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Abstract

Most Indian languages are spoken in units of syllables. However, speech recog-

nition systems developed so far for Indian languages have generally used char-

acters or phonemes as modeling units. This work evaluates the performance of

syllable-based modeling units in end-to-end speech recognition for several Indian

languages. The text is represented in 3 different forms: native script, Sanskrit

library phonetics (SLP1) encoding, and syllables, and tokenized with sub-word

units like character, byte-pair encoding (BPE), and unigram language modeling

(ULM). The performances of these tokens in monolingual training and cross-

lingual transfer learning are compared. Syllable-based BPE/ULM subword

units give promising results in the monolingual setup if the dataset is sufficiently

diverse to represent the syllable distribution in the language. For the Vāksañ-

cayaḥ dataset in Sanskrit, syllable-BPE tokens achieve state-of-the-art results.

The capability of syllable-BPE units to complement SLP1-character models

through a pretraining-finetuning setup is also evaluated. For Sanskrit, syllable-

BPE achieves better word error rates (WER) than the pretraining-finetuning

approaches. For Tamil and Telugu, both result in comparable WERs. SLP1-

character units are largely better than syllable-based units for cross-lingual

transfer learning.
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1. Introduction

The writing systems in the world can be broadly classified into 1) Alphabets,

2) Syllabaries, and 3) Semanto-phonetic writing systems. Graphemes represent

consonants and vowels in alphabets. Most European, Indo-Aryan, and Afro-

Asiatic languages fall in this category. Syllabaries use syllables as graphemes

as in Japanese Hiragana/Katakana. They have a large number of characters.

Symbols represent both sound and meaning in semanto-phonetic writing systems

like Chinese. They also have a large number of symbols. There is no theoretical

upper limit to the number of symbols in such scripts.

Most of the works on end-to-end (E2E) speech recognition in languages with

alphabet-based writing systems use graphemes as the basic units for training

(Watanabe et al., 2017a; Gulati et al., 2020; Toshniwal et al., 2018; Anoop

& Ramakrishnan, 2021a). There were a few attempts to use phonemes (Zeyer

et al., 2020) and syllables (Zhao et al., 2019). E2E automatic speech recognition

(ASR) on syllabaries like Japanese also employ graphemes (Karita et al., 2021).

However, graphemes themselves are manifestations of syllables in Japanese Hi-

ragana/Katakana. In semanto-phonetic writing systems like Mandarin Chinese,

different token units like characters, context-independent phonemes, pinyins (a

scheme to transcribe the Mandarin Chinese pronunciations using Roman al-

phabets), syllables, words, and subwords have been explored (Watanabe et al.,

2017a; Zou et al., 2018; Chan & Lane, 2016; Zhang et al., 2019; Yuan et al., 2021;

Zhou et al., 2018). Many of these studies show the usefulness of pronunciation-

based pinyins and syllables in E2E ASR (Chan & Lane, 2016; Zhang et al., 2019;

Yuan et al., 2021). Bytes have also been used as tokens to perform language-

independent speech recognition (Li et al., 2019).

Syllables might be a better unit than graphemes for text representation in

ASR for Indian languages due to the following reasons:
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1. Vowels are represented by original graphemes when they appear at the

beginning of a word and with modifiers otherwise. Eg. आत्मा (/a:tma:/

meaning soul) has आ at the beginning and ◌ा in the end, both denoting

the stressed (long) vowel “a:”. This duplication in graphemes may create

some rendering errors during decoding and may exaggerate the actual

word error rate (WER).

2. Most of the writing systems of the Indian subcontinent use specific symbols

to signify the lack of the inherent vowel /ə/ (schwa). In the earlier example

of त्म = त + ◌् + म , ◌् indicates the lack of the inherent vowel. Models

need to explicitly learn when to output ◌् from the context.

3. The speakers may split/combine the words at the boundaries according

to the sandhi rules, and transcriptions may not reflect that. This causes

rendering errors in the form of substitution, insertion, and/or deletion.

4. Indian languages are spoken in units of syllables, which are bigger model-

ing units and may capture the long contexts better. They can also reduce

the length of the text representation, which may help in decoding long se-

quences. However, syllable units increase the vocabulary size resulting in

bigger linear and softmax layers at the output. So, it is not clear whether

representing text in terms of syllables will yield performance improvement

in E2E speech recognition.

However, syllable-based ASR schemes have never been tried with E2E mod-

els in Indian languages. The earlier works on syllable-based tokens use conven-

tional Gaussian mixture model (GMM)-hidden Markov model (HMM) systems

(Lakshmi & Murthy, 2006; Panda & Nayak, 2016). The suitability of syllables

as a token unit for text representation in E2E ASR systems for Indian languages

is explored in this work. Specifically, this work attempts to answer the following

queries.

1. Can syllables be practical alternatives for graphemes as modeling units

for E2E ASR in a monolingual training setup?

2. Can syllable-based tokens supplement the grapheme-based tokens through
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a pretraining-finetuning setup, such that the model’s performance im-

proves?

3. How good are syllable-based models in cross-lingual transfer learning?

When pretrained on high-resource languages, can they transfer well to a

related low-resource language?

In an attempt to address the questions above, the text sequence is encoded

with three different units: grapheme units from the native script, units from the

Sanskrit library phonetic (SLP1) encoding scheme (Scharf, 2013) and syllables.

SLP1 is an ASCII transliteration scheme from and to the native script. It maps

both the vowel and the vowel modifier graphemes to the same ASCII character.

Representations based on syllables use SLP1 to generate the syllable sequence.

Each syllable is mapped to a single Unicode character for text representation.

Three types of sub-word modeling units are explored for acoustic and language

modeling in ASR: character, byte pair encoding (BPE) (Sennrich et al., 2016),

and unigram language modeling (ULM) (Kudo, 2018). The performance of

syllable-based units is compared with those of other tokens in the ASR task for

several Indian languages.

The novelties of this work are as follows:

1. To the best knowledge of the authors, this is the maiden work on end-

to-end speech recognition in Indian languages with syllables as the token

unit.

2. This is one of the first works validating the performance of syllable-based

tokens in cross-lingual transfer learning for Indian languages.

2. Related Works

E2E ASR has become quite popular over the last few years since it can

directly map the input acoustic speech signal to the grapheme or word sequence.

Transformer architecture (Vaswani et al., 2017), originally proposed for machine

translation task, was a milestone in E2E sequence to sequence (seq2seq) models.

It gets rid of the recurrence in seq2seq (Prabhavalkar et al., 2017; Cho et al.,

4



2014) models and allows more parallelization. The main component of the

transformer architecture is a self-attention module that tries to capture the

dependencies between different positions through a position-pair computation.

