
Automatic Speech Recognition for Sanskrit
ANOOP C. S.

Dept. of Electronics and Communication Engineering
Govt. Engineering College, Sreekrishnapuram

Palakkad, Kerala, India
anoopcs@gecskp.ac.in

A. G. RAMAKRISHNAN
Dept. of Electrical Engineering

Indian Institute of Science
Bangalore, India

agr@iisc.ac.in

Abstract—This paper presents our work on building
a speaker independent, large vocabulary continuous
speech recognition system for Sanskrit using HMM
Toolkit (HTK). To our knowledge, this is the maiden
attempt on a Sanskrit automatic speech recognizer.
A Sanskrit speech corpus with a vocabulary size of
8370 words is built. The corpus contains orthographic,
phoneme and word level transcriptions of 1360 sen-
tences. The speech data were collected from 3 sources:
All India Radio website, Indian Heritage Group under
C-DAC and Vyoma Linguistic Labs Foundation. Mel
Frequency Cepstral Coefficients together with 0th or-
der coefficient and delta and acceleration parameters
are used as features. Triphone HMMs, trained using
HTK, are used as acoustic model. Bigram probabilities
with back-off smoothing are used as language model.
Both phoneme and word level recognizers were devel-
oped on the Sanskrit corpus. The system provides a
word level accuracy of 89.64% and a sentence level
correctness of 58.76% on the test set of 274 sentences.
A graphical user interface for the speech recognizer is
built using Java Swings.

Keywords—Sanskrit ASR, Speech Recognition, ASR,
Sanskrit, Sanskrit speech corpus, HTK, TIMIT, Hid-
den Markov Models, HMM, MFCC

I. Introduction
Most of the research work on automatic speech recog-

nition (ASR) is focused on English. Recently, a lot of
effort has been put into developing ASR for Indian lan-
guages [1] [2] [3] [4]. Sanskrit is one of the oldest Indian
languages, which has a very influential role in Indian
heritage. The available Sanskrit literature encompasses
a rich tradition of poetry and drama as well as scien-
tific, technical, philosophical and religious texts. Sanskrit
continues to be widely used as a ceremonial language in
Hindu religious rituals and Buddhist practice in the form
of hymns and chants. Sanskrit is also used extensively in
the Carnatic and Hindustani branches of classical mu-
sic. Kirtanas, bhajans, stotras, and shlokas of Sanskrit
are popular throughout India. Sanskrit is among the 14
original languages of the eighth schedule to the consti-
tution. The state of Uttarakhand has ruled Sanskrit as
its second official language. Several villages in India, like
Mattur (Shimoga district, Karnataka), still uses Sanskrit
in everyday communication. This work is an attempt to
provide a helping hand to the revival of Sanskrit language
by building an effective ASR. The development of such a

system would help in converting the audio books available
in Sanskrit to corresponding transcriptions. It can also
be very useful to digitize ancient documents on palm leaf
manuscripts simply by someone reading it. These efforts
can help in the rejuvenation of Sanskrit.

The performance of a large vocabulary continuous
speech recognition system depends largely on the quality
of the phoneme level recognizer. As a result, various
methods have been attempted to improve the phoneme
level recognizer using a variety of features, fusion of feature
sets, improved statistical models, improvements in pronun-
ciation, acoustic and language models, etc.

Over the past 2 decades, most of the speech recognition
research was based on hidden Markov models (HMM) [5]
[6] [7] [8]. They used Gaussian mixture models (GMM) to
represent the HMM states. The acoustic feature vectors
were made up mainly of Mel frequency cepstral coeffi-
cients (MFCCs) or perceptual linear predictive coefficients
(PLPs) [9]. The HMM Toolkit (HTK) [10] [11] [12] [13] is a
portable toolkit developed for building and manipulating
hidden Markov models.

But in the last few years, the speech recognition research
has shifted its focus to deep neural networks (DNNs) [14]
[15] for training HMMs. With the improvements in ma-
chine learning algorithms and computational capabilities,
a greater number of hidden layers and output layers can
be accommodated in DNNs.

