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ABSTRACT2

Alzheimer’s dementia (AD) is a type of neurodegenerative disease that is associated with a3
decline in memory. However, speech and language impairments are also common in Alzheimer’s4
dementia patients. This work is an extension of our previous work, where we had used5
spontaneous speech for Alzheimer’s dementia recognition employing log-Mel spectrogram and6
Mel frequency cepstral coefficients (MFCC) as inputs to deep neural networks (DNN). In this work,7
we explore the transcriptions of spontaneous speech for dementia recognition and compare the8
results with several baseline results. We explore two models for dementia recognition - i) fastText9
and ii) convolutional neural network (CNN) with a single convolutional layer, to capture the n-gram10
based linguistic information from the input sentence. The fastText model uses a bag of bigrams11
and trigrams along with the input text to capture the local word orderings. In the CNN based12
model, we try to capture different n-grams (we use n = 2,3,4,5) present in the text by adapting the13
kernel sizes to n. In both fastText and CNN architectures, the word embeddings are initialized14
using pre-trained GloVe vectors. We use bagging of 21 models in each of these architectures15
to arrive at the final model using which the performance on the test data is assessed. The best16
accuracies achieved with CNN and fastText models on the text data are 79.16% and 83.33%,17
respectively. The best root mean square errors (RMSE) on the prediction of mini-mental state18
examination (MMSE) score are 4.38 and 4.28 for CNN and fastText, respectively. The results19
suggest that the n-gram based features are worth pursuing, for the task of AD detection. fastText20
models have competitive results when compared to several baseline methods. Also, fastText21
models are shallow in nature and have the advantage of being faster in training and evaluation,22
by several orders of magnitude, compared to deep models.23
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1 INTRODUCTION
Dementia is a syndrome characterised by the decline in cognition that is significant enough to interfere with25
one’s independent, daily functioning. Alzheimer’s disease contributes to around 60–70% of dementia cases.26
Towards the final stages of Alzheimer’s Dementia (AD), the patients lose control of their physical functions27
and depend on others for care. As there are no curative treatments for dementia, the early detection is28
critical to delay or slow down the onset or progression of the disease. The mini-mental state examination29
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(MMSE) is a widely used test to screen for dementia and to estimate the severity and progression of30
cognitive impairment.31

AD affects the temporal characteristics of spontaneous speech. Changes in the spoken language are32
evident even in mild AD patients. Subtle language impairments such as difficulties in word finding and33
comprehension, usage of incorrect words, ambiguous referents, loss of verbal fluency, speaking too much34
at inappropriate times, talking too loudly, repeating ideas, and digressing from the topic are common in35
the early stages of AD (Savundranayagam et al., 2005) and they turn extreme in the moderate and severe36
stages. Szatlóczki et al. (2015) show that AD can be detected with the help of a linguistic analysis more37
sensitively than with other cognitive examinations. Mueller et al. (2018b) analyzed the connected language38
samples obtained from simple picture description tasks and found that the speech fluency and the semantic39
content features declined faster in participants with early mild cognitive impairment. The language profile40
of AD patients is characterized by “empty speech”, devoid of content words (Nicholas et al., 1985). They41
tend to use pronouns without proper noun references and indefinite terms like “this”, “that”, “thing” etc.,42
more often (Mueller et al., 2018a). These results motivate us to believe that modeling the transcriptions of43
the narrative speech in the cookie-theft picture description task using n-gram language models can help in44
the detection of AD and prediction of MMSE score.45

In this work we address the AD detection and MMSE score prediction problems using two natural46
language processing (NLP) based models - i) fastText and ii) convolutional neural network (CNN). These47
models have the advantage that they can be easily structured to capture the linguistic cues in the form of48
n-grams from the transcriptions of the picture description task, provided with the Alzheimer’s Dementia49
Recognition through Spontaneous Speech (ADReSS) dataset (Luz et al., 2020). CNNs, though originated50
in computer vision, have become popular for NLP tasks and have achieved great results in sentence51
classification (Kim, 2014), semantic parsing (tau Yih et al., 2014), search query retrieval (Shen et al., 2014),52
and other traditional NLP tasks (Collober et al., 2011). Our convolutional neural network model draws53
inspiration from the work on sentence classification using CNNs (Kim, 2014). The fastText (Joulin et al.,54
2017) is a simple and efficient model for text classification (eg. tag prediction and sentiment analysis). The55
fundamental idea in the fastText classifier is to calculate the n-grams of an input sentence and append them56
to the end of the sentence. Our choice of fastText model is also motivated by its ability to often outperform57
deep learning classifiers in terms of accuracy and training/evaluation times (Joulin et al., 2017).58