In RNNs, this computation is sequential (one step at a time) whereas it is one-

time in transformers. The transformer architecture was successfully adapted

to speech recognition in (Dong et al., 2018; Karita et al., 2019b) and Karita

et al. (2019a) improved the transformer-based speech recognition with joint

connectionist temporal classification (CTC) (Graves et al., 2006) training and

integration of a language model (LM) during decoding.

Though transformers are good at modeling long-range global context, they

are less effective in capturing the local feature patterns. On the other hand,

convolutional neural networks (CNN) are good at capturing the local patterns

but need more layers to capture the global context. Gulati et al. (2020) proposed

a conformer encoder that judiciously combines self-attention and convolutions to

reap the benefits of both. A conformer block has four modules stacked together:

i) a feed-forward module, ii) a self-attention module, iii) a convolution module,

and iv) a second feed-forward module in the end. This architecture achieves

state-of-the-art accuracies across multiple speech datasets (Guo et al., 2021).

Languages in the Indian subcontinent have a strong correspondence between

the graphemes in the native script and their pronunciation (sound units). Hence

graphemes in the native script are used as the modeling units for building end-to-

end ASR in Indian languages. Also, the phoneme sets of most Indian languages

are almost the same. Many of the multilingual models try to leverage this

commonness by transliterating the text to a common character/phoneme set

(Shetty & Umesh, 2021; Kumar et al., 2021). Such transliterations are also

used to eliminate the rendering errors in code-switched context (Diwan et al.,

2021; Khare et al., 2021; Datta et al., 2020; Thomas et al., 2020) and to improve

the monolingual ASR performance (Adiga et al., 2021; Anoop & Ramakrishnan,

2021b). Common label set (Shetty & Umesh, 2021; Prakash et al., 2019), SLP1

(Adiga et al., 2021; Anoop & Ramakrishnan, 2021b, 2022), and Devanagari

script are some of the schemes usually employed to provide shared labeling
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schemes. Similar sounding letters in different Indian languages occur at the

same offset from the starting of the allocated range for each script in the Unicode

tables. This aspect makes such mapping schemes simple in the Indian context.

Syllable-based schemes are employed in E2E frameworks for Mandarin Chi-

nese ASR by Zhou et al. (2018) and Qu et al. (2017). Both works report that

syllable-based models perform better than context-independent (CI) phonemes.

Zhou et al. (2018) use transformer models while Qu et al. (2017) use long-short-

term memory (LSTM) RNNs trained with CTC and state-level minimum Bayes

risk (sMBR) loss. Zhao et al. (2019) use syllables in a multitask recognition

framework to achieve simultaneous speech content recognition, dialect identifi-

cation, and speaker recognition in Tibetan language.

Subword modeling for E2E ASR has recently become popular with the in-

troduction of subword tokenization algorithms like byte-pair-encoding (Sennrich

et al., 2016) and unigram language model (Kudo, 2018). The core idea of both

BPE and ULM is to encode the text with some data compression scheme. BPE

uses a dictionary encoder that incrementally finds a set of symbols, such that

the total number of symbols encoding the text is minimized. BPE first splits

the whole utterance into individual grapheme units. The most frequent adjacent

pairs of grapheme units are successively merged till the desired vocabulary size

is reached. Unlike BPE, ULM considers multiple segmentations during vocab-

ulary creation with a probabilistic unigram language model. The probability

of each of these subword sequences is computed as the product of the unigram

probabilities of the constituent subwords. Starting from a seed vocabulary, it

iteratively finds the most valuable subwords (which cause the maximum reduc-

tion in the likelihood of data when removed) till the desired vocabulary size is

reached. The seed vocabulary is usually chosen as the union of all the grapheme

units and their most frequent substrings in the corpus. Subword units have

been used for speech recognition in Drexler & Glass (2019); Rao et al. (2017);

Lakomkin et al. (2020) and Xiao et al. (2018).
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3. Experimental Setup

This section details the experimental setup, specifically the datasets used

in the experiments, the extraction of acoustic features, the linguistic modeling

units used, the architectures for the acoustic and language modeling, and the

decoding scheme.

3.1. Datasets

Preliminary experiments are conducted for Sanskrit and then repeated for

several other Indian languages. Vāksañcayaḥ dataset (Adiga et al., 2021) is

used for end-to-end speech recognition in Sanskrit as it is the largest publicly

available ASR dataset in Sanskrit. The only other public dataset in Sanskrit,

Shrutilipi (Bhogale et al., 2022), has only 27 hours of annotated speech. Also,

Shrutilipi data is collected from only the radio news bulletins and hence lacks

diversity. Vāksañcayaḥ has around 79 hours of data with a sampling rate of

22050 Hz. The data is also diverse and includes the readings of various texts in

Sanskrit literature, contemporary stories, radio programs, extempore discourse,

etc. The dataset has four subsets: train, validation, test, and out-of-domain

(OOD) test. The approximate ratio of this split is 71:9:14:6. The details of

these subsets are summarised in Table 1. The speakers of the different subsets

are disjoint. The OOD test set has content that largely differs from the domain

of the training set or has speakers with a pronounced influence of their native

language.

The experiments are repeated for the best combinations of graphemes and

subword units in three other languages - Telugu, Tamil, and Odia using the

MUltilingual and Code-Switching (MUCS-2021) dataset (Diwan et al., 2021;

[dataset] Telugu and Tamil, 2018). The effectiveness of syllable-based mod-

eling units in complementing grapheme-based models are explored with these

datasets. The usefulness of top-performing representations in a transfer learning

setup is explored next. Here the models are trained using Sanskrit and Telugu

data and finetuned in a related language, Kannada. The OpenSLR dataset
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Dataset Data split Train Validation Test OOD

Sanskrit

Vāksañcayaḥ

Hours 56 7 11 5

Utterances 34309 3337 5529 2778

#Unique 32324 3271 5524 2776

Telugu

MUCS 2021

Hours 40 5 4 -

Utterances 44882 3040 2549 -

#Unique 34176 2997 2506 -

Tamil

MUCS 2021

Hours 40 5 4 -

Utterances 39131 3081 2609 -

#Unique 30205 3055 2584 -

Odia

MUCS 2021

Hours 94.5 5 5.5 -

Utterances 59782 3471 4420 -

#Unique 820 65 124 -

Kannada†

SLR79

Hours - 4 4 -

Utterances - 2000 2223 -

#Unique - 1702 1881 -
† Note: Sanskrit + Telugu speech data (72 hours, 67979 utterances, 55300 unique sentences)

is used for pretraining the Kannada model. Utterances having syllables not present in the

Kannada text corpus are removed from the training set.

Table 1: Details of the ASR speech datasets used in this work. The Kannada dataset is used

only for cross-lingual transfer learning.

SLR79 (He et al., 2020) is used for Kannada. After removing the sentences

with English alphabets, the remaining data is split into 4 hours each to form

the test and validation subsets. The utterances with syllables not present in the

Kannada text corpus are filtered out, resulting in 72 hours of speech data for

pretraining. The validation set used during the pretraining stage is also used

for finetuning the Kannada models, as the available data in Kannada is limited.

