
Investigation of Different G2P Schemes for
Speech Recognition in Sanskrit

Anoop C. S.(�)1[0000−0003−2850−9696] and
A. G. Ramakrishnan1[0000−0002−3646−1955]

Indian Institute of Science, Bengaluru, Karnataka - 560012, India
{anoopcs,agr}@iisc.ac.in

Abstract In this work, we explore the impact of different grapheme
to phoneme (G2P) conversion schemes for the task of automatic speech
recognition (ASR) in Sanskrit. The performance of four different G2P
conversion schemes is evaluated on the ASR task in Sanskrit using a
speech corpus of around 15.5 hours duration. We also benchmark the
traditional and neural network based Kaldi ASR systems on our corpus
using these G2P schemes. Modified Sanskrit library phonetic (SLP1-
M) encoding scheme performs the best in all Kaldi models except for
the recent end-to-end (E2E) models trained with flat-start LF-MMI ob-
jective. We achieve the best results with factorized time-delay neural
networks (TDNN-F) trained on lattice-free maximum mutual informa-
tion (LF-MMI) objective when SLP1-M is employed. In this case, SLP1
achieves a word error rate (WER) of 8.4% on the test set with a relative
improvement of 7.7% over SLP1. The best E2E models have a WER of
13.3% with the basic SLP1 scheme. The use of G2P schemes employing
schwa deletion (as in Hindi, which uses the same Devanagari script as
Sanskrit) degrades the performance of GMM-HMM models considerably.

Keywords: G2P · ASR · Sanskrit · LF-MMI · E2E · Kaldi.

1 Introduction and motivation for the study

Sanskrit is one of the oldest languages known to the human race. It is one of the
22 scheduled languages listed in the eighth schedule to the Indian constitution
and has official status in the states of Himachal Pradesh and Uttarakhand. It
is the only scheduled language in India with less than 1 million native speakers.
Though not used in active communication currently, Sanskrit has a lasting im-
pact on the languages of South Asia, Southeast Asia, and East Asia, especially in
their formal and learned vocabularies. Many of the modern-day Indo-Aryan lan-
guages directly borrow the grammar and vocabulary from Sanskrit. In addition,
it encompasses a vast body of literature in various areas spanning from mathe-
matics, astronomy, science, linguistics, mythology, history, and mysticisms.

Though Sanskrit studies bear importance due to historical and cultural rea-
sons, very little focus has been put on developing necessary computational tools
to digitize the vast body of literature available in the language. Specifically,

2 Anoop C. S. and A. G. Ramakrishnan

building a large vocabulary automatic speech recognition (ASR) system can ex-
pedite the digitization of a large volume of literature available across various
written forms in Sanskrit. However, a major challenge in building such a system
for any Indian language is the lack of readily available training data. Further-
more, an ASR system for Sanskrit poses additional challenges like the high rate
of inflection, free word order, highly intonated speech, and large word lengths
due to sandhi. These issues make speech recognition in Sanskrit both unique
and challenging compared to other spoken languages.

Despite the above-mentioned issues, there have been a few attempts to
build ASR systems for Sanskrit in recent times. [3] employ Gaussian mixture
model (GMM) - hidden Markov model (HMM) based approaches using HMM
toolkit (HTK) [28]. Recently [1] has attempted Sanskrit speech recognition using
Kaldi [23] time-delay neural network (TDNN) models [19]. End-to-end speech
recognition with connectionist temporal classification (CTC) objective [10] has
been performed on Sanskrit with limited amount of data using spectrogram aug-
mentation [18] techniques in [4]. [2] employs domain adaptation approaches to
learn the acoustic models for Sanskrit from the annotated data in Hindi.

Pronunciation modeling is one of the major components of all traditional
ASR systems. Sanskrit possesses alphabets that are largely designed to avoid
multiple pronunciations for the same alphabet. Thus, there is a one-to-one
correspondence between the alphabets and the corresponding sound units in
most cases. However, there are a few instances where the context modifies the
pronunciation of the alphabet. The presence of chandra bindu (◌ँ), anusvāra (◌ं),
visarga(◌ः), nukta(◌़) or virama(◌्) in the alphabet alters the pronunciation.