The rest of the paper is organised as follows. Section 2 discusses the ADReSS dataset in detail. Section59
3 discusses the baseline results in AD detection. Section 4 discusses our proposed NLP based models60
followed by the listing of results in section 5. Our results and conclusions are discussed in section 6.61

2 ADRESS DATASET
The ADReSS dataset (Luz et al., 2020) is designed to provide Alzheimer’s research community with a62
standard platform for AD detection and MMSE score prediction. The dataset is acoustically pre-processed63
and balanced in terms of age and gender. It consists of audio recordings and transcriptions (in CHAT64
format (Macwhinney, 2009)) of the Cookie Theft picture description task, elicited from subjects in the age65
group of 50-80 years. The training set consists of data from 108 subjects, 54 each from AD and non-AD66
classes. The test set has data from 48 subjects, again balanced with respect to AD and non-AD classes.67
More information on the ADReSS dataset can be found in the ADReSS challenge baseline paper (Luz68
et al., 2020).69
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3 REVIEW OF BASELINE METHODS
This section provides a brief overview of the various approaches for AD detection and MMSE score70
prediction on ADReSS dataset. These approaches can be broadly classified into 3 types based on the type71
of the features used in the problem- i) acoustic feature based, ii) linguistic feature based and iii) a fusion of72
acoustic and linguistic features. The performance of different approaches on the AD detection and MMSE73
score prediction tasks are compared using the accuracy and root mean square error (RMSE) measures74
computed on the ADReSS test set.75

Accuracy =
TN + TP

N
(1)

RMSE =

√∑N
i=1(ŷi − yi)2

N
(2)

where N is the total number of subjects involved in the study, TP the number of true positives and TN76
the number of true negatives. ŷi and yi are the estimated and target MMSE scores for ith test sample. The77
results of different approaches on the ADReSS dataset are summarized in Table 1.78

3.1 Acoustic feature-based methods79

Luz et al. (2020), explore several acoustic features like extended Geneva minimalistic acoustic parameter80
set (eGeMAPS) (Eyben et al., 2016), emobase, ComParE-2013 (Eyben et al., 2013), and multi-resolution81
cochleagram (MRCG) (Chen et al., 2014) feeding the traditional machine learning algorithms like linear82
discriminant analysis, decision trees, nearest neighbour, random forests and support vector machines.83
In our previous work (Meghanani et al., 2021), we have used CNN/ResNet + long short-term memory84
(LSTM) networks and pyramidal bidirectional LSTM + CNN networks trained on log-Mel spectrogram and85
Mel-frequency cepstral coefficient (MFCC) features extracted from the spontaneous speech. Pompili et al.86
(2020), exploit the pre-trained models to produce i-vector and x-vector based acoustic feature embeddings.87
They evaluate x-vector, i-vector, and statistical speech-based functional features. Rhythmic features are88
proposed in (Campbell et al., 2020), as lower speaking fluency is a common pattern in patients with AD.89
Koo et al. (2020), use VGGish (Hershey et al., 2017) trained with Audio Set (Gemmeke et al., 2017) for90
audio classification. They have proposed a modified version of convolutional recurrent neural network91
(CRNN), where an attention layer is the forefront layer of the network, and fully connected layers follow92
the recurrent layer.93