The text corpora used for language modeling in Sanskrit, Telugu, Tamil,

Odia, and Kannada have 0.28, 0.9, 1.3, 0.1, and 0.6 million sentences, respec-

tively. The text data is collected from wiki data dump ([dataset] Wiki text data
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dump, 2020).

3.2. Feature preparation

80-dimensional mel filterbank features computed with 25 ms windows and

10 ms strides are used as the acoustic features in the experiments. The details

of the feature extraction process are shown in Figure 1. Cepstral mean variance

normalisation (CMVN) is applied at the utterance level. Speed perturbation

(Ko et al., 2015) with factors 0.9, 1.0, and 1.1 are used for robust ASR training.

Spectrogram augmentation (Park et al., 2019) is also applied with time warping,

frequency masking, and time masking parameters of 5, 30, and 40, respectively.

Fast Fourier
Transform (FFT)

Mel Filter Bank

Windowing

FramingPre-emphasis

Filter bank
Features

Speech
Signal

Figure 1: Extraction of mel filterbank features

3.3. Different linguistic units used in the study

This work represents text in three different ways: native script, SLP1 en-

coding scheme (Scharf, 2013) and syllable-based representation. The native

script for Sanskrit is Devanagari. There are a total of 78 distinct character

units in Devanagari, including vowels and their modifiers like ◌ा(आ),ि◌(इ),
and ◌ी(ई). The script uses vowel modifiers when a vowel combines with a con-

sonant. These vowel modifiers cause redundancy in text representation since

multiple grapheme units are possible for the same phonemic unit.

SLP1 mapping scheme is available at (SLP1 mapping, 2015). There are 54

distinct SLP1 units in Devanagari.
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Type Text

Native इदानीम् िवचारणा का˃चत् प्रचल˃त
SLP1 idAnIm vicAraRA kAcit pracalati

Syllable i-dA-nIm vi-cA-ra-Ra kA-cit pra-ca-la-ti

Table 2: Different representations for Sanskrit text. Devanagari is the native character set for

Sanskrit. In syllable representation a unique unicode character is assigned for each distinct

syllable so as to facilitate the discovery of sub-word units using sentencepiece.

In the third case, the SLP1 encoded text is represented as a sequence of

syllables, with each syllable represented by a unique Unicode character. First,

a list of syllables in the language is created from the text corpus. Each of the

syllables is then encoded with a unique Unicode character. This makes the

syllable the basic grapheme unit for ASR. As in the Transliterate tool from

https://sanskritlibrary.org/, a simple syllable conversion scheme is used

in the experiments. Table 2 shows the text representations using the different

schemes for a sample Sanskrit sentence.

These text representations are used to build sub-word units for acoustic

and language modeling in ASR. Specifically, BPE (Sennrich et al., 2016) and

ULM (Kudo, 2018) are used for building the sub-word units. sentencepiece, a

Python module is used for training the tokenization and detokenization models

from the raw sentences.

3.4. Acoustic modeling

Figure 2 shows the network architecture used for acoustic modeling. Con-

former blocks (Gulati et al., 2020) are used in the encoder, and transformer

blocks (Vaswani et al., 2017) are used in the decoder. Interested readers may

follow the above references for more details on the structures of conformer en-

coder and transformer decoder blocks. Table 3 lists the chosen values of the

model hyperparameters. Slightly higher size models with attention dimension

(datt) of 512 are used for the monolingual training in Sanskrit and the cross-

lingual training in Kannada. More than 50 hours of training data are available
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Output
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token units

x nenc x ndec
Transformer

Decoder Blocks

Output Embedding


Linear

Softmax

SpecAugment

Convolution
Subsampling

Linear

Conformer Encoder
Blocks

Inputs

(Mel filterbank

features)


Outputs
(Shifted right)

Positional
Encoding

Figure 2: The end-to-end architecture used for acoustic modeling in this work.

in these cases from diverse domains. Attention dimensions datt of 256 are used

for the other languages. Choosing a smaller configuration helps us accelerate

experimentation with faster training and lesser inference time.

CTC and attention weights of 0.3 and 0.7 are used during training. A 12-

layer encoder network and a 6-layer decoder network are used, each with 2048

units, with a 0.1 dropout rate. Each layer contains eight 64-dimensional atten-

tion heads, which are concatenated to form a 512-dimensional attention vector.

The convolutional subsampling uses a two-layer CNN with 256 channels, stride

2, and kernel size 3. The learning rate coefficient is ten, and the CONV module

kernel size is 31. Noam optimizer (Vaswani et al., 2017) is used for training with

a learning rate of 10 and warmup steps of 25000. Training is performed for a
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.

Model
DataAugment

kernel nenc ndec H dff datt
Speed

Perturb

Spec

Aug

Sanskrit

Kannada
3 3 31 12 6 8 2048 512

Telugu

Tamil

Odia

3 3 15 12 6 4 2048 256

Table 3: Values of the hyperparameters of the ASR models used for each dataset. The Table

lists the data augmentation techniques, kernel size (kernel) of the conformer encoder, number

of encoder (nenc) and decoder layers (ndec), number of attention heads (H), feed-forward

layer dimension (dff ) and attention dimension (datt)

Embedding dimension 128

No. of encoder layers 16

No. of attention heads, H 4

Attention dimension, datt 512

FF layer dimension, dff 2048

Table 4: Hyperparameters used while training the transformer-based language models.

maximum of 50 epochs with a patience value of 10 for early stopping. The top

3 models with the best validation accuracy are averaged and used for decoding.

3.5. Language modeling

Transformer architecture is used for language modeling (LM). The hyper-

parameters used in the architecture are given in Table 4. The model is trained

for a maximum of 20 epochs with patience of 6. Adam optimiser is used with

β1 = 0.9 and β2 = 0.999 and a learning rate of 0.0001. All the experiments are

performed using the ESPNet toolkit (Watanabe et al., 2018).
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3.6. Decoding

Hybrid CTC-attention scheme (Watanabe et al., 2017b) is used for decoding.

Given the speech input filterbank features X, the most probable token sequence

Ĉ is obtained as

Ĉ = argmax
C∈V ∗

λ log pctc(C|X) + (1− λ)log patt(C|X) + γ log plm(C) (1)

pctc, patt, and plm are the CTC, attention, and language model scores, and V ∗

is the set of all target hypotheses. The hyperparameters during decoding are:

beam size = 10, CTC weight (λ) = 0.5, and language model weight (γ) = 0.6.

4. Results and Discussion

Results of the ASR experiments with different types of tokens are sum-

marized in Table 5. The syllable and the sub-word-based tokens increase the

vocabulary size and reduce the length of the text representations. So, instead

of the token error rate (TER), the character error rate (CER) is reported al-

lowing a fair comparison between the different representations. The results in

bold are the best values of CER and word error rate (WER) with the different

tokens employed in this work. Syllable-BPE representation performs the best

among all the different text representations for the Sanskrit dataset. Results

with BPE and ULM sub-word tokens are close in the case of syllable representa-

tions. Grapheme representation with the native script performs the worst with

all the sub-word units - character, BPE, and ULM.

