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ABSTRACT 
 
This correspondence describes a method of automated 
segmentation of speech assuming the signal is 
continuously time varying rather than the traditional short 
time stationary model. It has been shown that this 
representation gives comparable if not marginally better 
results than the other techniques for automated 
segmentation. A formulation of the ‘Bach’ (music semi-
tonal) frequency scale filter-bank is proposed. A 
comparative study has been made of the performances 
using Mel, Bark and Bach scale filter banks considering 
this model. The preliminary results show up to 80 % 
matches within 20 ms of the manually segmented data, 
without any information of the content of the text and 
without any language dependence. ‘Bach’ filters are seen 
to marginally outperform the other filters. 
 

Index Terms - Segmentation, Filter-Banks, Mean 
Euclidian Distance, time varying model 

 
1. INTRODUCTION 

 
It has been shown that the Mel scale and the Critical band 
rate (Bark) scales [1] are based on perceptual properties of 
the human auditory system. The inspiration for the ‘Bach’ 
scale is obtained from music. In music, every octave 
contains 12 semi-tones. Each of the semitones is related to 
the next one by roughly a ratio of 2(1/12). This ratio was 
discovered by the great musician of the 18th century, J.S. 
Bach [2, 3]. This number of 2(1/12) holds true for almost all 
genres of music and relates to some natural perceptual 
phenomenon. The Mel and Bark scales have been shown 
to provide robust results for speech segmentation and 
recognition. However not much has been explored of 
speech signals using the music perception based ‘Bach’ 
scale. 

For the purpose of speech synthesis, the corpus needs 
to be segmented into phonetic units. Manual segmentation 
is often tedious and time consuming. This calls for 
automated methods for doing the same.  

Automated segmentation has been attempted by 
counting the number of level-crossings in a region of 

speech [4], using the intra frame correlation measure 
between spectral features to obtain the segments namely 
the Spectral Transition method (STM) and the Maximum 
Likelihood (ML) [5], statistical modeling (AR, ARMA) 
[6,7] and HMM based methods [8]. HMM based 
segmentation gives the best results but needs high amount 
of training data, while the other methods mentioned do not 
require training. 
 

2. PROBLEM FORMULATION 
 

2.1. Time varying representation 
 
The most common method of analyzing the time-varying 
speech signal has been by treating it as short-time 
stationary. However, this correspondence considers the 
speech signal as time varying. The speech signal is filtered 
by a bank of ‘M’ band-pass filters each shifted in 
frequency by a fixed factor. So we have ‘M’ filtered 
versions of the same speech signal. Consider the ‘nth’ such 
version of the signal. The energy around the ‘nth’ 
frequency component of the signal around a time instant 
‘k’ will be equal to the ‘kth’ output energy of the ‘nth’ 
filter-bank.  

( )( ) ( ) ( ) ( )k n nF n F k abs h k s k= = ⊗              (1) 
where s(k) is the input speech signal, hn(k) is the band-
pass filter designed around centre frequency ‘n’. The 
⊗ symbol represents linear filtering.  The feature vectors 
|Fk(n)|k=1:T or |Fn(k)|n=1:M are the two ways of the 2-D 
representation of the signal s(k). 

The first filter is centered around a ‘base’ frequency 
(any base freq between 50 to 80 Hz results in a good 
performance). The filter-bank is only an analysis filter-
bank and not a perfect reconstruction one. 
 
2.2. Comparison of scales 

 
Filter-banks have been designed for 4 auditory scales 
namely the Mel or Radio scale, the critical band rate scale 
(CRB), equivalent rectangular band (ERB) rate scale and 



the Bach scale. The first filter for all the banks is shifted 
by a ‘base’ frequency. 

 
Fig. 1 – (a) The ‘Mel’ scale, (b) The Critical Band rate 
scale (Bark), (c) The Equivalent rectangular band scale 

(ERB), (d) The ‘Bach’ scale 
 

The approximation to the experimental data for Mel 
scale is given by Beranek [9], 

For Mel scale 
 

( )  1127 * ln 1  
700
f

m f = +
⎛ ⎞
⎜ ⎟
⎝ ⎠

                (2) 

Critical Band rate (Bark) scale [9] 
26.81( )    -  0.53

19601   
z f

f

=
+

               (3) 

For Equivalent rectangular Band rate scale [10] 
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For ‘Bach’ scale 
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The Bach scale is only a relative scale and depends on the 
‘base’ frequency. 
     Assuming 12 filters per octave corresponding to 12 
semitones in the Bach scale, the maximum number of 
filters ‘M’ is calculated by.  
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where ‘Fs’ is the sampling frequency. For a good 
comparison, filter-banks with ‘M’ filters are used for all 
the other scales. The centre frequencies (fc(n)) of the 
filters are obtained by uniformly sampling by ‘M’ in their 
respective frequency scales. ‘s’ is the shift in the 
frequency for every next filter. So the centre frequency of 
the ‘nth’ filter is given by s*n. 