3.2 Linguistic feature-based methods94

Recently, there have been multiple attempts on the AD detection problem based on text based features95
and models. Searle et al. (2020), use traditional machine learning techniques like support vector machines96
(SVMs), gradient boosting decision trees (GBDT), and conditional random fields (CRFs). They also try deep97
learning transformer based models, specifically, bidirectional encoder representations from transformers98
(BERT) (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and DistilBERT/DistilRoBERTa (Sanh et al.,99
2019). Pompili et al. (2020), encode each word of the clean transcriptions into 768-dimensional context100
embedding vector using a frozen English BERT model pre-trained with 12-layers. Three different neural101
models are trained on top of contextual word embeddings: (i) global maximum pooling, (ii) bidirectional102
long short-term memory (BLSTM) based recurrent neural networks (RNN) provided with an attention103
module, and (iii) the second model augmented with part-of-speech (POS) embeddings. In the work104
of Campbell et al. (2020), authors have used the manual transcripts to extract linguistic information105
(interventions, vocabulary richness, frequency of verbs, nouns, POS-tagging, etc.) for creating the input106
features of the classifier. They use another sequential deep learning based classifier, which classifies107
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directly from the sequence of Gobal Vectors (GloVe) based word embeddings. Koo et al. (2020), use108
transformer (Vaswani et al., 2017) based language models, generative pretraining (GPT) (Radford et al.,109
2018), RoBERTa (Liu et al., 2019), and transformer-XL (Dai et al., 2020) to get textual features and110
perform classification and regression tasks using a modified convolutional recurrent neural network based111
structure.112

Graph based representation of word features (Tomás and Radev, 2012), (Cong and Liu, 2014), which113
have shown promise in classifying texts (De Arruda et al., 2016) are also employed for detection of mild114
cognitive impairments. Santos et al. (2017) model transcripts as complex networks and enrich them with115
word embedding to better represent short texts produced in neuro-psychological assessments. They use116
metrics of topological properties of complex networks in a machine learning classification approach to117
distinguish between healthy subjects and patients with mild cognitive impairments. Such graph based118
techniques have also been used in the word sense disambiguation (WSD) tasks to identify the meaning of119
words in a given context for specific words conveying multiple meanings.(Corra et al., 2018). They suggest120
that a bipartite network model with local features employed to characterise the context can be useful in121
improving the semantic characterization of written texts without the use of deep linguistic information.122
3.3 Bimodal Methods123

Methods with bimodal input features (both acoustic and linguistic) are also used for AD recognition in124
various studies like (Pompili et al., 2020), (Campbell et al., 2020), (Sarawgi et al., 2020b), (Koo et al.,125
2020), (Sarawgi et al., 2020a), and (Rohanian et al., 2020). However, in this work, we restrict ourselves to126
the NLP-based approaches.127

4 PROPOSED NLP-BASED METHODS
4.1 Data Preparation128

In this work, we explore the linguistic features for AD detection and hence only the textual transcripts in129
the ADReSS dataset are used. The transcripts contain the conversational content between the participant130
and the investigator. This include pauses in speech, laughter and discourse markers such as ‘um’ and ‘uh’.131
Each transcript is considered as a single data point with their corresponding AD label and MMSE score.132
We create two transcription level datasets after pre-processing the transcripts as in Searle et al. (2020) -133
1) PAR: containing the utterances of participant alone, 2) PAR+INV: containing utterances from both the134
participant and the investigator. In addition to the preprocessing performed in Searle et al. (2020), we keep135
PAR and INV tags as well in the data (which defines whether the utterance is spoken by the participant or136
the investigator).137
4.2 CNN Model138

Language impairments like difficulties in lexical retrieval, loss of verbal fluency, and breakdown in139
comprehension of higher order written and spoken languages are common in AD patients. Hence the140
linguistic information like the n-grams present in the input sentence, may provide good cues for AD141
detection. Any n× d CNN filter, where n is the number of sequential words looked over by the filter and d142
is the dimension of word embedding, can be viewed as a feature detector looking for a specific n-gram in143
the input that can capture the language impairments associated with AD.144

We describe the details of the CNN model from the work (Kim, 2014) as follows. Let zi ∈ Rd be a145
d-dimensional word vector corresponding to the i-th word in the sentence. A sentence of length L is146
represented as {z1, z2, . . . , zL}. Let zi:i+j represents the concatenation of the words zi, zi+1, . . . , zi+j . A147
convolution operation involves a filter w ∈ Rnd , which is applied to a window of n words to produce a148
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new feature as shown in equation 3, where si is generated from a window of words zi:i+n−1 by149

si = f(w · zi:i+n−1 + b) (3)