II. An overview of our approach

Speech signal is treated as an encoded version of a
sequence of discrete symbols which carry some meaning.
The function of our automatic speech recognizer is to map
the speech data back to the meaningful sequence of sym-
bols. A sequence of Sanskrit words W = w1, w2, . . . wK

produces a sequence of acoustic vectors or observations
O = o1,o2, . . .oT. We need to decode the most probable
word sequence given the observations, i.e.

Ŵ = arg max
w

P (W|O) (1)

Using Bayes’ rule, we have

P (W|O) =
P (O|W)P (W)

P (O)
(2)

The denominator term P (O) is independent of the word
sequence. Thus we have:

Ŵ = arg max
w

P (O|W)P (W) (3)

The first term P (O|W) represents the probability of the
observation sequence given the word sequence. This is
termed as acoustic model. The second term P (W) repre-
sents the probability of the word sequence and is termed as
language model. Language models are represented in terms
of a finite state network (FSN).

For large vocabulary continuous speech recognition
(LVCSR) systems, it is a common practice to build sta-
tistical models at the sub-word level (e.g. phonemes) and
concatenate them to synthesize the word level models.
This is accomplished with the help of a pronunciation
dictionary, which contains the composition of each word
in the vocabulary in terms of its sub-word units. In
Sanskrit, just like the other Indian languages, the pronun-
ciation is unique for each of the words. Suppose that the
word sequence W is composed of pronunciation sequence
U = u1,u2, . . .uK where each ui, i = 1 . . .K is the
pronunciation corresponding to word wi. Each ui can be
expressed as a sequence of sub-word units like phonemes,
i.e. ui = u

(1)
i , u

(2)
i , . . . , i = 1 . . .K, where u

(j)
i ∈ L, the set

of basic phoneme units in Sanskrit language. Then

P (O|W) =
∑
U

P (O|U)P (U|W) (4)

where

P (U|W) =

K∏
i=1

P (ui|wi) (5)

The summation in (4) can be simplified with max oper-
ation since we have a one-to-one correspondence between
the word and its pronunciation. In this case P (U|W) = 1.
So, the problem of finding W that maximizes P (O|W)
is the same as the problem of finding U that maximizes
P (O|U).

The language model term in (3), P (W) can be given as:

P (W) = P (w1, w2, . . . wK) (6)
= P (w1)P (w2|w1) . . . P (wK |w1, w2, . . . wK−1)

It is almost impossible to estimate P (wi|w1, w2, . . . wi−1)
for all possible sequence lengths and for all the words in the
language. So it is common to use N -gram models where
we approximate P (wi|w1, w2, . . . wi−1) as:

P (wi|w1, w2, . . . wi−1) ≈ P (wi|wi−N+1, . . . wi−1) (7)

N -grams are computed from a large text corpus using the
relative frequency approach.

P (wi|w1, w2, . . . wi−1) =
count(wi−N+1, . . . , wi−1, wi)

count(wi−N+1, . . . , wi−1)
(8)

Due to the limited size of the training text
corpus, for many possible word sequences

count(wi−N+1, . . . , wi−1, wi) may be zero. To overcome
this issue, smoothing techniques [16] are used. We use
bigrams with back-off smoothing.

Once the acoustic models and language models are
ready, they are incorporated into the finite state network
formed by the sequence of HMM models. Viterbi algorithm
is used to determine the best path through the network.
The decoded state sequence is translated to the corre-
sponding word sequence.

III. Architecture of the ASR for Sanskrit

A block diagram of the automatic speech recognition
(ASR) system for Sanskrit language [17] is shown in Fig.
1. The following sections describe the block diagram in
detail.

Figure 1. Block diagram of ASR

A. Feature extraction

The first step in the recognition process is to convert
the continuous speech signal into a set of equally spaced
discrete feature vectors, such that each of them represents
the speech waveform for the duration covered by it. This
process is called feature extraction. The duration is chosen
such that the speech waveform can be treated stationary
during that time. Fig. 2 shows the block diagram of the
feature extraction process.

Figure 2. Block diagram of the feature extraction process

1) Pre-emphasis: The amplitude of voiced speech falls
off roughly at the rate of -6 dB/ octave at higher fre-
quencies. So the high frequency components have lower
magnitude than the low frequency ones. To compensate
for this, pre-emphasis is applied to the speech signal prior
to the spectral analysis. We use the first order high pass
filter for pre-emphasis. The transfer function of the filter
is in (9).