The bandwidths for the scales are calculated from the 
approximations to the experimental values. 

For Mel [9] 
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Critical Bandwidth [9] 
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Equivalent rectangular band rate scale [10] 
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There are two ways of formulating the bandwidth of 
the ‘Bach’ scale filter :- 
with a linear change with respect to central frequency 
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Or with an exponential change with respect to central 
frequency 
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Fig. 2 – Bandwidth of the filters as against the centre 

frequency ( Hz) for the (a) Mel scale (b) Critical 
Bandwidth (c) Equivalent rectangular Bandwidth 

(d) ‘Bach’ Non-linear scale, (e) “Bach’ linear scale  
 
     The number of filter coefficients used to generate the 
‘nth’ filter is determined by 

( ) 2 * (1/ ( ))bN n ceil f n=                            (12) 
We thus see that the time resolution is poor for lower 
frequencies but better for higher frequencies. So we get 
the paradoxical ability to get better time resolution for 
higher frequencies and better frequency resolution for 
lower frequencies. 
     The filters designed are lag-windows obtained by the 
standard Blackman-Tukey spectral estimation method 
[11]. The set of filter coefficients obtained, is the 
eigenvector associated with the maximum Eigen value of 
the matrix with elements  



, * (( ) * * )m n signum m nβ β− Π=γ              (13) 

 where 2*β is the band-width in radians/sec and 
( ) sin( ) / { ! 0}signum x x x x= =             (14) 

1 { 0}x= =  
   The filter coefficients are real, symmetric and finite, so 
the phase responses are linear. The magnitude responses 
of the set of filters constructed by the ‘Bach’ non-linear 
scale are shown in Fig. 3. 

 
Fig. 3 – The Bach scale Filter-bank Non-linear case  

 
3. DETECTING PHONEME SEGMENT 

BOUNDARIES 
 

Speech is considered as a sequence of quasi-stationary 
units called phones. Segmentation should ideally 
segregate the signal into such quasi-stationary units. 
However, due to co-articulation effects, the boundaries are 
not clearly defined 
     For ‘kth’ speech sample, the ‘Mean Energy distance’ 
(MED) is calculated as follows 
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( ) || 1 2 ||MED k M M= −                              (16)  
Where ‘W’ is the length of the region under 

consideration. ‘W’ is a parameter which should be set to 
around twice the average phone duration. Since 
information about the language or the sequence of 
phonemes is assumed not to be available ‘W’ is set to a 
constant value of 50 ms. If such information as the 
phoneme sequence is available, then it could be 
incorporated in deciding the value of ‘W’, which then 
would be a variable quantity 
     We now know that the MED function gives an 
indication of the difference in spectral properties on either 
side of the ‘kth’ sample within the specified region of 
consideration. The segment boundary is thus attributed to 
the point of maximum difference between the two sides of 
a sample of speech, which corresponds to the peak in the 
MED function. 

Here the intensity of the peak is not relevant for 
segmentation. However due to temporal modulations in 

the MED function, peak detection in itself poses a 
problem. 
     A function called Leading Slope Stressed function 
(LSSF) can determine how important a peak in the MED 
waveform is.  
     The LSSF at ‘k’ for a region ‘R’ is given by 
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The parameter ‘R’ or the inertia of the speech 
production mechanism is determined by how quickly the 
phones change. So ‘R’ should be selected such that it is 
less than the shortest possible phone length and larger 
than temporal variations within the phone. Typically it is 
set between 10 and 20 ms. 
     The LSSF now gives a waveform that has peaks, 
whose amplitude depends on the importance of the peak 
under the given context. The larger the difference between 
adjacent phones, the higher is the amplitude of the peaks 
of LSSF. The actual peak detection is achieved by this 
simple method. 
if ( ) max( (( / 2) : ( / 2))LSSF k LSSF k R k R= − +    (18) 