In the equation 3, f is a non-linear function and b is the bias term. A feature map S is obtained by applying150
the filter to all possible windows of words in the sentence [z1:n, z2:n+1, . . . , zL−n+1:L].151

S = [s1, s2, ...., sL−n+1] (4)

A max-pool over time (Collober et al., 2011) is performed over the feature map to get smax = maxS152
as the feature corresponding to that filter. This corresponds to the n-gram that is “most relevant” in the153
AD recognition task. The weights of the filters, which in turn determine the “most relevant” feature,154
are learnt using backpropagation. CNNs are trained with just one layer of convolution. Variable length155
sentences are automatically handled by the pooling scheme. We use pre-trained 100-dimensional GloVe156
word vectors (Pennington et al., 2014) for word embedding. Multiple kernels of sizes 2× 100, 3× 100,157
4× 100 and 5× 100 are employed to have a look at the bigrams, trigrams, 4-grams and 5-grams within158
the text. We use 100 filters each with height 2, 3, 4 and 5. Multiple configurations with filter sizes [2,3,4],159
[3,4,5] and [2,3,4,5] are applied which are referred to as CNN-bi+tri+4 gram, CNN-tri+4+5 gram, and160
CNN-bi+tri+4+5 gram in our tables. The outputs of the filter are concatenated together to form a single161
vector. Dropout with probability p = 0.5 is applied on the concatenated filter output and the results are162
passed through a linear layer for the final prediction task. The linear layer weights up the evidences from163
each of these n-grams and make a final decision. Fig. 1 shows the basic CNN operation over an example164
sentence.165
4.2.1 Training Details166

For the classification task, training is performed for 100 epochs with a batch size of 16. Adam optimizer167
is used with a learning rate of 0.001. Model with the lowest validation loss is saved and used for prediction.168
Since AD classification is a two class problem, binary cross entropy with logits loss is used as the loss169
function. For the MMSE score prediction task, the output layer is a fully connected layer with linear170
activation function. In the regression task the network is trained for 1500 epochs with the objective to171
minimize the mean squared error.172

We use bootstrap aggregation of models known as bagging Breiman (1996) to predict the final173
labels/MMSE scores for test samples. Bootstrap aggregation is an ensemble technique to improve the174
stability and accuracy of machine learning models. It combines the prediction from multiple models. It175
also reduces variance and helps to avoid overfitting. We fit 21 models and the outputs are combined by a176
majority voting scheme for final classification. In the regression task, the outputs of these bootstrap models177
are averaged to arrive at the final MMSE score.178
4.3 fastText179

fastText based classifiers calculate the n-grams of an input sentence explicitly and append them to the end180
of the sentence. In this work, we use bigrams and trigrams. We conducted the experiments with 4-grams181
as well, but the results did not show any improvement over the use of trigrams. This bag of bigrams and182
trigrams acts as additional features to capture some information about the local word order.183

Figure 2 shows the architecture of fastText model. The fastText model has 2 layers, an embedding layer184
and a linear layer. The embedding layer calculates the word embedding (100-dimensional) for each word.185
The average of all these word embeddings is calculated and fed through the linear layer for final prediction186
as described in Fig. 2. fastText models are faster for training and evaluation by many orders of magnitude,187
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compared to the “deep” models. As mentioned in the work (Joulin et al., 2017), fastText can be trained on188
more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a189
million sentences among 312K classes in less than a minute.190
4.3.1 Training Details191

All training details are the same as mentioned in section 4.2.1. The only difference is that dropout is not192
used in this model. Here also we use 21 bootsrapping models and the outputs are combined as described in193
section 4.2.1.194

5 RESULTS
We have performed 5-fold cross-validation, to estimate the generalization error. One of the folds has 20195
validation samples and the remaining four have 22 validation samples. The results of cross-validation on196
CNN and fastText models trained on PAR and PAR+INV sets are listed in Table 2. The best performing197
model for classification during the cross validation was fastText with bigrams on the PAR+INV set, which198
yields an average cross validation accuracy of 86.09%. Among the CNN models, tri+4+5 grams give the199
best accuracy in both PAR (77.54%) and INV+PAR (81.27%) sets. As far as accuracy is concerned, both200
the CNN and fastText models seem to benefit with the inclusion of utterances from the investigator. For201
the prediction of MMSE score, CNN with bi+tri+4+5 grams (RMSE of 4.38) was the best. The fastText202
models seem to get a clear advantage in RMSE with the addition of the utterances from the investigator.203
However such a large difference in RMSE is not observable between the CNN models using PAR and204
INV+PAR sets. The cross-validation results confirmed our belief that the n-grams from the transcriptions205
of the picture description task could be useful in the detection of AD.206