Among character-level tokens, the use of SLP1 performs better. The results

with the native script are poorer than the results with SLP1. A major reason

for the poor performance of the native script is the confusion as to whether

to output the vowel or its modifier. Errors due to the absence of virama (◌् ,
also called halant) are also common. Repetitions of vowels/characters and the

confusion between short (unstressed) and long (stressed) versions of vowels are

more frequent with the native script than SLP1. Several such examples are

shown in Table 6.
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Test OOD

Vocab

Type

Grapheme

Units

Vocab

Size
CER WER CER WER

Char

Native 78 14.7 74.8 19.7 82.8

SLP1 54 2.5 14.1 6.7 33.5

Syllable 14416 5.3 28.5 12.1 50.5

BPE

Native 2000 15.4 41.6 20.8 54.6

SLP1 2000 5.2 17.2 10.7 34.7

Syllable 16000 2.2 8.1 8.0 26.4

ULM

Native 2000 14.6 41.8 20.4 55.5

SLP1 2000 7.3 23.0 13.2 39.5

Syllable 16000 2.3 8.2 8.1 27.2

Table 5: Recognition results on the test and OOD sets of Vāksañcayaḥ dataset. There are

35266 words in the test set and 21672 words in the OOD set.

Another observation is that the sandhi rules in Indian languages make the

WER values look worse than it actually is. Speakers may split a word or merge

two words at their boundary, which information is not reflected in the transcrip-

tion. Such issues inflate the WER by a significant factor. Two such examples

are listed in Table 7. In the first case, the decoded text is perfect. However,

WER is penalized with four errors. In the second case, all the seven errors

are due to incorrect word boundaries and long/short vowel confusions in the

prediction.

4.1. Additional studies

4.1.1. Impact of language models on the ASR performance

The results with and without the LM are compared for the best combi-

nations of grapheme and sub-word units indicated by Table 5 to find out the

contribution of the language model (LM). The results are shown in Table 8.

There is a substantial boost in performance (reduction in WER) with language
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Type Native Text representation SLP1 Text representation

REF तदा ब्रह्मा तान् इत्थम् उवाच इयम् भूः िवष्णोः पत्नी tadA brahmA tAn itTam uvAca iyam BUH vizRoH patnI

HYP तदा ब्रम्म तआन् इत्थम् उवआच इयम् भूः िवष्णोः पत्नी tadA brahma tAn itTam uvAca iyam BUH vizRoH patnI

REF िकमथर्म् एवम् इ˃त kimarTam evam iti

HYP िकमरथम् एवम् इ˃त (halant missed) kimarTam evam iti

REF पञ्च वषार्ʺण अतीतािन paYca varzARi atItAni

HYP पञ्च वषर्ऽʺण अआतीतािन (vowel repeated) paYca varzARi atItAni

Table 6: Common rendering errors in decoding with native script, that get corrected with SLP1

representation. REF and HYP refer to the reference and decoded sequences, respectively.

Type SLP1 Text

REF **** ahantu nimitta mAtramevAsmi

HYP aham tu nimittamAtrameva asmi

Eval I S S S

REF ezA ca nadI prAkpaScimadiSayoH pravahantI Buvam ***** sasyaSyAmalAm kurvatI virAjate

HYP *** ezAcanadi prAk paScimadiSayoH pravahanti Buvam sasya SyAmalAm kurvatI virAjate

Eval D S S S S I S

Table 7: Examples where sandhi rules make the WER worse than it actually is. D, I, and S

indicate deletion, insertion, and substitution errors, respectively.

models. For the test set, the reduction in WER for SLP1-Char, Syllable-BPE,

and Syllable-ULM tokens are 13.5%, 21.1%, and 19.1%, respectively, with the

incorporation of LM. The corresponding reductions in the WER on the OOD

set are 16.9%, 21.8%, and 19.5%, respectively. In both the datasets, maximum

improvement in performance is obtained with syllable BPE representation, ir-

respective of whether it is measured in terms of CER, WER or SER.

4.1.2. Comparison with previous work

The experimental results are compared with the previous work (Adiga et al.,

2021) on the Vāksañcayaḥ dataset. Their acoustic model uses time delay neural

networks (TDNN) (Peddinti et al., 2015). They use n-gram language models

with Kneser-Ney smoothing. They use 40-dimensional mel frequency cepstral

coefficients (MFCC) along with 100-dimensional i-vector-based speaker embed-

ding (Saon et al., 2013). Their best results are with BPE as the unit of language

model and grapheme as the unit of acoustic model; both represented using SLP1.
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Particulars Test OOD

Vocab

Type

Vocb

Size
LM CER WER SER CER WER SER

SLP1-Char 54 7 4.5 27.6 73.3 10.2 50.4 93.2

SLP1-Char 54 3 2.5 14.1 43.9 6.7 33.5 76.5

Syllable-BPE 16000 7 5.8 29.2 75.5 12.1 48.2 90.6

Syllable-BPE 16000 3 2.2 8.1 25.8 8.0 26.4 57.3

Syllable-ULM 16000 7 5.3 27.3 73.3 11.2 46.7 89.9

Syllable-ULM 16000 3 2.3 8.2 26.6 8.1 27.2 59.5

Table 8: Performance of syllable-based sub-word units on Sanskrit Vāksañcayaḥ test and OOD

sets with and without the use of language models (LM). SER stands for sentence error rate.

Table 9 compares the results from the conformer architecture trained using sylla-

ble BPE units with their results. Syllable BPE tokens give 17.3% improvement

(WER reduction) on OOD set and 13.8% improvement on the test set. The

results consistently improve on each of the subdivisions of the OOD set.

No. Dataset description
TDNN+SLP1

(Adiga et al., 2021)

Conformer +

Syllable-BPE

I. Average on OOD dataset 43.7† 26.4

a Tamil influenced accents 34.9 14.0

b Hindi influenced accents 39.0 11.5

c Radio program 46.3 31.7

d Extempore discourse 48.9 39.3

e Live lecture 47.9 33.8

II. Average on Test dataset 21.9 8.1
† The average on OOD set is computed from the results reported on individual subsets.

Table 9: Comparison of the results (WER in %) with those of the earlier work on Vāksañcayaḥ

OOD and test sets.
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4.1.3. Effect of vocabulary size

The performance of the ASR system is evaluated with different vocabulary

sizes for BPE and ULM tokens. The results are shown in Figure 3. It is evident

that increasing the vocabulary size does not help improve the WER. The best

performance is when the BPE/ULM vocabulary size is kept closer to the number

of character tokens.
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Figure 3: Effect of vocabulary size on the ASR performance (in terms of % WER) on the test

and OOD test data of Vāksañcayaḥ dataset for SLP1 and syllable BPE/ULM tokens.