The pronunciation rules for handling them are described in [3]. Sanskrit is
normally written in Devanagari script, just like Hindi. Hence the pronunciation
variations due to virama are handled in most grapheme to phoneme (G2P) con-
verters for Devanagari, as they also occur in Hindi. However, most of the G2P
schemes consider anusvara and visarga as individual phonemes without consid-
ering their context. They also appear quite frequently in Sanskrit text. How the
performance of the ASR for Sanskrit will be impacted when these contextual
pronunciation rules are incorporated into the G2P converter is unclear. Also,
being a more popular Indian language, Hindi has many off-the-shelf G2P con-
version tools [5, 17]. One might be tempted to use the same tools for Sanskrit
as they both share the same orthography. However, Hindi G2P conversion tools
are designed to handle schwa deletion, a phenomenon where the inherent vowel
in the orthography is not pronounced in some contexts. The impact of using
such G2P tools for speech recognition in Sanskrit has not been studied so far.
In this work, we address the above issues and investigate the performance of
four different G2P schemes on Sanskrit ASR. We evaluate their performance on
multiple Kaldi-based ASR systems on a Sanskrit dataset of 15.5 hours duration
that we have collected.

The remaining part of the paper is organized as follows: Section 2 introduces
the Sanskrit dataset used in this work. Section 3 gives a theoretical overview of
different speech recognition systems in Kaldi, which we explore for the evaluation

G2P schemes for Sanskrit ASR 3

of G2Ps. Section 4 describes the setup used for our experiments. This section
also details the four G2P schemes and the Kaldi systems used. Results of our
experiments are discussed in section 5 followed by conclusions in section 6.

2 Sanskrit speech dataset collected for the study

The Sanskrit dataset we use in this work has 15.5 hours of speech data consisting
of 7900 utterances from 41 speakers. The speech data is mainly from 3 domains:
(a) news recordings, (b) recordings of short stories, and (c) video lectures. Speech
data is in raw wav file format with 16 kHz sampling frequency and 16 bits per
sample. There are 41 speakers: 21 male and 20 female. Each audio file contains
recordings from a single speaker. The corpus contains around 15100 unique
words. The dataset is split into train and test subsets with approximately 12
and 3.5 hours of data, respectively, with no overlap between speakers in the
subsets.

The details of the dataset are given in Table 1.

Table 1. Details of the Sanskrit speech dataset collected by us from the recordings of
news, short stories, and lectures, for our ASR experiments. The ”Words” column gives
the number of unique words in the subsets.

Details Speakers Duration
Data Utterances Words Total Male Female Total Male Female
Train 6067 11537 16 8 8 11:54:25 5:22:16 6:32:09
Test 1813 5145 25 13 12 3:28:52 1:44:12 1:44:39

3 Summary of different Kaldi-based ASR systems

ASR can be treated as a sequence detection problem which maps a sequence of
T -length input acoustic features O = {ot ∈ Rm, t = 1, 2, . . . , T} to an L-length
word sequence W = {wl ∈ V, l = 1, 2, . . . , L}. ot denote the m-dimensional
acoustic feature vector at time t, wl denote word at position l and V denote
the vocabulary in that language. The ASR estimates the most probable word
sequence Ŵ given O.

For ASR systems employing HMMs [24],

Ŵ = arg max
W

P (W |O) (1)

= arg max
W

∑
S

P (O|S,W)P (S|W)P (W) (2)

≈ arg max
W

∑
S

P (O|S)P (S|W)P (W) (3)

4 Anoop C. S. and A. G. Ramakrishnan

Figure 1. Block diagram of an ASR.

where S denote the underlying HMM state sequence S = {st ∈ S, t = 1, 2, . . . , T},
S being the set of all possible HMM states. The factors P (O|S), P (S|W), and
P (W) in (3) are called the acoustic models, pronunciation models, and language
models (LM), respectively [26]. A block diagram of an ASR depicting each of
these components are shown in Figure 1.