Table 3 lists the classification accuracy and RMSE in the prediction of MMSE score on the test set of the207
ADReSS corpus. The table also lists the precision, recall and F1 score for each class. They are computed208
as precision π = TP

TP+FP , recall ρ = TP
TP+FN , and F1 score = 2πρ

π+ρ , where TP , FP , TN and FN are209
the number of true positives, false positives, true negatives and false negatives, respectively. The listed210
results are obtained after bootstrapping with 21 samples. The best classification accuracy is 83.33% which211
is achieved using fastText model with appended bigrams and trigrams. The accuracies are similar in both212
PAR and PAR+INV sets using the fastText model. The maximum accuracy obtained with CNN models is213
79.16%, which is achieved on the INV+PAR set using bi+tri+4 grams or tri+4+5 grams. In the detection214
task, the CNN models seem to get some advantage by the addition of utterances from the investigator. Also215
the accuracies seem to degrade when bigrams, trigrams, 4-grams and 5-grams are considered together. This216
behaviour is consistent across the PAR and PAR+INV sets. The best RMSE in the prediction of MMSE217
score, is 4.28 which is obtained on the PAR+INV set using fastText model employing only bigrams. In218
the regression task using fastText, the use of bigrams achieve slightly better RMSE compared to the use219
of both bigrams and trigrams. Also the fastText models seem to benefit from the use of utterances from220
the investigator. In contrast, CNN models do not seem to get any specific advantage with the inclusion of221
investigator’s utterances. The performance of the CNN models remain almost the same across the use of222
bi+tri+4, tri+4+5, and bi+tri+4+5 grams.223

6 DISCUSSION AND CONCLUSIONS
In this work, we explore two models - CNN with a single convolution layer and fastText, to address224
the problem of AD classification and prediction of MMSE score from the transcriptions of the picture225
description task. The choice of these models were based on our initial belief that modeling the transcriptions226
of the narrative speech in the picture description task using n-grams could give some indication on the227
status of AD. The chosen models are also shallow. The number of parameters are much less than the usual228
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deep learning architectures and hence they can be trained and evaluated quite fast. Yet, the performance of229
these models is competitive with the baseline results reported with complex models (refer Table 1). The230
results suggest that the n-gram based features are worth pursuing, for the task of AD detection.231

Among the considered models, fastText model with bigrams and trigrams appended to the input, achieves232
the best classification accuracy (83.33%). In the regression task, the best results (RMSE of 4.28) are233
achieved using fastText model with only the bigrams appended to the input. The fastText models have a234
clear edge over CNN in the classification task. Empirical evidences suggest that fastText models benefit235
from the inclusion of utterances from the investigator in the regression task, though they do not make much236
difference in the classification task. The CNN models on the other hand perform better on the PAR+INV237
sets in the classification task. In the regression task, their performance is similar across the PAR and238
PAR+INV sets. Bigrams have an edge over bi+tri grams in fastText, when used for prediction of MMSE239
score. However, the performance of the CNN models remain almost the same across the use of bi+tri+4,240
tri+4+5, and bi+tri+4+5 grams, in the regression task.241
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Table 1. Baseline methods on ADReSS test set

Model Accuracy RMSE
(Searle et al., 2020), DistilBERT 81.25% 4.58
(Searle et al., 2020), SVM+CRF 81.25% 5.22

(Pompili et al., 2020), x-vectors SRE 54.17% –
(Pompili et al., 2020), Sentence embedding 72.92% –

(Pompili et al., 2020), Fusion of system 81.25% –
(Luz et al., 2020), linguistic 75.00% 5.20

(Sarawgi et al., 2020b), Ensemble 83.33% 4.60
(Koo et al., 2020), VGGish 72.92% 5.07