4.1.4. Performance of syllable BPE on other Indian languages

To verify whether such an improvement with syllable BPE units translates

to other Indian languages, the performances of these textual representations on

Telugu, Tamil, and Odia data of the MUCS-2021 dataset are evaluated. Since

the current study focuses on the effectiveness of different representations for
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text, only three languages in the MUCS-2021, where the schwa deletions are

absent and the mapping of the native script to SLP1 is quite direct, are consid-

ered. However, SLP1 mapping can also be extended to languages with schwa

deletion property, with an additional step to remove the schwa based on con-

text. Though the Odia train set has a total of 59782 utterances, it has only 820

unique sentences (Refer Table 1). The choice of the Odia dataset was partic-

ularly motivated by this aspect. The dataset allows verifying the performance

of syllable-BPE in a stringent setting. The experiments are conducted with an

attention dimension of 256 and attention heads of four (a smaller model) in

these languages. Since syllable-based BPE and ULM tokens give almost similar

results, only SLP1-char and syllable-BPE tokens are used in these experiments.

All the models are trained for 50 epochs. The results are shown in Table 10.

Dataset
#Unique

sentences
Vocab type

Vocab

size
CER WER

WER

MUCS

Baseline

WER

MUCS

CSTR

Telugu 34176
SLP1-Char 57 7.8 30.0

31.4 19.7
Syllable-BPE 16000 7.2 26.0

Tamil 30329
SLP1-Char 40 6.5 28.4

34.1 21.7
Syllable-BPE 15000 6.9 26.1

Odia 820
SLP1-Char 52 13.0 40.2

38.5 25.4
Syllable-BPE 8000 71.6 91.4

Table 10: Results on the Telugu, Tamil, and Odia datasets. The penultimate column lists

the MUCS-2021 baseline WER (Diwan et al., 2021) and the last column lists the WER of

the CSTR system (Klejch et al., 2021) that won the MUCS-2021 challenge. They employ

multilingual pretraining and monolingual finetuning. CSTR system uses additional Youtube

data for semi-supervised training.

Syllable-BPE tokens give the best WER performance on the Telugu and

Tamil datasets, outplaying the SLP1-Char by 4% and 2.3%, respectively. Both

the tokens yield poor results on the Odia dataset, and syllable BPE tokens

yield abysmal results compared to the SLP1-Char. Since the Odia train set
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has only 820 unique sentences, the model overfits during syllable-BPE training.

Overfitting is an undesirable behavior in machine learning models where they

give accurate predictions on the training data but perform poorly on the unseen

data. Models should generalize well, giving accurate predictions across all types

of data within their domain. But overfitting causes the model to fit too closely to

the training dataset and limits its generalization capability. So they perform well

on the training data but fail on the test data. The major reasons for overfitting

are the small size of the training dataset and the lack of diversity in the data.

The Odia training dataset does not contain enough samples to represent the

possible input syllable sequences. Due to lack of diversity in the data, the

model overfits the training syllable sequences, and the training accuracy nears

the 100% mark in less than five epochs. But performance on the test data is

poor as the model lacks the generalization capability. The results suggest the

necessity for diversity in the training data while training syllable-based models.

Table 10 also lists the baseline, and the best WER (CSTR system (Kle-

jch et al., 2021)) reported on the MUCS-2021 challenge. Both of them use

sequence-discriminative training with lattice-free maximum mutual information

(LF-MMI) (Povey et al., 2016) objective. They employ TDNN architecture and

an explicit lexicon in a multilingual training setup. Syllable-BPE tokens beat

the MUCS baseline WER for Telugu and Tamil by 5.4% and 8%, respectively.

However, the obtained results are 6.3% absolute worse in Telugu and 4.4% ab-

solute worse in Tamil than the CSTR system - the challenge winners. CSTR

system employs multilingual training with a long ASR pipeline and uses more

training data than the system employed in this work. They train a GMM first

with an explicit pronunciation lexicon. The alignments obtained from the GMM

model are used to train a CNN-TDNN acoustic model in a multilingual fash-

ion. This step pools data from multiple languages and uses language-specific

output layers. This multilingual model is then finetuned on monolingual data

to generate language-specific seed models. They collect around 200 hours of

additional data for each language from Youtube which is then decoded with

the seed models. The decoded transcriptions are used for semi-supervised mul-
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tilingual training followed by monolingual finetuning. They also use recurrent

neural networks to rescore the lattices obtained in the first pass decoding with

trigram language models. In contrast, the experiments in the current study use

a monolingual setup since the focus is on comparing the performance of differ-

ent text tokens in end-to-end transformer-based models. Thus, apart from the

data provided with the challenge, no additional data is used in the experiments.

Also, no explicit lexicon is used. The training of acoustic and language models

involves just a single stage in the current study.

4.1.5. Testing if syllable-BPE and SLP1-char models supplement each other in

a pretraining-finetuning setup

The network is first pretrained with one token type and then finetuned with

the other. One model uses SLP1-Char for pretraining and syllable-BPE for fine-

tuning (SLP1-Char → Syl-BPE). The other uses syllable-BPE for pretraining

and SLP1-Char for finetuning (Syl-BPE → SLP1-Char). The pretrained and

finetuned models have the same architecture except for the final linear layer.

The entire network for finetuning is initialized with weights from the pretrained

model. All the layers are finetuned for 50 epochs. The experiments are per-

formed on Sanskrit, Telugu, and Tamil datasets. The results are listed in Table

11.

Dataset
CER/WER

SLP1-Char Syl-BPE
SLP1-Char →

Syl-BPE

Syl-BPE →

SLP1-Char

Sanskrit/Test 2.5/14.1 2.2/8.1 2.6/11.2 1.5/9.3

Sanskrit/OOD 6.7/33.5 8.0/26.4 7.2/29.4 5.1/27.9

Telugu/Test 7.8/30.0 7.2/26.0 7.1/25.8 7.6/28.7

Tamil/Test 6.5/28.4 6.9/26.1 6.5/25.8 6.5/28.5

Table 11: Performance of models pretrained with one type of token and finetuned on the

other.

CER improves over the models directly trained on SLP1-Char (second col-
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umn) when pretrained with Syl-BPE and finetuned on SLP1-Char (fifth col-

umn). On the Sanskrit test and OOD sets, this scheme gives CER improvements

of 1% and 1.6%, respectively, over the model directly trained on SLP1-Char.

On the Telugu test set, CER improves by 0.2%, whereas there is no improve-

ment on the Tamil test set. The corresponding WER improvements (columns 2

and 5) on the Sanskrit-test, Sanskrit-OOD and Telugu-test sets are 4.8%, 5.6%,

and 1.3%, respectively. However, these improved WERs still do not match the

performance of Syl-BPE trained models. Once again, there is no improvement

in WER observed for Tamil.