H(z) = 1− 0.97z−1 (9)

2) Blocking: Blocking process divides the entire speech
signal into overlapping segments called frames. Overlap-
ping improves the correlation between the spectral esti-
mates of successive frames. We use frame widths and frame
shifts of 25 ms and 10 ms, respectively.

3) Windowing: Windowing tapers the signal to zero at
the beginning and end of the frame, thus minimising the
signal discontinuities at both extremities. Our Sanskrit
ASR system uses Hamming window, which has the form

w(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
, 0 ≤ n ≤ N − 1 (10)

4) Filter bank analysis: Mel frequency cepstral coef-
ficients (MFCC) are widely used as features for speech
recognition tasks. The computation of MFCCs emulates
the processing of speech signal by human ear. Cochlea
in the inner ear resolves frequencies nonlinearly across
the audio spectrum. This nonlinear frequency resolution
is achieved by Mel scale filter banks. They use triangular
filters in the frequency domain, equally spaced in Mel
scale. Mel scale is defined as:

Mel(f) = 1125 ln
(
1 +

f

700

)
(11)

MFCC computation emulates the frequency resolving
mechanism of the inner ear. It calculates the magnitude
spectrum for each frame, thereby identifying the frequen-
cies present in the frame. The magnitude coefficients are
weighted by the corresponding triangular filter gain and
the accumulated result is a representative of the spectral
magnitude in that filter channel. 26 filter channels are used
in our ASR.

Next the logarithm of the Mel-scale filter bank parame-
ters is taken. This replicates the nonlinear loudness percep-
tion of the human ear. To have a perception of double the
volume, it requires almost 8 times the energy. Logarithmic
compression makes MFCCs a better representative of the
incoming sound.

Finally, the MFCCs are obtained by applying discrete
cosine transform (DCT) to the log filter bank parameters

fj , j = 1 . . . F , where F is the number of filter bank
channels.

ci =

√
2

F

F−1∑
j=0

fj cos
(
πi

F
(j + 0.5)

)
, i = 0 . . . F − 1 (12)

The use of overlapping filters makes the filter bank energies
quite correlated with each other. Application of DCT
decorrelates the energies. This allows the use of diagonal
covariance matrices in the GMMs corresponding to each
state of an HMM. Only 12 of the 26 DCT coefficients are
retained and the rest are discarded.

A normalized energy term is appended to the final
feature set. This is computed as the log of the signal
energy.

E = log

(
N∑

n=1

s2n

)
(13)

where sn, n = 1 . . . N denotes the speech samples. Energy
is normalised by subtracting the maximum value of E in
the utterance and adding 1 to it.

Dynamic variation of feature vectors over time is cap-
tured using delta and acceleration coefficients. Delta coef-
ficients are calculated as:

dt =

∑K
k=1 n(ct+k − ct−k)

2
∑K

k=1 k
2

(14)

where dt and ct are the delta and static coefficients.
Typically K = 2. Acceleration coefficients are calculated
using the same formula applied to the computed delta
coefficients.

We use MFCCs with 0th order cepstral coefficients and
delta and acceleration parameters as features. Generally
higher order cepstral coefficients are numerically very
small. This causes a wide range of variances among the low
and high cepstral coefficients. Liftering operation rescales
cepstral coefficients so that they have similar magnitudes.

B. Pronunciation modelling
The set of words in the text corpus forms the vocabulary

for the ASR. Unlike English, Sanskrit has a one to one cor-
respondence between the orthography and pronunciation
of words. So the pronunciation model for each of the word
in the vocabulary can be constructed from the correspond-
ing orthography. This process is known as grapheme to
phoneme (G2P) conversion. Graphemes are the basic units
in the written language. The G2P conversion scheme for
our text corpora is explained in section IV-B.

C. Acoustic modelling
Word level acoustic models are built by concatenating

the phoneme level models. Each of the phonemes is rep-
resented by a left-right HMM. The number of states N
in each HMM is set to 5. Out of these, the entry and
exit states of the HMM are non-emitting. They act as the

joining points for the phoneme HMMs to create word level
HMMs.