The acoustic models can be further factorised as:

P (O|S) =
T∏

t=1

P (ot|o1, o2, . . . , ot−1, S) ≈
T∏

t=1

P (ot|st) (4)

The inner term P (ot|st) represents the probability of observing the feature vec-
tor ot given that the HMM state is st at time t. Traditional GMM-HMM based
systems make use of GMM to model this probability. With the arrival of deep
neural networks (DNN) for acoustic modeling in speech [12] GMMs made way
for multi-layer perceptron (MLP) classifiers which computed the frame-wise pos-
terior P (st|ot). Frame-wise likelihood P (ot|st) is then approximated as P (st|ot)

P (st)

using the MLP output. However, to obtain the HMM state (senone) labels
needed to train MLP, they still depended on the alignments from a GMM-HMM
system. These alignments are also used to compute the priors on the senones.

The pronunciation model can be factorized as:

P (S|W) =

T∏
t=1

P (st|s1, s2, . . . , st−1,W) ≈
T∏

t=1

P (st|st−1,W) (5)

HMM state transition probabilities model this term. HMMs are usually
prepared at the sub-word level (phonemes/triphones).

n-gram models are used for language modeling.

P (W) ≈
L∏

l=1

P (wl|wl−n+1, . . . , wl−1) (6)

Decoding typically employs weighted finite state transducers (WFST) [16].
A decoding graph, normally referred to as HCLG, is created as:

S ≡ HCLG = min(det(H o C o L o G)) (7)

G2P schemes for Sanskrit ASR 5

where o, min and det are the FST operations; composition, minimisation and
determinization and S is the search graph. Here, H, C, L, and G denote
HMM structure, context-dependency of phonemes, lexicon, and grammar. In
this graph, each arc has input label as an identifier for the HMM state and
output label as a word or ϵ (indicating no label). The weight typically repre-
sents the negative log probability of the state. Decoding finds the best path
through this graph. Usually, the search space is huge, and beam pruning [13] is
employed instead of an exact search, where all the paths not within the beam
are discarded.

The assumption in HMM that the observations are independent of past/future
phone states, given the current state does not hold in practice. Due to the in-
correctness in the model maximum likelihood may not be an optimal training
criteria. A lattice-free version of maximum mutual information (MMI) objec-
tive [6] for training neural network acoustic models was proposed in [22]. MMI
is a sequence-level discriminative criteria given by:

FMMI(θ) =

U∑
u=1

log
Pθ(Ou|Wu)P (Wu)∑
W Pθ(Ou|W)P (W)

(8)

Here U and θ represent the total number of utterances and the model’s parame-
ters, respectively. The objective tries to maximize the probability of the reference
transcription while minimizing the probability of all other transcriptions. Both
numerator and denominator state sequences are represented as HCLG FSTs.
The denominator forward-backward computation is parallelised on a graphical
processing unit (GPU). They replace word-level LM with a 4-gram phone LM
for efficiency. They also use 2-state skip HMMs for phones, where the skip
connections allowed for sub-sampling of frames at the DNN output.

Regular LF-MMI still depends on the alignments from GMM-HMM models.
The output of the network is tied triphone/biphone states. The tying is done us-
ing a decision-tree built from GMM-HMM alignments. Flat-start LF-MMI [11]
removes this dependency and makes the training completely end-to-end (E2E).
It trains the DNN in a single stage without going through the usual GMM-HMM
training and tree-building pipeline. Unlike regular LF-MMI, there is no prior
alignment information in the numerator graph here. HMM transitions and state
priors are fixed and uniform as in the regular case. Context dependency model-
ing is achieved by using full left-biphones, where separate HMMs are assumed for
each possible pair of phonemes. The phoneme language models for the denom-
inator graph are estimated using the training transcriptions and pronunciation
dictionary.