Models pretrained with SLP1-Char and finetuned on Syl-BPE (fourth col-

umn) give marginal improvements in CER and WER over the models trained

only on Syl-BPE (third column) for Telugu and Tamil datasets. CER improves

by 0.1% for Telugu and 0.4% for Tamil. The corresponding WER improve-

ments are 0.2% for Telugu and 0.3% for Tamil. However, no WER benefits are

observed for Sanskrit.

Pretraining-finetuning setup makes the training a two-stage process, increas-

ing the training time and cost. However, the performance improvement in WER

(if any) over the models trained with syllable BPE is minor. Hence syllable BPE

seems to be a reasonable choice for training the end-to-end systems.

4.1.6. Exploring the effectiveness of syllable-based units for transfer learning

among related languages

Syllable-based sub-word units seem to work well in a monolingual setup

(trained and tested on the same language), provided the dataset is diverse

enough. The conformer models are able to capture the inter-relationships be-

tween the different syllable tokens in an utterance through the self-attention

mechanism. Many Indian languages share common root verbs and nouns.

Hence, the association between the syllables learned with a model trained in

one language may provide a useful initialization for another. However, the

languages differ in their grammar and the use of inflections at the end of the

words. In this context, it is unclear whether using syllable-based tokens for
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cross-lingual transfer (pretraining with one or more languages and finetuning

with a related target language on which the model is tested) can help improve

the ASR performance of the target language. It differs from monolingual train-

ing in that it starts with a model pre-initialized with data from other languages

instead of random initialization. To answer the above question, a conformer

system is trained using speech data from Sanskrit (train, dev, test, and OOD

sets) and Telugu (train and test sets) and tested on the Kannada speech cor-

pus. The text corpus for training the LM contains approximately 0.6 million

utterances collected from the wiki text data dump for Kannada. Syllable-BPEs

are trained from the Kannada text corpus. Only those utterances with their

syllables present in the LM text corpus are considered for AM training. This

amounts to around 68 K utterances. The performance of the conformer model

with SLP1-Char and Syllable-BPE tokens are shown in Table 12. The acoustic

model is trained for 30 epochs with a patience value of 10.

Vocab type Vocab size
Zero-shot finetune

CER WER CER WER

SLP1-Char 55 11.3 56.7 2.7 18.9

Syllable-BPE 25000 31.3 95.7 - -

Table 12: Results on the Kannada test set with a model pretrained on Sanskrit + Telugu and

finetuned on Kannada.

Even after 30 epochs of training with syllable-BPE tokens, the accuracy on

the Kannada validation set using greedy decoding fails to reach the 30% mark.

On the other hand, greedy decoding yields around 75% accuracy on the vali-

dation set with SLP1-Char models trained for 30 epochs. Hence the zero-shot

accuracies with SLP1-Char on the test set are much better than the syllable-

BPE units. Finetuning with 4 hours of Kannada speech data for 30 epochs

improved the SLP1-Char WER on the test set from 56.7% to 18.9%. Finetun-

ing the syllable-BPE model is quite unstable since the pretrained model under-

fits, and the amount of finetune data is quite limited. This suggests that the
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SLP1-Char units are much better than the syllable-BPE ones for cross-lingual

transfer learning. The failure of syllable-BPE in this case maybe attributed to

the following reasons. Firstly, different Indian languages have different syllable

probabilities. Their co-occurrence with other syllables also will be different in

different languages. For example, the visarga (◌ः ) is common in Sanskrit but

rarely used in other languages. Similarly, the usage of (da) is more common

in Telugu. Secondly, the rules for inflection (vibhakthi) are different in differ-

ent Indian languages, which affect the association of individual syllables with

others. Hence, the self-attention-based conformer models might not work well

with syllable-based units in a cross-lingual transfer learning setup with a limited

amount of target speech data.

4.2. Limitations of using syllable-based tokens

Syllables reduce the effective length of token sequences compared to using

characters. Hence they better capture the associations between tokens than

characters in a monolingual setup. However, there are some limitations as well.

Using syllables increases the vocabulary size, thereby increasing the size of the

softmax layer at the network’s output. This increases the number of learnable

parameters in the model. Also, syllable-based tokens do not help in cross-lingual

transfer learning, since different languages have different syllable distributions

and different associations between the syllables.

5. Conclusions

Syllable-based sub-word units seem to be a promising alternative to grapheme-

based schemes in the monolingual training setup if the dataset is diverse enough

to ensure fair coverage of the syllables in the language. Syllable-BPE tokens

provide state-of-the-art results on the Vāksañcayaḥ dataset in Sanskrit. The

language models are more significant during the decoding of syllable-based to-

kens than the grapheme-based tokens. However, syllable-based schemes fail

when the training data is not diverse enough, like in the case of MUCS -2021
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Odia dataset. Performance improvements in WER (if any) with a pretraining-

finetuning setup involving syllable-BPE and SLP1-char tokens are minor com-

pared to the syllable-BPE trained model. Also, the syllable-based units do not

seem suitable for cross-lingual transfer learning to related Indian languages,

since different languages have different distributions of syllables.

6. Future work

Syllable BPE units exhibit encouraging results for monolingual speech recog-

nition. However, they are not suitable for cross-lingual transfer learning, and

SLP1 character units perform better than them. Thus there is a motivation to

study the performance of SLP1 character-based tokens in a multilingual speech

recognition environment for Indian languages in the future. Also, it would be

interesting to see if using both token units in a multitask learning framework

can help improve ASR performance.

7. Acknowledgment

The authors thank Science and Engineering Research Board, Government

of India for partially funding this research through the IMPRINT2 project,

IMP/2018/000504.

References

Adiga, D., Kumar, R., Krishna, A., Jyothi, P., Ramakrishnan, G., & Goyal, P.

(2021). Automatic speech recognition in Sanskrit: A new speech corpus

and modelling insights. Findings of the Association for Computational

Linguistics: ACL-IJCNLP, (pp. 5039–5050).

Anoop, C. S., & Ramakrishnan, A. G. (2021a). CTC-based end-to-end ASR

for the low resource Sanskrit language with spectrogram augmentation. In

Proc. of the National Conference on Communications (NCC) (pp. 1–6).

24



Anoop, C. S., & Ramakrishnan, A. G. (2021b). Investigation of different G2P

schemes for speech recognition in Sanskrit. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 13109, 536–547.

Anoop, C. S., & Ramakrishnan, A. G. (2022). Exploring a unified ASR for

multiple South Indian languages leveraging multilingual acoustic and lan-

guage models. In Proc. of the IEEE Spoken Language Technology Workshop

(SLT) (pp. 830–837).