A flat start model is used to initialize the phoneme
level HMMs. Here we assign the global speech mean and
variance to each of the Gaussian distribution in every
phoneme HMM. The lack of phone boundary information
in the transcriptions of our Sanskrit speech data, makes
the flat start initialization our default choice. Embedded
training is performed thereafter. Flat start scheme using
HTK command HCompV makes all the states of all the
models equally likely in the first iteration of embedded
training and provides uniform segmentation of each of the
training utterances. The hope is that enough phoneme
HMMs align with their actual realizations so that phoneme
models converge to the actual alignment in further itera-
tions.

Once the initial models are created, embedded-training
is performed on the entire training data. This performs
a single Baum-Welch re-estimation of the whole set of
phoneme-HMMs simultaneously. For each of the training
sentences, the corresponding phoneme HMMs are concate-
nated to form a composite HMM. Now forward-backward
algorithm is used to accumulate the statistics, such as state
occupation counts, etc., for parameter estimation. When
all the training data are processed, the accumulated statis-
tics are used to re-estimate the HMM parameters. Single
Gaussian phoneme models are later mixture incremented
to raise the number of Gaussians to 16.

D. Language modelling
N -gram models are widely used as language models in

LVCSR systems. They can be estimated from a sufficiently
large text corpus using relative frequency approach. Our
work uses bigrams with back-off smoothing [18].

E. Network construction
A network describes the sequence of words that can

be recognized. LVCSR systems normally use word-loop.
Word-loop has all the word HMMs placed in parallel,
with a loop-back. This structure allows any word sequence
to be recognized. Networks are represented by a list of
nodes and arcs. Nodes represent the end of words and
arcs represent the word transitions. Language models (N-
grams) can also be incorporated into the finite state
networks (FSN) by having some extra network nodes for
loop-back transitions.

F. Decoding
Once the FSN is ready, Viterbi search is used to decode

the sequence of observation vectors from the unknown
speech. HTK uses a slightly modified version of Viterbi
algorithm called token passing algorithm [10]. It uses log-
arithmic arithmetic to avoid numerical underflows during
probability computations. The steps in the algorithm can
be summarized as follows:

1) At time t, each state Sj in the HMM holds a token.
The contents of the token are the partial log like-
lihood δj(t), current time, identity of the previous
word and a pointer to a record of history information
for the token. This token represents the best partial
match between the model and the observation se-
quence o1,o2, . . .ot, such that the model is in state
Sj at time t.

2) At time t+1, pass a copy of the token in each state
Si to all the connecting states Sj and increment the
value of the copy by log(aij) + log (bj(ot)).

3) When the token reaches the end of a word and moves
to the start of the next word, update the tokens
by incrementing it with log bigram probabilities.
Grammar scaling factor s and word insertion penalty
p can be incorporated at this point. They modify the
language model log probabilities as:

P̃ (w) = sP̃ (w) + p (15)

Here P̃ (w) represents the log probability evaluated
by the language model.

4) At every state, retain only the token with the highest
probability.

5) When a token reaches the end of the utterance, the
route it followed through the network is traced back
with the help of history pointers.

IV. Development of a speech corpus in Sanskrit
For a reliable speech recognition system in any language,

HMM models need to be trained with a large amount of
speech data containing almost all the phonemes used in
the language, in all valid phonetic contexts. So, the first
step in building an automatic speech recognition system is
to build a phonetically rich corpus that covers almost all
possible phonetic contexts in that language. This section
describes the Sanskrit speech/text corpus creation process.

A. Speech data collection
Sanskrit speech data and corresponding transcriptions

were collected from 3 different sources: All India Radio
(AIR) website [19], Indian Heritage Group (IHG), C-DAC
[20] and Vyoma Linguistic Labs Foundation. All the three
sources had speech data from male speakers, but only
the AIR data included speech from female speakers. The
collected data amounted to around 3 hour and 50 minutes
of speech with 1581 utterances. This included data from
11 male speakers and 4 female speakers. The collected files
were divided into different directories based on the news
reader.

