4(a) illustrates that the ILPRs from three different utterances of the same speaker

are similar, and the corresponding DCT coefficients show a similar trend, though not

identical. On the other hand, Fig. 4(b) shows that different speakers have distinct ILPR

waveform shapes and DCT vectors. Thus, the DCTILPR captures the ILPR shape and has

less intra-speaker variability and more inter-speaker variability, which is a characteristic

of a good speaker-specific feature.

Even though the ILPR shape is similar in most regions for a single speaker, it is

different in some regions. This is due to improper formant cancellation during inverse

filtering, leading to changes in ILPR shape for different phones, and also due to the

different phonation types19. We use Gaussian mixture models (GMMs)20 as speaker

models to capture the changes in the feature distribution from speaker to speaker.

3. Evaluation of the proposed feature for speaker identification

Three standard databases are used to evaluate the efficacy of the DCTILPR as a feature

vector for SID: (1) The TIMIT test set21 with 168-speaker data is used for comparison

with existing VS-based features for SID22;5;4. Utterances 3 to 10 are used as train data

and 1 and 2 as test data for each speaker. (2) The YOHO database23 with data from 4

different recording sessions for each of 138 speakers is used to study the session vari-

ability of the DCTILPR. Utterances 1 to 20 are used for training and 21 to 24 for testing,

for each session of each speaker. (3) The NIST 2003 database24 with 356-speaker, mul-

tiple cellular phone speech (110 s of train data and 60 s of test data per speaker) is used

to study the handset variability of the DCTILPR. A Gaussian mixture with 16 compo-

nents and diagonal covariance matrices is used to model each speaker and the decision

is based on maximum likelihood.

The performance of DCTILPR is compared with those of the following studies

on VS-based features for SID: (1) Plumpe et. al.4, with a time-domain parameterization

(TDVS) of the VS estimate as the feature, and a GMM-based classifier; (2) Gudnason

and Brookes5, with the voice source cepstral coefficients (VSCC) as the features, and

a GMM-based classifier; and (3) Drugman and Dutoit22, with the speaker-dependent

waveforms of the deterministic plus stochastic model (DSM) of the LP residual as the

features, and a distance metric for classification.
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M 4 8 12 16 20 24 28 32 36

SID accuracy (%)
TIMIT 75.6 86.8 92.8 93.5 93.5 94.6 92.9 92.3 94.0
YOHO 52.9 74.6 78.8 79.0 79.0 80.4 79.0 76.8 75.4

Table 1. SID accuracy versus M on TIMIT and YOHO databases

3.1. Results and discussion

Table 1 shows the performance variation with M on TIMIT and YOHO (training data –

session 1 and test data – session 2). It shows that the first 12 DCT coefficients are the

most effective for SID, which implies that the gross shape of the VS plays a significant

role in distinguishing between speakers. Also, the performance drop for M > 24 means

that the very fine structure of the VS does not capture the features distinguishing the

speakers. Since M = 24 gives the maximum accuracy, the first 24 coefficients are taken

as the feature vector for our experiments.

Table 2(a) shows that the performance of the DCTILPR on TIMIT is compara-

ble to that of the VSCC, but the DSM outperforms both with only 3 misidentifications.

However, Table 2(b) shows that, on the YOHO database, the DSM, which is the best

performing feature in22, is outperformed by the DCTILPR in all the 4 sessions. In Ta-

ble 2(b), I position means correct classification, and II and III positions mean that the

true speakers correspond to the speaker models having the second and third highest

likelihoods for the given test data, respectively. With both the features, the performance

decreases from session to session, and more speakers are pushed to II and III positions.

Thus there is session variability in both the features, which needs to be alleviated to

be able to use them in a practical setting. The difference between the performances of

the DCTILPR on the TIMIT and YOHO databases may be due to the availability of less

training (24s) and test data (6s) in TIMIT.