4 Setup for the ASR experiments

In this work, we investigate the performance of different G2P conversion schemes
in the ASR task in Sanskrit. We also benchmark different Kaldi-based systems
on our Sanskrit dataset described in section 2. We explore the GMM-HMM,

6 Anoop C. S. and A. G. Ramakrishnan

MLP, and factored time-delay neural network (TDNN-F) [21] architectures.
MLP architectures are trained with frame-level cross-entropy objective. Train-
ing of TDNN-F models is explored with both regular and flat-start LF-MMI
objectives. All the experiments are performed using Kaldi toolkit [23].

4.1 Extraction of the MFCC-based features

In our experiments, we use Mel-frequency cepstral coefficients (MFCC) as fea-
tures. They are extracted from frames with a window size of 25 ms and frameshifts
of 10 ms. For the training of the GMM-HMM and MLP models, low-resolution
MFCC features with 13 coefficients are used. Splicing with left and right con-
texts of 9 gives a 247-dimensional vector at the input of the MLP. High-resolution
features with 40 coefficients are used for training the TDNN-F models with the
LF-MMI objective. They also use 100-dimensional i-vectors [7] computed from
chunks of 150 consecutive frames. In the E2E scheme, only high-resolution
MFCC features are used as features. With three consecutive MFCC vectors, the
input dimensions to the regular and E2E TDNN-F networks are 220 and 120,
respectively.

4.2 The different pronunciation models studied

A pronunciation lexicon maps the words to the corresponding phoneme sequence
with the help of G2P converters. We investigate four G2P schemes for Sanskrit
pronunciation modeling and evaluate their relative performance in speech recog-
nition. They are:

1. Epitran [17]: Epitran is a massive multilingual G2P system supporting 61
languages, including Hindi. Though this system supports the Devanagari
script, it is primarily designed to handle the schwa deletions in Hindi. Per-
formance evaluation of the Sanskrit ASR using this scheme can give an idea
about the negative impact of using Hindi G2P converters for Sanskrit.

2. Indian language speech sound label set (ILSL12) [14]: ILSL12 provides a
standard set of labels (in Roman script) for speech sounds commonly used
in Indian languages. Similar sounds in different languages are given a single
label. It is commonly used in multilingual speech recognition systems in
Indian languages.

3. Sanskrit library phonetic (SLP1) basic encoding scheme [25]: SLP1 can rep-
resent phonetic segments, phonetic features, and punctuation in addition to
the basic Devanagari characters. SLP1 also describes how to encode classical
and Vedic Sanskrit.

4. SLP1 modified with specific pronunciation rules for anusvāra and visarga
(SLP1-M): In SLP1-M, we incorporate the pronunciation modification rules
in Sanskrit to the basic SLP1 scheme hoping for a better ASR performance.
A few examples for indicating the differences in the encoding schemes are
shown in Table 2. In row 1, Epitran removes the final schwa, whereas the
other three schemes retain it. Also note that the anusvāra is followed by a

G2P schemes for Sanskrit ASR 7

Table 2. G2P schemes evaluated for speech recognition in Sanskrit.

Sl. No. Deavanagari Epitran ILSL12 SLP1 SLP1-M
1 शकंर S @ N k @ r sh a q k a r a S a M k a r a S a N k a r a
2 गुरुः g u r u @ h g u r u hq g u r u H g u r u h u

velar consonant, क(ka) and hence it is modified to ”N” denoting the velar
resonant ङ(nga) in SLP1-M. In row 2, SLP1-M modifies the final visarga
(◌ः), by adding a voiced echo of the previous vowel. ILSL12 and SLP1 use
separate phonemes for the visarga. Epitran maps it to ”h”, which denotes
the ह (h) sound.

4.3 Training of the language models

We use bigram language models trained with a large text corpus using IRSTLM
toolkit [8]. The transcriptions of the speech data are extended with the text data
from Sanskrit data dump [27] in wiki and from several websites. The collected
text is filtered such that the sentences contain only Devanagari Unicode. There
were 244652 sentences with 413828 distinct words in the final text corpus used
for language modeling.