The audio data from AIR had 2 channels, with a
sampling frequency of 16 kHz and was in MP3 format. The
data from C-DAC were video files. Vyoma data had single
channel, sampled at 44.1 kHz and were in wav format.
The audio data was extracted from C-DAC videos using
a software called AoA audio extractor. The entire data
was converted into a uniform format with single channel,

16 bits per sample and 16 kHz sampling frequency. The
transcriptions from AIR and C-DAC were in PDF format.
They were first converted to JPG image format using an
online PDF to JPG converter. The output image files
were converted into UTF-8 format Sanskrit text using the
Sanskrit OCR tool [21] developed by Dr. Oliver Hellwig
of Department for Languages and Cultures of Southern
Asia, Freie Universitat, Berlin, Germany. The recognition
accuracy of the OCR was reasonably good. The errors in
OCR data were corrected manually. The final transcrip-
tions were saved in text format.

The entire speech data was segmented to individual
utterances by a team of 4 members at MILE lab. The
collected text files were segmented into individual sen-
tences by detecting the end of sentence markers in Sanskrit
namely, ”।” (danda) and ”॥ ” (double danda). The audio
files and the respective transcriptions were saved with the
same file name, but with different extensions.

B. Grapheme to phoneme (G2P) conversion

The training set of sentences must cover most of the
phonemes and phonemic contexts in the language. So,
selection of sentences requires the phoneme statistics
for the sentences. This is achieved using grapheme to
phoneme (G2P) conversion. Given the UTF-8 sequence
of graphemes, sentences can be mapped directly to the
corresponding phoneme sequence. We used the Harvard-
Kyoto scheme for transliterating Sanskrit in ASCII.

A G2P converter for Sanskrit was developed in Java.
The basic idea was to get the characters in UTF-8 format,
in sequence and convert them to the corresponding pro-
nunciation models. Special cases of halant / virama (◌्),
nukta (◌़), anusvara (◌ं) and visarga (◌ः) are handled
differently.

1) If a halant occurs in the unicode, it implies that the
preceding phoneme is a pure consonant. So the final
schwa sound must not appear in the pronunciation.

2) If nukta appears after a character, the pronunciation
of the character is changed. If nukta follows the char-
acters क, ख, ज, ड, ढ, and फ their pronunciations
change to /q/,/x/,/z/,/r/,/r/ and /f/, respectively.

3) Anusvara is generally pronounced as the nasal sound
of the varga (consonant group based on place of
articulation) of the following consonant. Examples
are गगंा (gaGga), अचंल (aJcala), अडं (aNDa), अतं
(anta), अबंर (ambara).

4) If anusvara is followed by a consonant which is not
belonging to any varga, it is pronounced as nasal
/m/. eg: अशं(amza).

5) Visarga usually appears at the end of the word
and must be pronounced in combination with a
vowel, same as the one preceding it. eg: पर्वाचकः
(pravAcakaha), गुŶः (guruhu), Ąस्थितः (sthitihi), असुरःे
(asurehe).

C. Selection of training and test sets
For phonetically rich sentence selection, phoneme statis-

tics of the collected data is required. For this, MLF
files are created with monophone and triphone labels.
First a complete list of words appearing in the collected
data is created. The pronunciation for these words are
created using G2P program. A pronunciation dictionary
is prepared with the sorted list of word pronunciations.
Master label files (MLF) with phoneme and word level
transcriptions are created. Silence labels are added to the
beginning and end of each sentence. Unlike TIMIT [22]
corpus, the segment boundaries for phonemes and words
are not marked. They contain only the phoneme/word
sequence and not the segment boundaries. Using the HTK
command HLEd a master label file (MLF) with triphone
labels is created.

Collected speech contained a total of 134054 phoneme
instances from 46 phoneme classes. Sentence-wise distri-
bution of these phonemes as well as some other statistics
like number of words, number of UTF-8 code points, etc.
are generated. Training set of sentences are selected based
on the following conditions.

1) Sentence should have number of words between 3
and 20

2) Select a sentence, if it has the maximal occurrence
of any of the phonemes.

3) Select sentences having minority phonemes. Minor-
ity phonemes are the ones having less than 150
occurrences in the entire data.

4) Select a sentence, if it has the maximal occurrence
of any of the triphones.