Then Peak(k) = 1 
Else  Peak(k) = 0 

Every ‘k’ for which Peak(k) = 1, is considered a segment 
boundary 

 

 

 
Fig. 4 – (a) The speech signal with manual boundaries, 

(b) The MED function plot along with the manual 
boundaries,  (c) The LSSF function plot along with the 

manual boundaries 
 

4. RESULTS AND CONCLUSION 
 

     The quality of automated segmentation is evaluated by 
comparing the output with manually segmented databases. 
If an automated segment boundary falls within 20 ms of a 
manually segmented boundary, then it is considered to be 
a ‘Matched phone boundary’ (MPB). 



If more than one automated segment boundary falls 
within +20 ms of a manual boundary or no manual 
boundary is found within +40 ms of an automated 
boundary then such boundaries are considered to be 
‘insertions’(Ins). On the other hand if no unique 
automated boundary is found within +40 ms of a manual 
boundary, then it is considered as a ‘deletion’ (Del).  

The results are obtained for 100 sentences of English 
data from the (Fs = 16000 Hz) TIMIT database for both 
male and female speakers. The data has an SNR of 36 dB. 
100 sentences of Hindi and Tamil data have also been 
segmented. The latter data has a sampling frequency of 
44.1 KHz and an SNR of 30 dB. The data available for 
Tamil and Hindi are only that of a male voice. 

The following methods have been used on 
comparative basis to study the proposed method. 
1. ML Segmentation using MFCC with a symmetric lifter 
(1 + Asin1/2(πn/L)) (A = 4, L is the MFCC dimension = 
16) [12].  
2. Spectral Transition measure (STM) using feature vector 
and lifter combination. 
3. Average level crossing rate method (A-LCR) as 
described in [4] using non-uniform level allocation. 

 
Table 1 – Comparison of performances between various 

segmentation methods on the TIMIT database 
Segmentation Method  %MPB %Del %Ins 
ML[5] 80.8 19.2 18.8 
STM[5] 70.1 29.9 25.2 
A-LCR [4] 79.8 20.2 24.2 
LSSF (Bach Lin) 82.5 22.3 18.9 
Table 2 – Comparison of performances between the 

various filter-bank scales on the TIMIT database  
Filter- Bank type %MPB %Del %Ins 
Mel 78.1 16.5 68.1 
Critical Band rate (Bark) 78.1 17.9 50.1 
Equivalent Rectangular 
Band Rate (ERB) 

76.3 18.9 52.4 

Bach (Lin) 82.5 22.3 18.9 
Bach (Non-Lin) 79.3 17.4 30.4 

Table 3 – Comparison of the performance of LSSF using 
‘Bach’ linear filter-bank for various languages 

Language %MPB %Del %Ins 
English 82.5 22.3 18.9 
Hindi 79.6 10.7 32.5 
Tamil 76.1 15.3 23.7 

 
    Table 1 compares the performances of the proposed 
method and the other standard methods. The proposed 
method does marginally better in terms of ‘matched 
phoneme boundary’ (MPB) percentage. However the 
standard methods use information such as the number of 
phones and location of silences as information in order to 
obtain the correct phone boundaries. The proposed 

method using LSSF gets similar results without using 
such information.  

From Table 2, we can see that the ‘Bach linear’ and 
the ‘Bach non-linear’ scales perform comparably if not 
marginally better than the ‘Mel’ or ‘Bark’ scales. We can 
however see a reasonably significant difference in the 
number of false or inserted boundaries between the ‘Mel’ 
and ‘Bark’ scales as against the ‘Bach’ scales. However it 
can be noted that the number of deletions of the 
boundaries are higher in case of the Bach (Lin) case. 
     Table 3 shows that the proposed method is language 
and speaker independent, showing comparable results for 
all the three languages. 
 

5. FUTURE WORK 
 

     Future work can be carried out in terms of 
incorporating knowledge of the phones and linguistic 
knowledge like average duration of the phones . Noise 
robustness of the algorithm can also be tested and special 
considerations for noise robustness can be included in the 
algorithm. 
     Another interesting area could be use of the ‘Bach’ 
filter-bank in areas like speech recognition and defining 
features like the ‘Bach Frequency Cepstral Coefficients’ 
and compare their performance with Mel and Bark scales. 

We could define several distance measures instead of 
the MED defined in this paper and evaluate the results.  
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