4.4 Training of the different acoustic models

GMM-HMM models: The development of GMM-HMM systems involves step-
wise refinement of models. At each step, the complexity of the model is increased
to refine the alignments of the training data with the model and passed to next
step. Initially, context-independent monophone HMMs are built. There are
218 position-dependent phones (i.e., phones marked with their word-internal
positions - beginning/ending/standalone/internal). An equal-alignment scheme
is used for initial alignments, and the parameters are learned using maximum
likelihood estimation.

Next, context-dependent phone (triphone) models are constructed using the
left and right contexts of phones. To avoid the explosion in the number of HMM
states due to the triphone context, a decision tree is trained to cluster the states
that are acoustically similar. This way, the same acoustic model is shared across
multiple HMM states. The application of the following transforms further refines
these models:

– Linear discriminant analysis (LDA) + maximum likelihood linear transform
(MLLT) [9]: Here MFCC frames are spliced with left and right contexts
of 3 each, and LDA is applied to reduce the dimension to 40. Now the
diagonalizing transform MLLT is estimated over multiple iterations.

– Speaker adaptive training (SAT): This trains a feature-based maximum like-
lihood linear regression (fMLLR) transform to normalize the features such
that they better fit the speaker.

8 Anoop C. S. and A. G. Ramakrishnan

Subspace Gaussian mixture models (SGMM) [20] can compactly represent a
large collection of GMMs. Here model parameters are derived from a set of
state-specific parameters, and from a set of globally-shared parameters which
can capture phonetic and speaker variations.

Hybrid DNN-HMM models with MLP architecture: We use a multi-
layer perceptron (MLP) with seven hidden layers and 1024 hidden nodes per
layer. The output layer has 2576 nodes corresponding to the senones in the final
GMM-HMM model. We randomly select 10% of the training data as the valida-
tion set. The network is trained with frame-level cross-entropy (CE) objective.

TDNN-F models with LF-MMI objective: We use TDNN-F models for
training with both regular and flat-start LF-MMI objectives. They have similar
structure as TDNN, but are trained with the constraint that one of the two
factors of each weight matrix should be semi-orthogonal. TDNN-F blocks have a
bottleneck architecture with a linear layer followed by an affine layer. The linear
layer transforms the hidden-layer dimension to a lower bottleneck dimension,
and the affine layer transforms it back to the original dimension. In regular LF-
MMI training, the hidden and bottleneck dimensions are 768 and 96, respectively.
In flat-start LF-MMI (E2E) scheme, we use hidden and bottleneck dimensions
of 1024 and 128, respectively. Linear and affine layers are followed by ReLU
activation and batch normalization. They also have a kind of residual connection
where the output of the current block is added to the down-scaled (by a factor of
0.66) output of the previous block. There are 12 such blocks. The final output
layer has dimensions of 1424 and 108, respectively, for the regular and flat-start
LF-MMI networks. Speed and volume perturbations [15] are used in regular
LF-MMI training. In the E2E scheme, all the training utterances are modified
to be around 30 distinct lengths. Utterances with the same lengths are placed
in the same mini-batch during training. Speed perturbation is used to modify
the length of each utterance to the nearest of the distinct lengths.

5 Experimental Results

We use word error rate (WER) as the metric to assess the performance of the
Kaldi-based systems. WER is defined as:

WER = (I +D + S)/N (9)

where I, D, S, and N denote the number of insertions, deletions, substitutions,
and total words in the test set. N = 14135 in our case.

The results of speech recognition experiments for different G2P conversion
schemes with the conventional GMM-HMM models are listed in Table 3. The
well-curated SLP1-M scheme provides the best results across all the GMM-HMM
models. The performance of ILSL12 and SLP1 are almost similar as they are
just direct mappings between the orthography and the phonology, except for the

G2P schemes for Sanskrit ASR 9

Table 3. The performance (WER in %) of GMM-HMM models on the test set using
different G2P schemes for Sanskrit.