Out of the remaining sentences all the sentences satisfy-
ing, condition 1 are inducted into the test set. There were
1086 sentences in training set and 274 sentences in test
set.

D. Associated data creation
Since this corpus is mainly intended for the develop-

ment of a speech recognition application, the orthographic,
phone and word level transcriptions are included for
each of the utterance. Master label files are created with
phoneme and word level transcriptions. The pronunciation
corresponding to the list of vocabulary words is captured
in a dictionary file. A back-off bigram language model is
generated using the collected Sanskrit corpus. Also a finite
state network of words is built using the learnt language
model. All the data creation steps are performed using
Java.

V. Results and Discussion
For building an ASR system in Sanskrit, we first built

a speech corpus of 1360 sentences, 8370 words and 46
phoneme classes. The audio corpus had single channel data
with 16 kHz sampling frequency and 16 bits per sample.
The phoneme and word level transcriptions for these audio
files were prepared. A pronunciation dictionary containing

the collected words and their respective pronunciations
is created using the developed G2P converter. Out of
the 1360 sentences, 1086 sentences were included in the
training set based on the criteria described in section IV-C.
Statistics of the collected data are summarized in Table I.

Table I
Statistics of collected Sanskrit speech data

Statistics Training set Test set
Male utterances 867 220
Female utterances 219 54
Total utterances 1086 274
Duration - male data 02:01a 00:20
Duration - female data 00:34 00:06
Duration - Total 02:35 00:26
aDuration in hh:mm (hours: minutes) format.

Performance of the developed LVCSR system for San-
skrit is summarized in Table II. The percentage of cor-
rectness and accuracy are calculated as: correctness C =
H
N × 100% and accuracy A = H−I

N × 100%, where H, I
and N indicates the number of hits, number of insertions
and total number of phonemes/words/sentences in the test
data. 11267 out of the 15703 phonemes, 1897 out of the
2037 words and 161 out of the 274 sentences in the test
set were decoded correctly.

Table II
Performance of the developed LVCSR system for Sanskrit

on test set

Acoustic model H I N A(%) C(%)
Phoneme 11267 1484 15703 62.3 71.8
Word 1897 71 2037 89.6 93.1
Sentence 161 —– 274 —– 58.8

VI. Conclusions
A large vocabulary continuous speech recognition

(LVCSR) system has been built for Sanskrit language.
This is the maiden attempt on a Sanskrit ASR, to our
knowledge. A graphical user interface (GUI) for the speech
recognizer has also been built using Java Swings. The
developed system provides a phoneme level accuracy of
62.3% and a word level accuracy of 89.6% on the test
set. 161 out of the 274 sentences in the test set were
decoded correctly, yielding a sentence level correctness of
58.8%. A Sanskrit speech corpus with orthographic, word
and phoneme level transcriptions has also been built. This
corpus has 1360 sentences and 8370 words covering 46
phonemes.

We plan to extend this work to develop a very large
vocabulary continuous speech recognizer (VLVCSR) using
deep learning framework.

Acknowledgment
I would like to thank Dr. P. Ramanujan, Ex-Associate

Director (IHLC), Centre for Development of Advanced

Computing and Mr. Venkatasubramanian P., Managing
Director, Vyoma Linguistic Labs Foundation for making
me available a large volume of transcribed audio data, in
different domains, for Sanskrit.

References
[1] Kumar M., Rajput N. and Verma A., “A large-vocabulary

continuous speech recognition system for Hindi,” IBM Journal
of Research and Development, vol. 48, Issue. 5.6, pp.703–715,
2004.

[2] Samudravijaya K., Chourasia K. V. and Chandwani M., “Pho-
netically rich Hindi sentence corpus for creation of speech
database,” Proc. of Int. Symp. on Speech Technology and
Processing Systems and Oriental COCOSDA-2005, Indonesia,
pp.132–137, 2005.

[3] Rao P. V. S., Samudravijaya K. and Agrawal S. S., “Hindi speech
database,” Proceedings of international conference on spoken
language processing ICSLP00, pp. 456–459, 2000.