Bhogale, K. S., Raman, A., Javed, T., Doddapaneni, S., Kunchukuttan, A.,

Kumar, P., & Khapra, M. M. (2022). Effectiveness of mining audio and

text pairs from public data for improving ASR systems for low-resource

languages. arXiv, abs/2208.12666.

Chan, W., & Lane, I. (2016). On online attention-based speech recognition and

joint Mandarin character-Pinyin training. In Proc. of the Annual Confer-

ence of the International Speech Communication Association, Interspeech

(pp. 3404–3408).

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., & Bengio, Y. (2014). Learning phrase representations us-

ing RNN encoder-decoder for statistical machine translation. In Proc.

of the Conference on Empirical Methods in Natural Language Processing

(EMNLP) (pp. 1724–1734).

[dataset] Telugu and Tamil (2018). Data provided by Microsoft

and SpeechOcean.com. URL: https://msropendata.com/datasets/

7230b4b1-912d-400e-be58-f84e0512985e.

[dataset] Wiki text data dump (2020). Wikipedia dumps. URL: https://

dumps.wikimedia.org/.

Datta, A., Ramabhadran, B., Emond, J., Kannan, A., & Roark, B. (2020).

Language-agnostic multilingual modeling. In Proc. of the IEEE Interna-

25

https://msropendata.com/datasets/7230b4b1-912d-400e-be58-f84e0512985e
https://msropendata.com/datasets/7230b4b1-912d-400e-be58-f84e0512985e
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/


tional Conference on Acoustics, Speech and Signal Processing (ICASSP)

(pp. 8239–8243).

Diwan, A., Vaideeswaran, R., Shah, S., Singh, A., Raghavan, S., Khare, S.,

Unni, V., Vyas, S., Rajpuria, A., Yarra, C., Mittal, A., Ghosh, P., Jyothi,

P., Bali, K., Seshadri, V., Sitaram, S., Bharadwaj, S., Nanavati, J., Nana-

vati, R., & Sankaranarayanan, K. (2021). MUCS 2021: Multilingual and

code-switching ASR challenges for low resource Indian languages. In Proc.

of the Annual Conference of the International Speech Communication As-

sociation, Interspeech (pp. 351–355). volume 1.

Dong, L., Xu, S., & Xu, B. (2018). Speech-transformer: A no-recurrence

sequence-to-sequence model for speech recognition. In Proc. of the IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 5884–5888).

Drexler, J., & Glass, J. (2019). Subword regularization and beam search decod-

ing for end-to-end automatic speech recognition. In Proc. of the IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP)

(pp. 6266–6270).

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist

temporal classification: Labelling unsegmented sequence data with recur-

rent neural networks. In Proc. of the ACM International Conference (pp.

369–376). volume 148.

Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J., Han, W.,

Wang, S., Zhang, Z., Wu, Y., & Pang, R. (2020). Conformer: Convolution-

augmented transformer for speech recognition. In Proc. of the Annual Con-

ference of the International Speech Communication Association, Interspeech

(pp. 5036–5040).

Guo, P., Boyer, F., Chang, X., Hayashi, T., Higuchi, Y., Inaguma, H., Kamo,

N., Li, C., Garcia-Romero, D., Shi, J., Shi, J., Watanabe, S., Wei, K.,

26



Zhang, W., & Zhang, Y. (2021). Recent developments on ESPNet toolkit

boosted by conformer. In Proc. of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) (pp. 5874–5878).

He, F., Chu, S.-H. C., Kjartansson, O., Rivera, C., Katanova, A., Gutkin, A.,

Demirsahin, I., Johny, C., Jansche, M., Sarin, S., & Pipatsrisawat, K.

(2020). Open-source multi-speaker speech corpora for building Gujarati,

Kannada, Malayalam, Marathi, Tamil and Telugu speech synthesis sys-

tems. In Proc. of the 12th Language Resources and Evaluation Confer-

ence (LREC) (pp. 6494–6503). European Language Resources Association

(ELRA).

Karita, S., Kubo, Y., Bacchiani, M., & Jones, L. (2021). A comparative study on

neural architectures and training methods for Japanese speech recognition.

In Proc. of the Annual Conference of the International Speech Communi-

cation Association, Interspeech.

Karita, S., Soplin, N., Watanabe, S., Delcroix, M., Ogawa, A., & Nakatani, T.

(2019a). Improving transformer-based end-to-end speech recognition with

connectionist temporal classification and language model integration. In

Proc. of the Annual Conference of the International Speech Communication

Association, Interspeech (pp. 1408–1412).

Karita, S., Wang, X., Watanabe, S., Yoshimura, T., Zhang, W., Chen, N.,

Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Soplin, N., &

Yamamoto, R. (2019b). A comparative study on transformer vs RNN in

speech applications. In Proc. of the IEEE Automatic Speech Recognition

and Understanding Workshop (ASRU) (pp. 449–456).

Khare, S., Mittal, A., Diwan, A., Sarawagi, S., Jyothi, P., & Bharadwaj, S.

(2021). Low resource ASR: The surprising effectiveness of high resource

transliteration. In Proc. of the Annual Conference of the International

Speech Communication Association, Interspeech (pp. 1051–1055). volume 2.

27



Klejch, O., Wallington, E., & Bell, P. (2021). The CSTR system for multilingual

and code-switching ASR challenges for low resource Indian languages. In

Proc. of the Annual Conference of the International Speech Communication

Association, Interspeech (pp. 1001–1005). volume 2.

Ko, T., Peddinti, V., Povey, D., & Khudanpur, S. (2015). Audio augmentation

for speech recognition. In Proc. of the Annual Conference of the Interna-

tional Speech Communication Association, Interspeech (pp. 3586–3589).

Kudo, T. (2018). Subword regularization: Improving neural network transla-

tion models with multiple subword candidates. In Proc. of the 56th Annual

Meeting of the Association for Computational Linguistics (pp. 66–75). As-

sociation for Computational Linguistics volume 1.

Kumar, M., Kuriakose, J., Thyagachandran, A., Kumar, A., Seth, A., Prasad,

L., Jaiswal, S., Prakash, A., & Murthy, H. (2021). Dual script E2E frame-

work for multilingual and code-switching ASR. In Proc. of the Annual

Conference of the International Speech Communication Association, Inter-

speech (pp. 381–385). volume 1.

Lakomkin, E., Heymann, J., Sklyar, I., & Wiesler, S. (2020). Subword reg-

ularization: An analysis of scalability and generalization for end-to-end

automatic speech recognition. arXiv, abs/2008.04034.

Lakshmi, A., & Murthy, H. A. (2006). A syllable based continuous speech

recognizer for Tamil. In Proc. of the 9th International Conference on Spoken

Language Processing (ICSLP), Interspeech (p. 1878 – 1881). volume 4.

Li, B., Zhang, Y., Sainath, T., Wu, Y., & Chan, W. (2019). Bytes are all you

need: end-to-end multilingual speech recognition and synthesis with bytes.