No. Model Epitran ILSL12 SLP1 SLP1-M
M1 Mono 27.6 24.4 23.9 23.0
M2 Tri 21.1 18.2 18.1 17.3
M3 Tri+LDA+MLLT 22.6 20.8 20.0 18.7
M4 Tri+LDA+MLLT+SAT 23.3 20.7 20.6 19.8
M5 SGMM 17.0 15.7 15.8 15.4

differences in handling the pitch accents of Vedic Sanskrit. There is considerable
deterioration in the performance of Epitran over the other G2P converters. The
minimal degradation ranges from around 1.2% in SGMM models to around 3.2%
in monophone HMM models. Though Epitran supports Devanagari graphemes,
it is primarily designed to support Hindi, where the schwa deletion is prominent.
However, schwa deletion is not present in Sanskrit, and hence its performance is
slightly worse than the other G2P conversion schemes. Among the GMM-HMM
models, SGMM provides the best results across all the G2P converters. They
provide an improvement of at least 1.9% over the best triphone models. All
the triphone models are better than the monophone models. The application
of LDA+MLLT and SAT does not improve the results. We have assumed that
each utterance in the training set belongs to a different speaker to have the effect
of more number of speakers in the i-vector training for TDNN-F models. This
could be the reason for the poor performance of SAT.

Table 4. The performance (WER in %) of different neural network models on the test
set using different G2P schemes for Sanskrit.

No. Model Objective function Model size Epitran ILSL12 SLP1 SLP1-M
M6 MLP CE 9.0 M∗ 22.6 22.3 21.9 20.0
M7 TDNN-F Regular LF-MMI 6.8 M 9.4 9.4 9.1 8.4
M8 E2E Flat-start LF-MMI 4.9 M 14.9 14.6 13.3 14.7

∗M stands for million.

The results of neural network models are listed in Table 4. SLP1-M gives
the best results for the MLP and TDNN-F models. The best results for E2E
models are achieved using the basic SLP1 scheme. E2E models employ full left-
biphones for context dependency modeling. Retaining separate phonemes for
visarga (◌ः) and anusvāra (◌ं) seems to help the basic SLP1 scheme in better
modeling the biphone HMMs having visarga/anusvara as one of the phonemes.
Surprisingly the Epitran G2P scheme is not as bad as in the case of GMM-HMM
models, when it comes to the neural network models. They provide comparable
results with ILSL12. TDNN-F architectures (rows 2 and 3 of Table 4) have
better performances and smaller model sizes compared to the normal MLP ar-
chitectures. TDNN-F model trained with regular LF-MMI objective gives the

10 Anoop C. S. and A. G. Ramakrishnan

Table 5. Performance (WER in %) of the SLP1-M scheme when a separate schwa
phoneme is used for the vowel inherent in the consonant characters.

G2P scheme M1 M2 M3 M4 M5 M6 M7 M8
SLP1-M 23.0 17.3 18.7 19.8 15.4 20.0 8.4 14.7
SLP1-M+
schwa phoneme 23.1 18.3 20.6 20.7 15.8 21.4 8.7 14.2

best performance on the corpus with the SLP1-M G2P scheme. However, they
depend on GMM-HMM models for the initial alignments and tree building for
tying states. On the other hand, the E2E scheme eliminates such dependencies
on GMM-HMM models and makes the LF-MMI training flat-start. Also, the
i-vector extraction process is not required in the E2E scheme. Thus they can be
trained easily. They provide around 5.3-8.6% improvement over the MLP with
all the G2P schemes on the Sanskrit dataset. However, when compared to the
regular LF-MMI training, their performance is worse by at least 4.2%.

We further extend the SLP1-M with a separate phoneme label for schwa,
the vowel inherent in the consonant characters; i.e., we use a different label ”@”
instead of mapping them to ”a”, the label for the vowel अ. The results of this
are shown in Table 5. The first row of this Table is replicated from Tables 3 and
4. WER degrades for all the models in this scheme except for the E2E models.

