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Abstract—We present two approaches to improve the perfor-
mance of automatic speech recognition (ASR) systems for Gu-
jarati, Tamil and Telugu. In the first approach using data-pooling
with phone mapping (DP-PM), a deep neural network (DNN) is
trained to predict the senones for the target language; then we
use the feature vectors and their alignments from other source
languages to map the phones from the source to the target
language. The lexicons of the source languages are then modified
using this phone mapping and an ASR system for the target
language is trained using both the target and the modified source
data. This DP-PM approach gives relative improvements in word
error rates (WER) of 5.1% for Gujarati, 3.1% for Tamil and
3.4% for Telugu, over the corresponding baseline figures. In the
second approach using multi-task DNN (MT-DNN) modeling, we
use feature vectors from all the languages and train a DNN with
three output layers, each predicting the senones of one of the
languages. Objective functions of the output layers are modified
such that during training, only those DNN layers responsible for
predicting the senones of a language are updated, if the feature
vector belongs to that language. This MT-DNN approach achieves
relative improvements in WER of 5.7%, 3.3% and 5.2% for
Gujarati, Tamil and Telugu, respectively.

Index Terms: Multi-task learning, data-pooling, deep neu-
ral networks, phone mapping, alignments, senone posteriors,
cross-lingual training, multilingual training, parameter sharing,
speech recognition, Gujarati, Tamil, Telugu.

I. Introduction

Building a large vocabulary, continuous speech recognition
system requires a huge corpus of transcribed speech so as
to effectively estimate the acoustic model parameters, and a
huge corpus of text in order to estimate the language model
parameters. Although such corpora exist for English and a
few other languages, there are many languages for which
corpora are not readily available, and collecting such data is a
cumbersome and time-consuming task. For such low-resourced
languages, the traditional way of acoustic modeling results
in a high word error rate. Assuming there exists similarity
in acoustic units across languages, it is possible to use data
from a high-resourced language in order to estimate acoustic
models for a low-resourced target language [1]. In this work,
we focus only on the acoustic modeling of the target language
by borrowing transcribed speech corpora from one or more
source languages.

Lal and King [2] have used tandem features in a cross-
lingual training setting, where a neural network is trained
across several languages to predict articulatory features and
the outputs from this neural network are used as features to
train the hidden Markov model (HMM) based acoustic models.
Lu et al. [3] have used subspace Gaussian mixture models
(SGMM) to learn global parameters from multiple languages
and the state-specific parameters are learned from the target
language data. They have also experimented maximum a
posteriori adaptation to reduce the mismatch between the
source and the target languages’ SGMM global parameters.
They have also extended SGMM-based cross-lingual training
with l1-regularization for estimating the state vectors [4]. This
is shown to provide less word error rate, while also overcoming
the problem of numerical instability. Schultz and Weibel [5]
have built a language-independent speech recognition system
by combining acoustic models from multiple source languages
using language-separate, language-mixed and language-tagged
combining methods. Manohar et al. [6] have used phone-
cluster adaptive training to obtain the acoustic model parame-
ters by linear combination of a canonical Gaussian mixture
model. The mean vectors of the Gaussian mixture models
for each state are parameterized by a state-vector, which is
estimated through the procedure proposed by Gales [7].

Miao et al. [8] show the advantage of using deep maxout
networks (DMN) in acoustic modeling. DMNs, which possess
the property of dropout, have shown very good performance,
particularly for low-resource languages. Sahraeian and Com-
pernolle [9] have used manifold learning technique to derive
a non-linear feature transformation from filter-bank space to
articulatory space. They have used intrinsic spectral analysis
and deep neural networks (DNNs) to convert acoustic features
to articulatory features and used them in cross and multi-
lingual training settings. Mohan and Rose [10] have used
multi-task deep neural networks along with low-rank matrix
factorization of the weight matrices for multi-lingual speech
recognition systems. They have obtained a reduction of 44%
in the number of parameters without compromising much on
the word error rate (WER), when the DNNs are trained only
on one hour of target language data. Heigold et al. [11] present
an empirical comparison on mono-, multi- and cross-lingual
training of deep neural networks for eleven languages with a



total data of 10k hours in a distributed manner. They have also
shown that performing multilingual training on top of cross-
lingual training gives an additional relative reduction of 5%
in the WER. Data pooling of closely related languages [1]
has resulted in improvements in the performance of automatic
speech recognition (ASR) systems for under-resourced lan-
guages. They have shown that having two hours of data from
a closely related non-target language is equivalent to having
one hour of target language data.

