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ABSTRACT Indian languages share a lot of overlap in acoustic and linguistic content. Though different
languages use different writing systems, the phoneme sets logically overlap. Most of these languages are
low-resourced, lacking enough annotated speech data to build good automatic speech recognition (ASR)
systems. Recently proposed model-agnostic meta-learning (MAML) algorithm has shown great success in
the fast adaptation of multilingual models to unseen datasets. In this work, we establish the usefulness
of MAML pretraining in quickly building reasonably good ASRs for low-resource Indian languages.
MAML significantly outperforms joint multilingual training in its capability for few-shot learning and
faster adaptation. On average, MAML yields absolute improvements of 5.4% in CER and 20.3% in WER
over joint multilingual pretraining in the fast-adaptation setting with five epoch fine-tuning. Further, we
exploit the similarities of the source transcriptions with target data through a loss-weighing scheme during
the training to improve the performance of MAML models. Similarity-based loss-weighings yield absolute
improvements of 0.2% in CER and 1% in WER on average.

INDEX TERMS meta-learning, MAML, language similarity, low-resource ASR, Indian languages, few-
shot learning.

I. INTRODUCTION

INDIA is a linguistically diverse country with more than
19,500 languages or dialects as mother tongues. As per

the 2011 census data, there are 121 languages in India with
more than 10,000 speakers [1]. However, the total numbers of
speakers of different languages vary greatly. There are only
14 languages with more than 10 million speakers and only
32 languages with more than 1 million speakers. Generally,
the data available to build speech technologies is directly
proportional to the number of speakers in that language.
Hence, the advancements in speech technologies are not
accessible to most Indian languages. Multilingual speech
recognition models address this issue by allowing efficient
data and parameter sharing across languages.

Conventional ASR systems use three modules: acoustic,
pronunciation, and language models, each optimized sepa-
rately with different objective functions. Hybrid systems [2]–
[4] use shared hidden layers to build multilingual acoustic
models. End-to-end (E2E) systems eliminate incoherences
in optimizations with a single objective function. They al-
low data pooling from multiple languages, simplifying the

multilingual training process [5]–[7]. Multilingual modeling
improves the performance of ASR in low-resource settings,
and the same model works for all the languages used in train-
ing. Conditioning the model on language identity improves
the ASR performance significantly but requires additional
language information [5], [7]–[9]. The dependency on the
prior knowledge of language identity (LID) can be removed
by estimating LID jointly in E2E multilingual models [6].

There are other approaches to handling data scarcity in
ASR training. They include spectral augmentation [10], ad-
versarial training [11], data synthesis [12], noise addition
[13], vocal tract length perturbation [14], [15], and speech
and tempo perturbation [16].

Meta-learning has become popular recently. It helps in
fast adaptation to unseen data. Model-agnostic meta-learning
(MAML) [17] makes the scheme more generic and allows its
application to any learning problem trained with gradient de-
scent procedure. MAML was applied to low-resource speech
recognition in [18]–[20]. It outperforms joint multilingual
pretraining schemes in low-resource settings.

Most Indian languages are low-resourced. Finding enough
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native speakers to record the speech data is often difficult. En-
suring the diversity of the data is another challenge. Hence,
collecting enough training data is highly time-consuming
and expensive for most Indian languages. The writing sys-
tems of different languages have non-overlapping character
sets. However, there are some opportunities too. There is
a significant overlap in the phoneme space of Indian lan-
guages. Moreover, unlike some European languages, there
is a one-to-one correspondence between the character sets
and pronunciation. The languages have slight overlap in their
vocabularies too. The value MAML can bring to the ASR
performance in low-resource Indian languages is unclear
in this context. Also, exploiting the linguistic similarities
of the source datasets to the target languages might help
improve the performance on the target languages. Our main
contributions in this work are as follows:

1) We establish the usefulness of MAML training with a
set of pronunciation-based shared labels across mul-
tiple Indian languages. The shared labels allow the
same pretrained model to be finetuned to many low-
resource languages without architectural modifications
like changing the output layers.

2) We validate the fast adaptation and few-shot learning
capabilities of MAML with a diverse set of 5 target
languages chosen from different parts of India, where
the pretraining is with four source languages.

3) We compare the performance of MAML in low-
resource settings with joint multilingual pretraining
and monolingual training.

4) We propose a loss-weighing scheme based on the simi-
larity of source transcriptions with the sentences in the
target language to improve the performance of MAML
pretraining.

II. RELATED WORK
Meta-learning or learning to learn schemes train the model
on various learning tasks, such that it can learn any new
task faster with only a few training samples. The earlier
meta-learning algorithms were based on learning an up-
date function or learning rule [21]–[24], but used additional
learnable parameters in the training process. Also, many of
them had restrictions on the model architecture [25], [26].
Model-agnostic meta-learning (MAML) proposed in [17]
made the learning algorithm more generic. It does not make
any assumptions about the model architecture and can easily
be applied to any learning problem trained with a gradient
descent procedure. It does not introduce additional learnable
parameters. We can also use it with various loss functions.