[4] Mitra P., Banerjee P., Garg G. and Basu A., ”Application of
triphone clustering in acoustic modeling for continuous speech
recognition in Bengali”, 19th International Conference on Pat-
tern Recognition, Tampa, FL, pp. 1-4, 2008.

[5] Rabiner L. R., ”A tutorial on hidden Markov models and se-
lected applications in speech recognition”, Proceedings of IEEE,
volume 77, pp. 257-286, 1989.

[6] Rabiner L. R., ”Speech recognition in machines”, The MIT
Encyclopedia of the Cognitive Sciences, MIT Press, Cambridge,
USA, 1999.

[7] Lee K. F. and Hon H. W., ”Speaker-independent phone recog-
nition using hidden Markov models”, IEEE Transactions on
Acoustics, Speech and Signal Processing, volume 37, pp. 1641-
1648, 1989.

[8] Lachiri Z., Gabzili H. and Ellouze N., ”Experimental study
of the HMMs effect on the word recognition performance”,
First International Symposium on Control, Communications
and Signal Processing, pp. 615-618, 2004.

[9] Hermansky H., ”Perceptual linear predictive analysis”, J.
Acoust. Soc. Am., Vol. 87, No. 4, pp. 1738-1752, 1990.

[10] Young S., Evermann G., Kershaw D., Moore G., Odell J.,
Ollason D., Valtchev V. and Woodland P., ”The HTK book
Version 3.2”, Cambridge University Engineering Department,
2002.

[11] Valtchev V., Woodland P. C., Odell J. J. and Young S. J.,
”Large vocabulary continuous speech recognition using HTK”,
IEEE International Conference on Acoustics, Speech, and Signal
Processing ICASSP-94, Adelaide, SA, vol.2, pp. II/125-II/128,
1994.

[12] Furstoss M. J., Wax D. A., Larsen N. A. and Kepuska V. Z.,
”Development of a large vocabulary continuous speech recog-
nition system for rich transcription evaluation using HTK”, in
Proc. IEEE Automatic Speech Recognition and Understanding
Workshop, Waikoloa, Hawaii, 2008.

[13] Woodland P. C. and Cole D. R., ”Optimising hidden Markov
models using discriminative output distributions”, Proceedings
ICASSP-91, International Conference on Acoustics, Speech, and
Signal Processing, Toronto, Ont., vol.1, pp. 545-548, 1991.

[14] Mohamed A., Dahl G. and Hinton G., ”Acoustic Modelling using
Deep Belief Networks”, IEEE Transactions on Audio, Speech,
and Language Processing, vol. 20, no. 1, pp. 14-22, 2012.

[15] Deng L., Hinton G. and Kingsbury B., ”New types of deep
neural network learning for speech recognition and related
applications: an overview”, IEEE International Conference on
Acoustics, Speech and Signal Processing, Vancouver, BC, pp.
8599-8603, 2013.

[16] Chen S. F. and Goodman J., ”An empirical study of smoothing
techniques for language modelling”, Technical Report TR-10-98,
Computer Science Group, Harvard University, 1998.

[17] Anoop. C. S.,”Automatic recognition of contemporary speech
in Sanskrit”, M. E. Thesis, Indian Institute of Science, 2015,
unpublished.

[18] Katz S. M. ”Estimation of probabilities form sparse data for
the language model component of a speech recognizer”, IEEE
Trans., vol. ASSP-35, no. 3, pp. 400-401, 1987.

[19] All India Radio, http://newsonair.nic.in/language-bulletins-
archive.asp, 2015.

[20] C-DAC Technology for Analysis of Rare Knowl-
edge Systems for Harmonious Youth Develop-
ment (TARKSYA), Indian Heritage Group (IHG),
http://bhoomi.csa.iisc.ernet.in:8080/ihg/tarkshya/index.jsp,
2015.

[21] Dr. Hellwig O., Sanskrit OCR,
http://www.geschkult.fuberlin.de/e/indologie/mit-
arbeiter/drittmittel/hellwig/, 2015.

[22] Fisher W. M., Fiscus J. G., Pallett D. S., Dahlgren N. L.,
Garofolo J. S. and Lamel L. F., ”DARPA TIMIT acoustic-
phonetic continuous speech corpus CD-ROM”, 1993.