In the work reported here, we propose two approaches to
improve the performance of automatic speech recognition
systems for Gujarati, Tamil and Telugu. The motivation to
utilize the speech data from all the three languages to build
ASR for any one of the languages arises from the similarity
in the phonology of Indian languages [12]. 85% of the phones
are common among Tamil, Telugu and Gujarati. Hence, for
building an ASR for one of these languages as the target
language, we can leverage the acoustic information from the
other two languages also, for better modeling of the senone
distributions. Towards this purpose, we have considered two
distinct approaches, wherein the acoustic information is cap-
tured at the level of the (i) data (data pooling with phone
mapping) or (ii) model (multi-task DNN).

The rest of this paper is organized as follows: In section 2,
we describe our first approach of training and using a DNN
to automatically map phones from source language(s) to a
target language and then pooling all the source and target
data together to build the speech recognition system. Section
3 describes the procedure to train a multi-task DNN using
data from all the languages to predict the senones of all the
languages and how the objective function is changed such that
the weights are updated in a specific manner so that the first
few layers capture the common acoustic information across all
the languages. In section 4, we discuss the baseline system and
the systems developed based on the approaches described in
sections 2 and 3, and provide their results. Finally, in section 5,
we conclude the paper and indicate a possible future research
direction for this problem.

II. Data pooling with phone mapping

In the literature, data pooling has been used with an universal
phone set [13], for cross-lingual training. However, in our
approach of data pooling with phone mapping (DP-PM), we
map the phones of the source languages to those of the target
language using a deep neural network, trained only on the
target language data. We then use this map to modify the
phonetic transcriptions of the source languages to suit the
target language and train the speech recognition system by
all the data pooled together and fine-tune the DNN for the
target language. To our knowledge, data pooling has not been
used in this manner earlier. The steps involved are illustrated
below. In all our experiments, the lexicon was designed by
us by incorporating the pronunciation rules for the languages
[14], [15]. For more details, refer [16],[17].

A. DNN training for the target language

We have used the standard procedure for training as given in
s5 WSJ Kaldi recipe [18]. First we extract 39-dimensional
features from the target data, consisting of mel-frequency
cepstral coefficients (MFCC), delta and delta-delta features,
and train a monophone model for each phone in the target
language (with a total of 1000 Gaussian densities) for 40 iter-
ations. Using the alignments from the monophone model, we
then build tri1 models, which are triphone, context-dependent
HMM models with a total of 2500 states and 15000 Gaussian
densities. From the alignments of tri1 model, we then train
tri2 HMM model, which is based on a combination of linear-
discriminant analysis (LDA) and maximum likelihood linear
transformation (MLLT). From the alignments from tri2, we
train tri3, a speaker-adaptive model (LDA-MLLT-SAT) and
finally we align the data using tri3 model. Using the probabil-
ity density function (pdf) indices (also referred to as senones)
from these alignments as desired target labels, and spliced
MFCC features (with 5 each of left- and right-contexts) as
input features, we train a tridnn model which is a 7-layer
DNN with 2048 hidden sigmoid activations in each layer. The
weights are randomly initialized and trained for 15 epochs.
The learning rate is set as 0.008 for the first 4 epochs and is
halved for each subsequent epoch. This DNN is now able to
predict the posterior probability of a HMM state’s pdf, given
any input feature vector.

B. Generating alignments for the source languages

We now train the tri3 models for the source languages
independently using the procedure explained in the previous
section and then with respect to this tri3 model, we align the
source data (also referred to as source alignments).

It is to be noted that the HMMs for the source and target
languages are trained with their respective phone-sets. In order
to pool all the data together, we need the data from all
the languages to have a common phonetic transcription with
respect to the target language’s phone-set. We explain in the
next section as to how we use the DNN to convert the phonetic
transcription from any source language to a particular target
language.

C. Mapping of phones from the source to target language

We propose this approach based on the assumption that
acoustic similarities exist across languages and the function
that maps such a similarity can be extracted in a data-driven
fashion. We use the DNN, trained as explained in section
II.A, to map the phones from any source language to the
target language. Let xs and ys be a feature vector and its
corresponding senone-id of the source language. Let gs(·), gt(·)
be the functions that map senones to phones for the source and
the target languages, respectively, and f (·) be the non-linear
function representing the prediction of the DNN.