6 Conclusions

This work explores the significance of G2P conversion schemes on the speech
recognition task in Sanskrit. We evaluate the performance of four different G2P
conversion schemes, viz. Epitran, ILSL12, SLP1, and SLP1-M (SLP1 modified
to include some contextual pronunciation rules) using traditional and neural
network-based Kaldi models. SLP1-M performs the best among all the models
except E2E. For E2E models, basic SLP1 performs the best. SLP1-M brings
about some improvement in MLP and TDNN-F models. The relative improve-
ments in WER over SLP1 are 8.7% and 7.7% for MLP and the state-of-the-art
TDNN-F models trained with LF-MMI objective, respectively. Epitran scheme,
which employs schwa deletion, deteriorates the performance of GMM-HMM mod-
els. TDNN-F models trained with LF-MMI objective perform the best among
all the Kaldi models. They provide a WER of 8.4% on the Sanskrit test set with
SLP1-M. E2E models with flat-start LF-MMI objective achieve a WER of 13.3%
with the basic SLP1. However, the WER performance of E2E models is worse
by at least 4.2% than the TDNN-F models trained with the regular LF-MMI
objective.

Acknowledgments

We thank Science and Engineering Research Board, Government of India for par-
tially funding this research through the IMPRINT2 project, IMP/2018/000504.

G2P schemes for Sanskrit ASR 11

References
1. Adiga, D., Kumar, R., A., K., Jyothi, P., Ramakrishnan, G., Goyal, P.: Automatic

speech recognition in Sanskrit: A new speech corpus and modelling insights. In: 59th
Annual Meeting of the Association for Computational Linguistics, ACLFindings
(2021). pp. 5039–5050. https://doi.org/10.18653/v1/2021.findings-acl.447

2. Anoop, C.S., Prathosh, A.P., Ramakrishnan, A.G.: Unsupervised domain adapta-
tion schemes for building ASR in low-resource languages. In: Proceedings of Work-
shop on Automatic Speech Recognition and Understanding, ASRU (2021)

3. Anoop, C.S., Ramakrishnan, A.G.: Automatic speech recognition for
Sanskrit. 2nd International Conference on Intelligent Computing, Instru-
mentation and Control Technologies, ICICICT 1, pp. 1146–1151 (2019).
https://doi.org/10.1109/ICICICT46008.2019.8993283

4. Anoop, C.S., Ramakrishnan, A.G.: CTC-based end-to-end ASR for
the low resource Sanskrit language with spectrogram augmentation.
27th National Conference on Communications, NCC (2021). pp. 1–6.
https://doi.org/10.1109/NCC52529.2021.9530162

5. Arora, A., Gessler, L., Schneider, N.: Supervised grapheme-to-phoneme
conversion of orthographic schwas in Hindi and Punjabi. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguis-
tics. pp. 7791–7795. Association for Computational Linguistics, (Jul 2020).
https://doi.org/10.18653/v1/2020.acl-main.696

6. Bahl, L.R., Brown, P.F., de Souza, P.V., Mercer, R.L.: Maximum mutual in-
formation estimation of hidden Markov model parameters for speech recognition.
In:ICASSP, IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing - Proceedings. pp. 49–52 (1986)

7. Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor anal-
ysis for speaker verification. IEEE Transactions on Audio, Speech, and Language
Processing 19, 788–798 (2011)

8. Federico, M., Bertoldi, N., Cettolo, M.: IRSTLM: an open source toolkit for han-
dling large scale language models. In: Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH (2008)

9. Gales, M.: Semi-tied covariance matrices for hidden Markov models.
IEEE Transactions on Speech and Audio Processing 7(3), 272–281 (1999).
https://doi.org/10.1109/89.759034

10. Graves, A., Fernández, S., Gomez, F.: Connectionist temporal classification: La-
belling unsegmented sequence data with recurrent neural networks. In: In Pro-
ceedings of the International Conference on Machine Learning, ICML. pp. 369–376
(2006)

11. Hadian, H., Sameti, H., Povey, D., Khudanpur, S.: End-to-end speech recognition
using lattice-free MMI. In: Proceedings of the Annual Conference of the Inter-
national Speech Communication Association, INTERSPEECH. pp. 12–16 (2018).
https://doi.org/10.21437/Interspeech.2018-1423

12. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Se-
nior,A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neu-
ral networks for acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal Processing Magazine 29(6), 82–97 (2012).
https://doi.org/10.1109/MSP.2012.2205597

13. Hugo Van, H., Filip Van, A.: An adaptive-beam pruning technique for continuous
speech recognition. In: Proceeding of Fourth International Conference on Spoken
Language Processing, ICSLP, IEEE. 4, pp. 2083–2086 (1996)

12 Anoop C. S. and A. G. Ramakrishnan

14. Samudravijaya, K., Murthy H.A.: Indian language speech sound label set (ILSL12).
In: Indian Language TTS Consortium & ASR Consortium, (2012) https://www.
iitm.ac.in/donlab/tts/downloads/cls/cls_v2.1.6.pdf

15. Ko, T., Peddinti, V., Povey, D., Khudanpur, S.: Audio augmentation for speech
recognition. In: Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH. vol. January, pp. 3586–3589 (2015)

16. Mohri, M., Pereira, F., Riley, M.: Weighted finite-state transducers in
speech recognition. Computer, Speech and Language. 16(1), 69–88 (2002).
https://doi.org/10.1006/csla.2001.0184

17. Mortensen, D., Dalmia, S., Littell, P.: Epitran: Precision G2P for many languages.
In: 11th International Conference on Language Resources and Evaluation, LREC
2018. pp. 2710–2714 (2019)

18. Park, D., Chan, W., Zhang, Y., Chiu, C.C., Zoph, B., Cubuk, E., Le, Q.: Specaug-
ment: A simple data augmentation method for automatic speech recognition. In:
Proceedings of the Annual Conference of the International Speech Communication
Association, INTERSPEECH. vol. September, pp. 2613–2617 (2019)

19. Peddinti, V., Povey, D., Khudanpur, S.: A time delay neural network architecture
for efficient modeling of long temporal contexts. In: Proceedings of the Annual Con-
ference of the International Speech Communication Association, INTERSPEECH.
vol. 2015-January, pp. 3214–3218 (2015)

20. Povey, D., Burget, L., Agarwal, M., Akyazi, P., Kai, F., Ghoshal, A.,
Glembek, O., Goel, N., Karafiát, M., Rastrow, A., Rose, R., Schwarz,
P.,Thomas, S.: The subspace Gaussian mixture model - a structured model
for speech recognition. Computer Speech and Language 25(2), 404–439 (2011).
https://doi.org/10.1016/j.csl.2010.06.003

21. Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H., Yarmohamadi, M., Khudan-
pur,S.: Semi-orthogonal low-rank matrix factorization for deep neural networks.
In:Proceedings of the Annual Conference of the International Speech Communi-
cation Association, INTERSPEECH. vol. 2018-September, pp. 3743–3747 (2018).
https://doi.org/10.21437/Interspeech.2018-1417

22. Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na, X.,
Wang,Y., Khudanpur, S.: Purely sequence-trained neural networks for ASR based
on lattice-free MMI. In: Proceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTERSPEECH. pp. 2751–2755 (2016).
https://doi.org/10.21437/Interspeech.2016-595

23. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hanne-
mann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely,K.:
The Kaldi speech recognition toolkit. IEEE Workshop on Automatic Speech Recog-
nition and Understanding (Dec 2011)

24. Rabiner, L.: A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989).
https://doi.org/10.1109/5.18626

25. Scharf, P.M., Hyman, M.D.: Linguistic issues in encoding Sanskrit. In: The San-
skrit Library (2012)

26. Watanabe, S., Hori, T., Kim, S., Hershey, J., Hayashi, T.: Hy-
brid CTC/attention architecture for end-to-end speech recognition. IEEE
Journal on Selected Topics in Signal Processing. 11(8), 1240–1253 (2017).
https://doi.org/10.1109/JSTSP.2017.2763455

27. Wikimedia: Wiki Sanskrit data dump, https://dumps.wikimedia.org/sawiki/
28. Young, S.J., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., Woodland, P.: The

HTK Book Version 3.4. Cambridge University Press (2006).