On the TIMIT database, the LF model parameters are obtained as described

in4. From both the LF model parameters and the DCTILPR coefficients, the ILPR is

reconstructed and the ratio of the energy of the reconstruction error to the energy of

Feature # misidentifications SID accuracy Session details In I position In II position In III position
TDVS 48 71.4% Same session 100.0% (99.7%) 0% (0.3%) 0% (0%)
VSCC 9 94.6% 1 session later 80.4% (69.3%) 3.6% (7.9%) 2.9% (5.2%)

DCTILPR 9 94.6% 2 sessions later 73.9% (64.3%) 2.9% (8.8%) 5.1% (4.6%)
DSM 3 98.0% 3 sessions later 72.5% (58.7%) 5.1% (11.8%) 3.7% (4.4%)

(a) (b)

Table 2. (a) Performance comparison on TIMIT database; (b) Percentage of speakers classified
using DCTILPR (using DSM) with test data from different recording sessions in YOHO database
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Condition DCTILPR MFCC
Classifier fusion

DCTILPR+MFCC [α.LC + (1− α).LM] LF+MFCC [α.LF + (1− α).LM]
Same handset 71.8% 72.7% Max. accuracy = 84.5% Max. accuracy = 75.45%

Different handset 18.2% 40.0% Max. accuracy = 40.9% Max. accuracy = 40.0%

Table 3. SID accuracy on the NIST 2003 database under the same and different handset condi-
tions for DCTILPR, MFCC and classifier fusion.

the original ILPR is noted. The mean (over multiple pitch periods) reconstruction error

energy with the LF model is 0.42, while that with the DCTILPR (24 coefficients) is 0.23.

This shows that the DCTILPR captures the finer details of the VS pulse, while the LF

model does not. This may be the reason for the better SID performance of the DCTILPR.

On the entire NIST 2003 database, the DCTILPR gives a low SID accuracy of

16.5%, probably due to the handset variability. To test this, a 110-speaker subset of the

database is considered having training and test data from the same and also different

handsets. The performance of the DCTILPR is compared with that of the MFCC, com-

puted only from the voiced segments, to be consistent with the DCTILPR. Table 3 shows

that the SID accuracy for the same handset is around 72% for both the features. How-

ever, when the handset is different, it drops drastically to 18% with the DCTILPR and

to 40% with the MFCC. Thus there is handset variability in both the features, but the

DCTILPR suffers more than the MFCC. This is mostly because the MFCC captures only

the magnitude while the DCTILPR also captures the phase, causing it to suffer more

from phase response variations between different microphones and channels.

However, fusing the classifiers by combining their likelihoods LC (DCTILPR)

and LM (MFCC) linearly as α.LC +(1−α).LM , where α is a scalar varying from 0 to 1,

improves the absolute SID accuracy by 12% over the one using only the MFCC, showing

that the DCTILPR can significantly supplement the MFCC in SID systems, in the same

handset case. This is because the MFCCs mainly capture the vocal tract characteristics,

whereas the DCTILPR captures the VS characteristics. This result is similar to that in6

which reports a 7% improvement in SID accuracy after combining VS-based features

with MFCCs. In the different handset case, there is no improvement with classifier fu-

sion, probably due to the large handset variability suffered by both the features.

Combining the likelihoods LF and LM of the classifiers trained with the LF

model parameters and the MFCCs shows only a 2.73% improvement in the same handset

case. This may be because, in most cases in the NIST 2003 database, the ILPR shape is
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different from the LF model shape, which might be due to channel noise and filtering

effects during cellular communication. When the ILPR is reconstructed, the mean of the

normalized reconstruction error energy using DCTILPR is 0.28, and 0.63 using the LF

model. Thus the rigid time-domain LF model is not able to adapt to changes in pulse

shape, and hence characterizing the VS pulse using the reversible DCT is a better option.

4. Conclusion

The results show that the DCTILPR has a good promise as a feature for SID studies. It is

inferred that the gross shape of the VS (captured by the 12 DCT coefficients) is crucial in

distinguishing speakers, and the fine structure (captured by the coeffficients higher than

the 24th) may increase confusion among speakers. The DCTILPR suffers from session

and handset variabilities, which may be compensated by techniques like within-class

covariance normalization25 to deploy it in a practical scenario. A fusion of classifiers

trained using the DCTILPR and the MFCC improves the performance, showing that the

DCTILPR can supplement the MFCC in SID systems. A comparison of reconstruction

error energy shows that characterizing the VS by the reversible DCT is better than fitting

a rigid time-domain model to it.
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