Fig. 1. Multi-task deep neural network architecture to predict senones for the three languages for any given input vector. The shared hidden layers learn
feature representations common to all the languages and the three output layers perform the classification for the individual languages.

We pass all the feature vectors of the source language to the
DNN and predict the senone values (denoted by f (xs)). From
these predictions and the senone-to-phone mapping functions,
we calculate the conditional density P(gt( f (xs))|gs(ys)). This
density function P can be calculated by counting (and then
normalizing) the number of times the feature vectors belonging
to a phone in the source language are recognized by the DNN
as any other phone in the target language. The final function
m(·), which maps a source language phone (φs) to a target
language phone (φ∗t ) is given by,

m(φs) = φ∗t =
arg max
φt

P (φt |φs)

Using the function m(·), we can modify the lexicon and the
phonetic transcription of any source language so that it has
only the phones from the phone set of the target language.

D. Data-pooling and training

Once the source data is mapped to the format required by the
target language, we pool the utterances from the source as
well as the target languages and train an ASR system starting
from mono to tridnn as described in section II.A.

E. Fine-tuning the DNN for the target language

At the end of the previous step, we get a DNN trained with
the pooled data. Now, we fine-tune this DNN by training with
only the target language data with a learning rate of 0.0008
for 5 epochs. This fine-tuned DNN can now be used as the
acoustic model for decoding the test utterances of the target
language.

III. Multi-task DNN approach

In our second approach, we have used a multi-task deep neural
network (MT-DNN) with multiple output layers (one for each
language), as shown in Fig. 1. This architecture is similar to
the one in [19]. The procedure involved in training and using
such an MT-DNN as the acoustic model is described below.

A. Generating alignments for the source and the target lan-
guages

We use the procedure illustrated in section II.A and build
the system from mono to tri3 and using the tri3 models, we
generate the alignments for each language independently. The
number of senones may differ from language to language and
thus the senones do not have a straightforward correspondence
between any two languages. We learn the senone correspon-
dence through the above MT-DNN architecture, by modifying
the training procedure as explained in the subsections below.

B. Features and targets for training the MT-DNN

Let x be a feature vector and y, its corresponding senone target.
The feature vector can come from any one of, say, L languages.
Each training example to the MT-DNN should be of the form
{x, [y1, y2, ..., yL]}, where yl is the desired target (in one-hot
vector encoding format) for the lth output layer. The ith entry
of the vector yl is defined as,

yi
l = 1(x ∈ l)1(y = i) ∀1 ≤ l ≤ L

where 1(·) is the indicator function.



C. Modified loss function for training the MT-DNN

Normally, a feature vector belonging to a particular language
is assigned zero as the desired target for all the other languages
[11]. However, in the context of MT-DNN, since acoustic
similarities exist across the languages, it is inappropriate to
force the MT-DNN to predict zeros as senone-posteriors for
the other languages. We handle this issue by modifying the
loss function in such a way that we update only those layers
responsible for predicting the senones for the language to
which the feature vector belongs. This modified loss function
for the lth layer L̂l is given by,

L̂l(zl, yl) = L(zl, yl)1(x ∈ l)

where zl is the actual predicted vector, yl is the desired target
vector at the lth layer and L(·) is cross-entropy loss function.
We now train the MT-DNN using this modified loss function
with the feature vectors (in the format specified in section 3.2)
from all the languages. We have used Keras [20] library to train
this MT-DNN for 15 epochs and ported the trained network
back to Kaldi format for the fine-tuning process. The learning
rate was fixed at 0.008 for the first 4 epochs and reduced by
half for the subsequent epochs. The main reason to train such
an architecture is to ensure that the layers 1 through 7 learn
feature representations that are common to all the languages
and at the same time, increase the discriminability of every
output layer.

Only the layers up to layer 7 learn the common represen-
tation, whereas the output layers do not learn any common
representation. In other words, when a feature vector comes
from a particular language, only the output layer corresponding
to that language is updated. In order for the output layers to
benefit from this training method, we can set the desired targets
for the non-target output layers to be a predefined posterior
vector instead of zeros. In such a case, there is no need to
modify the loss function for training and all the output layers
can be allowed to update for feature vectors from any of the
languages. We hypothesize that this training procedure will
further increase the performance of MT-DNN, which is yet to
be experimented.