In Proc. of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (pp. 5621–5625).

Panda, S. P., & Nayak, A. K. (2016). Automatic speech segmentation in syl-

28



lable centric speech recognition system. International Journal of Speech

Technology, 19, 9 – 18.

Park, D., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E., & Le, Q.

(2019). Specaugment: A simple data augmentation method for automatic

speech recognition. In Proc. of the Annual Conference of the International

Speech Communication Association, Interspeech (pp. 2613–2617).

Peddinti, V., Povey, D., & Khudanpur, S. (2015). A time delay neural network

architecture for efficient modeling of long temporal contexts. In Proc. of the

Annual Conference of the International Speech Communication Association,

Interspeech (pp. 3214–3218).

Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na, X.,

Wang, Y., & Khudanpur, S. (2016). Purely sequence-trained neural net-

works for ASR based on lattice-free MMI. In Proc. of the Annual Conference

of the International Speech Communication Association, Interspeech (pp.

2751–2755).

Prabhavalkar, R., Rao, K., Sainath, T., Li, B., Johnson, L., & Jaitly, N. (2017).

A comparison of sequence-to-sequence models for speech recognition. In

Proc. of the Annual Conference of the International Speech Communication

Association, Interspeech (pp. 939–943).

Prakash, A., Leela Thomas, A., Umesh, S., & A Murthy, H. (2019). Building

multilingual end-to-end speech synthesisers for Indian languages. In Proc.

of the 10th ISCA Workshop on Speech Synthesis (SSW 10) (pp. 194–199).

Qu, Z., Haghani, P., Weinstein, E., & Moreno, P. (2017). Syllable-based acoustic

modeling with CTC-SMBR-LSTM. In Proc. of the IEEE Automatic Speech

Recognition and Understanding Workshop (ASRU) (pp. 173–177).

Rao, K., Sak, H., & Prabhavalkar, R. (2017). Exploring architectures, data and

units for streaming end-to-end speech recognition with RNN-transducer.

29



In Proc. of the IEEE Automatic Speech Recognition and Understanding

Workshop (ASRU) (pp. 193–199).

Saon, G., Soltau, H., Nahamoo, D., & Picheny, M. (2013). Speaker adaptation

of neural network acoustic models using i-vectors. In Proc. of the IEEE

Automatic Speech Recognition and Understanding Workshop (ASRU) (pp.

55–59).

Scharf, P. (2013). Linguistic issues and intelligent technological solutions in

encoding Sanskrit. Document Numerique, 16, 15–29.

Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of

rare words with subword units. In Proc. of the 54th Annual Meeting of the

Association for Computational Linguistics (pp. 1715–1725). Association for

Computational Linguistics volume 1.

Shetty, V., & Umesh, S. (2021). Exploring the use of common label set to

improve speech recognition of low resource Indian languages. In Proc. of the

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 7228–7232).

SLP1 mapping (2015). Indic script comparison table. URL: https://www.

sanskritlibrary.org/scriptTable.html.

Thomas, S., Audhkhasi, K., & Kingsbury, B. (2020). Transliteration based

data augmentation for training multilingual ASR acoustic models in low

resource settings. In Proc. of the Annual Conference of the International

Speech Communication Association, Interspeech (pp. 4736–4740).

Toshniwal, S., Sainath, T. N., Weiss, R. J., Li, B., Moreno, P., Weinstein, E., &

Rao, K. (2018). Multilingual speech recognition with a single end-to-end

model. In Proc. of the IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP) (pp. 4904–4908).

30

https://www.sanskritlibrary.org/scriptTable.html
https://www.sanskritlibrary.org/scriptTable.html


Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L. u., & Polosukhin, I. (2017). Attention is all you need. Advances

in Neural Information Processing Systems, 30.

Watanabe, S., Hori, T., & Hershey, J. R. (2017a). Language independent end-

to-end architecture for joint language identification and speech recognition.

In Proc. of the IEEE Automatic Speech Recognition and Understanding

Workshop (ASRU) (pp. 265–271).

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., Soplin,

N., Heymann, J., Wiesner, M., Chen, N., Renduchintala, A., & Ochiai,

T. (2018). ESPNet: End-to-end speech processing toolkit. In Proc. of the

Annual Conference of the International Speech Communication Association,

Interspeech (pp. 2207–2211).

Watanabe, S., Hori, T., Kim, S., Hershey, J., & Hayashi, T. (2017b). Hy-

brid CTC/attention architecture for end-to-end speech recognition. IEEE

Journal on Selected Topics in Signal Processing, 11, 1240–1253.

Xiao, Z., Ou, Z., Chu, W., & Lin, H. (2018). Hybrid CTC-attention based

end-to-end speech recognition using subword units. In Proc. of the 11th In-

ternational Symposium on Chinese Spoken Language Processing (ISCSLP)

(pp. 146–150).

Yuan, J., Cai, X., Gao, D., Zheng, R., Huang, L., & Church, K. (2021). Decou-

pling recognition and transcription in Mandarin ASR. In Proc. of the IEEE

Automatic Speech Recognition and Understanding Workshop (ASRU) (pp.

1019–1025).

Zeyer, A., Zhou, W., Ng, T. S. E., Schluter, R., & Ney, H. (2020). Investigations

on phoneme-based end-to-end speech recognition. arXiv, abs/2005.09336.

Zhang, S., Lei, M., Liu, Y., & Li, W. (2019). Investigation of modeling units for

Mandarin speech recognition using DFSMN-CTC-SMBR. In Proc. of the

31



IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 7085–7089).

Zhao, Y., Yue, J., Xu, X., Wu, L., & Li, X. (2019). End-to-end-based Tibetan

multitask speech recognition. IEEE Access, 7 , 162519–162529.

Zhou, S., Dong, L., Xu, S., & Xu, B. (2018). Syllable-based sequence-to-

sequence speech recognition with the transformer in Mandarin Chinese. In

Proc. of the Annual Conference of the International Speech Communication

Association, Interspeech (pp. 791–795).

Zou, W., Jiang, D., Zhao, S., Yang, G., & Li, X. (2018). Comparable study

of modeling units for end-to-end Mandarin speech recognition. In Proc. of

the 11th International Symposium on Chinese Spoken Language Processing

(ISCSLP) (pp. 369–373).

32


	Introduction
	Related Works
	Experimental Setup
	Datasets
	Feature preparation
	Different linguistic units used in the study
	Acoustic modeling
	Language modeling
	Decoding

	Results and Discussion
	Additional studies
	Impact of language models on the ASR performance
	Comparison with previous work
	Effect of vocabulary size
	Performance of syllable BPE on other Indian languages
	Testing if syllable-BPE and SLP1-char models supplement each other in a pretraining-finetuning setup
	Exploring the effectiveness of syllable-based units for transfer learning among related languages

	Limitations of using syllable-based tokens

	Conclusions
	Future work
	Acknowledgment