(Koo et al., 2020), Transformer-XL 81.25% 4.01
(Koo et al., 2020), VGGish+GloVe 77.08% 4.33

(Koo et al., 2020), VGGish+Transformer-XL 75.00% 3.74
(Koo et al., 2020), Ensembled Output 81.25% 3.77

(Campbell et al., 2020), Fusion II 75.00% –
(Campbell et al., 2020), Fusion I 72.92% –

(Campbell et al., 2020), RNN Model 75.00% –
(Campbell et al., 2020), fluency 60.42% –
(Campbell et al., 2020), x-vector 54.17% –

(Sarawgi et al., 2020a), UA Ensemble – 4.35
(Sarawgi et al., 2020a), UA Ensemble (weighted) – 3.93
(Pappagari et al., 2020), Acoustic and Transcript 75.00% 5.37

(Rohanian et al., 2020), LSTM (Lexical+Dis) 72.92% 4.88
(Rohanian et al., 2020), LSTM with Gating (Acoustic+Lexical) 77.08% 4.57

(Rohanian et al., 2020), LSTM with Gating (Acoustic+Lexical+Dis) 79.17% 4.54
(Yuan et al., 2020), ERNIE3p 89.58% –

(Syed et al., 2020) 85.42% 4.30
(Edwards et al., 2020), Phonemes and Audio 79.17% –

(Meghanani et al., 2021), CNN-LSTM with MFCC 64..58% 6.24
(Meghanani et al., 2021), pBLSTM-CNN with log-Mel 52.08% 5.90
(Meghanani et al., 2021), ResNet-LSTM with log-Mel 62.50% 5.98

Table 2. Average 5-fold cross-validation results for AD classification and RMSE values

Dataset Model Accuracy RMSE
PAR CNN, bi+tri+4 gram 73.91% 4.55
PAR CNN, tri+4+5 gram 77.54% 4.41
PAR CNN, bi+tri+4+5 gram 76.54% 4.65
PAR fastText, bigram 80.54% 5.43
PAR fastText, bi+trigram 82.36% 5.40

PAR+INV CNN, bi+tri+4 gram 80.18% 4.63
PAR+INV CNN, tri+4+5 gram 81.27% 4.53
PAR+INV CNN, bi+tri+4+5 gram 80.36% 4.38
PAR+INV fastText, bigram 86.09% 4.66
PAR+INV fastText, bi+trigram 85.90% 4.81
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Table 3. Results on ADReSS test set

Dataset Model Class Precision Recall F1 Score Accuracy RMSE
PAR CNN, bi+tri+4 gram Non-AD 0.74 0.71 0.72 72.91% 4.38AD 0.72 0.75 0.73

PAR CNN, tri+4+5 gram Non-AD 0.76 0.67 0.71 72.91% 4.46AD 0.70 0.79 0.75

PAR CNN, bi+tri+4+5 gram Non-AD 0.71 0.71 0.71 70.83% 4.42AD 0.71 0.71 0.71

PAR fastText, bigram Non-AD 0.78 0.88 0.82 81.25% 4.51AD 0.86 0.75 0.80

PAR fastText, bi+trigram Non-AD 0.81 0.88 0.84 83.33% 4.87AD 0.86 0.79 0.83

PAR+INV CNN, bi+tri+4 gram Non-AD 0.77 0.83 0.80 79.16% 4.48AD 0.82 0.75 0.78

PAR+INV CNN, tri+4+5 gram Non-AD 0.77 0.83 0.80 79.16% 4.47AD 0.82 0.75 0.78

PAR+INV CNN, bi+tri+4+5 gram Non-AD 0.74 0.71 0.72 72.91% 4.44AD 0.72 0.75 0.73

PAR+INV fastText, bigram Non-AD 0.78 0.88 0.82 81.25% 4.28AD 0.86 0.75 0.80

PAR+INV fastText, bi+trigram Non-AD 0.79 0.92 0.85 83.33% 4.47AD 0.90 0.75 0.82

Figure 1. Demonstration of CNN over text for an example sentence.
.
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Figure 2. fastText model (Joulin et al., 2017) with appended n-gram features (X1, X2, X3, ..., XK−1, XK)
as input.
.
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