D. Fine-tuning the MT-DNN for the target language

Once the MT-DNN is trained, we retain only those layers of
the MT-DNN that predict the output for the target language
desired and remove the rest of the layers, thus having only
one output layer. Now, we fine-tune this network for 5 epochs
by using data from only the desired target language with a
learning rate of 0.0008. This network can then be used as the
acoustic model for decoding.

The advantage of using MT-DNN over DP-PM method is that
there is no need to train the entire model set from mono to

tri3 once again. It is sufficient to fine-tune the DNN only for
the desired target language and use it directly for testing.

IV. Experiments and results

All our experiments have been conducted on the transcribed
speech corpus given by Microsoft [21]. The training data
consists of transcribed speech corpus of 40 hours for training,
5 hours for validation and 4.2 hours for testing, for each
of the three languages, namely Gujarati, Tamil and Telugu.
We have created the trigram language models using only the
training data‘s text corpora. The CMU Indic frontend lexicon
provided for each language has been used as the pronunciation
dictionary. The acoustic models for the baseline systems have
been built as per the procedure explained in section II.A.

Based independently on (i) data-pooling with phone mapping
and (ii) multi-task DNN approaches, we have built two systems
as per the procedures illustrated in sections 2 and 3, respec-
tively. Table 1 compares the word error rates of the acoustic
model (AM) of the baseline DNNs with respect to the AMs
of the DNNs obtained by the two proposed methods.

Table 1 reveals that for the validation datasets, the DP-PM
method gives relative improvements in WER of 1.3% for
Gujarati, 1.6% for Tamil and 2.3% for Telugu. On the other
hand, MT-DNN provides the best relative improvements of
3.9% for Gujarati, 1.7% for Tamil and 4.1% for Telugu.

The same trend can be seen for the blind test data as well.
The DP-PM model achieves relative improvements of 5.1%,
3.1% and 3.4% over the baseline in the word error rates
for Gujarati, Tamil and Telugu, respectively. The MT-DNN
model results in a marginal improvement and the relative
improvements achieved over the baseline are 5.7%, 3.3% and
5.2%, respectively.

Thus, our best performing MT-DNN based method gives the
lowest WERs of 24.3%, 32.0% and 30.2% on the blind test
data for Gujarati, Tamil and Telugu languages, respectively.
We can further reduce the error rates on the test data by using
both the training and the validation datasets for building the
acoustic and language models.

V. Conclusion and future work

We have followed two approaches, namely data-pooling with
phone mapping and multi-task DNN for cross-lingual training
of the ASR for Gujarati, Tamil and Telugu languages. The
first approach pools the data together by mapping the phones
from the source languages to the target language, which gives
relative improvements of 5.1%, 3.1% and 3.4% in the WERs
for Gujarati, Tamil and Telugu test datasets, respectively. The
second approach involves learning DNN model parameters
from the pooled data using multi-task learning technique with
a modified loss function. This achieves relative improvements
in the WERs of 5.7%, 3.3% and 5.2% for Gujarati, Tamil and
Telugu, respectively.



TABLE I
Comparison ofWERs for the baseline, data-pooling with phone mapping (DP-PM) and multi-task DNN (MT-DNN) models on validation and test sets.

Relative improvement inWER (in %) with respect to the baseline is given in parentheses for each case.

Method
Gujarati Tamil Telugu

Val. set Test set Val. set Test set Val. set Test set

Baseline 18.8 (NA) 25.7 (NA) 32.8 (NA) 33.1 (NA) 30.6 (NA) 31.9 (NA)

DP-PM 18.6 (1.3) 24.4 (5.1) 32.3 (1.6) 32.1 (3.1) 29.9 (2.3) 30.8 (3.4)

MT-DNN 18.1 (3.9) 24.3 (5.7) 31.3 (1.7) 32.0 (3.3) 29.3 (4.1) 30.2 (5.2)

Our future work will involve extending the multi-task learning
approach by using mean statistic of the senone-posterior
outputs for the feature vectors belonging to a particular senone
class as desired targets for the MT-DNN, instead of predicting
zeros for the non-target languages, without modifying the loss
function.
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