MAML was successful in problems like few-shot classi-
fication/regression and meta-reinforcement learning [17]. It
finds wide applications in few-shot learning like human pose
estimation [27], cancer detection [28], and medical visual
question answering [29]. The meta-learner seeks to find an
initialization helpful in adapting to various problems. They
also adapt quickly (in a few steps) and efficiently (using only
a small number of training samples). The training approach

in MAML maximizes the sensitivity of the loss functions
of the new tasks to the model parameters so that small
changes in the parameters yield considerable improvements
in the task loss. MAML was applied to low-resource ASR
in [18]. They formulated the ASR problem for different lan-
guages as different tasks. MAML finds good initializations
for ASR models that can easily be fine-tuned to unseen
target languages. Authors of [19] suggest a multi-step loss
for improving the inner loop optimization of MAML. In
[30], authors successfully employ MAML for cross-accented
English speech recognition.

There were several attempts to build ASR systems for
Indian languages before. The BUT system [31] uses multi-
lingual time-delay neural networks with transfer learning and
shows that they perform better than bi-directional residual
memory networks (BRMN) and bi-directional LSTM. Their
multilingual models have been trained by pooling the data
from three languages - Tamil, Telugu, and Gujarati using
the common IPA phone set. [32] uses a different strategy
for transfer learning. They pretrain the network with large
amounts of speech in the high-resource language but with the
text transliterated to the target low-resource language. The
scheme performs better than transliterating the low-resource
data to Latin during fine-tuning. They use the transformer and
wav2vec2.0 architectures with English as the high-resource
language and six languages, namely Hindi, Telugu, Gujarati,
Bengali, Korean, and Amharic, as low-resource targets. Mul-
tilingual and code-switching ASR challenge [33] reports an
average WER of 32.73% on six Indian languages using
TDNN models. [5] uses language conditioning in a listen,
attend, and spell (LAS) model jointly trained with around
1500 hours of data from 9 Indian languages and reports an
average WER of 21.32%. [9] studies language conditioning
in transformer networks and reports the best results with
learned language embedding added to the acoustic vectors.

III. MAML FOR LOW-RESOURCE SPEECH
RECOGNITION

∇Lnet
∇Lhi

∇Lbn
∇Lte

∇Lgu

θ

θ*pa
θ*sa

θ*kn

θ*mr

θ*or

FIGURE 1: Model-agnostic meta-learning (MAML) employed
for fast adaptation of ASR models to low-resource languages.
hi, gu, te, and bn denote the source languages of Hindi,
Gujarati, Telugu, and Bengali, respectively. kn, sa, pa, mr, and
or denote the target languages of Kannada, Sanskrit, Punjabi,
Marathi, and Odia.
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Consider an ASR model fθ parameterised by θ. We need
θ that can easily be fine-tuned to any new language. We
have a few datasets for the high resource languages D =
{D1, D2, . . . , DL}, where L denotes the number of high re-
source languages used for meta-training. Every model update
cycle consists of several inner optimizations and one round
of outer optimization. During inner optimizations, we iterate
over all the datasets Dl, l = 1, 2, . . . , L and the number of
optimizations equals the number of datasets L in general. We
sample a batch of examples Bl from its train set and divide
it into two sets, Btr

l and Bdev
l , with an approximately equal

number of utterances. The model parameters θ are updated
to θ′ by computing the loss function on Btr

l and performing
one gradient descent step.

θ′l = θ − α∇θLBtr
l
(fθ) (1)

where α is the learning rate of the inner optimizer. The loss
with respect to fθ′ is computed on the unseen part of the
data Bdev

l , and the gradients are computed based on that.
This process is repeated for all the training languages, and
the accumulated gradients are used to update the original
weights fθ during the outer optimization. Thus the objective
of meta-training is to optimize the performance of the fine-
tuned model fθ′

l
on unseen data Bdev

l and can be summarised
as follows:

min
θ

∑
Bl

LBdev
l

(fθ′
l
) =

∑
Bl

LBdev
l

(fθ−α∇θLBtr
l

(fθ)) (2)

The outer optimization is performed as follows:

θ = θ − β
∑
Bl

∇θLBdev
l

(fθ′
l
) (3)

where β is the step size for the outer optimizer and fθ′
l

is the
network adapted on language l. Using first-order approxima-
tion of MAML, the outer optimization is reformulated as:

θ = θ − β
∑
Bl

∇θ′
l
LBdev

l
(fθ′

l
) (4)

The whole algorithm can be summarised as follows:

Algorithm 1 Model-agnostic meta-learning

REQUIRE: α, β: Step-size hyperparameters
1: Randomly initialize θ
2: while not done do
3: for each Dl ∈ D do
4: Sample a batch of data Bl from Dl

5: Split Bl to Btr
l and Bdev

l

6: Evaluate ∇θLBtr
l
(fθ)

7: Compute adapted parameters with gradient
descent: θ′l = θ − α∇θLBtr

l
(fθ)

8: end for
9: Update θ ← θ − β

∑
Bl

∇θ′
l
LBdev

l
(fθ′

l
)

10: end while

We use L = 4 with Hindi (hi), Gujarati (gu), Telugu (te),
and Bengali (bn) as the source languages. Fig. 1 illustrates
the gradient update procedure employed in our work.

IV. EXPERIMENTAL SETUP
A. SPEECH DATASETS USED FOR THIS WORK
We use Hindi (hi), Gujarati (gu), Telugu (te), and Bengali
(bn) as the source languages for pretraining the joint multi-
lingual and MAML models. The languages are chosen such
that there is sufficient representation from the northern (hi),
western (gu), southern (te), and eastern (bn) parts of India.
The choice is also based on the availability of off-the-shelf
datasets in these languages. As per 2011 census data, these
languages cover around 79% of the Indian population. We
use Marathi (mr), Punjabi (pa), Odia (or), Sanskrit (sa), and
Kannada (kn) as the target languages. The details of the
datasets are given in Table 1. All the datasets are publicly
available and can be downloaded from the links provided in
the citations. The validation subsets of these datasets are used
only for assessing the performance of the models across the
training epochs.

B. ENCODING THE TEXT DATA IN SLP1 FORMAT
Most Indian languages share a nearly common phoneme
space. But most of them have their own writing systems with
non-overlapping character sets. For example, the word guru
is pronounced almost similarly across Indian languages, but
the text representations are completely different as shown in
Fig. 2.

Latin Hindi Bengali Telugu Gujarati

Guru गुरु গুরু గురు ગુરુ

FIGURE 2: Representation of the word Guru in four Indic
scripts.

The standard method of E2E multilingual training is to
pool the character tokens from multiple languages [5], [6].
However, this leads to inefficient data sharing while training
the acoustic model, since identical phoneme sequences are
represented with different characters in different languages.

Common, language-agnostic tokens have been proposed in
[8], [41], [42] for efficient data-sharing across related lan-
guages during multilingual training. Authors of [41] propose
a language-agnostic multilingual ASR system that transforms
all languages into one writing system through a many-to-one
transliteration transducer. In [42], the authors model the text
as a sequence of Unicode bytes. Using bytes helps keep the
output dimensions fixed (vocabulary size is always limited to
256 in this case), thereby eliminating the need for changes to
the output layer with the incorporation of new languages.

In Indian languages, there is mostly a one-to-one asso-
ciation between the character sets and their pronunciations.
Also, the Unicode tables for Indian languages are structured
such that the grapheme units with similar pronunciations
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TABLE 1: Details of the speech datasets used for building acoustic models. The links to the sources of the datasets are provided
in the references.

# Utterances Duration (hrs)
Language Dataset Train Validation Test Train Validation Test

Source

Hindi (hi) SLR118 [34] 36308 1744 - 100 5 -
Bengali (bn) Common Voice 10.0 [35] 29273 3000 - 50 5 -
Telugu (te) MUCS2021 [33] 47418 3037 - 45 5 -
Gujarati (gu) MUCS2021 [33] 26067 3075 - 45 5 -

Target

Marathi (mr) Common Voice 10.0 [35] 5734 600 600 10 1 1
Punjabi (pa) Shrutilipi (AI4Bharat) [36] 5560 522 528 12.5 1 1
Odia (or) SME [37] 5581 1218 719 7 1.5 1
Sanskrit (sa) Vāksañcayah. [38] 6000 500 500 10 1 1
Kannada (kn) SLR126 [39], [40] 3000 500 500 10 1.5 1.5

Language Unicode range / Offset -> 02 03 05 06 07 08 15 19 2F 30 3E 3F
Hindi U+0900 – U+097F  ः अ आ इ ई क ङ य र ा ि

Bengali U+0980 – U+09FF ং ঃ অ আ ই ঈ ক ঙ য র া ি
Telugu U+0C00 – U+0C7F ం ః అ ఆ ఇ ఈ క ఙ య ర ా ి
Gujarati U+0A80 – U+0AFF  ઃ અ આ ઇ ઈ ક ઙ ય ર ા િ
SLP1 M H a A i I ka Na ya ra A i

FIGURE 3: Using shared labels across multiple Indian languages with SLP1 transliteration scheme. Graphemes (characters) of
different languages representing the same phoneme are at the same offset in their assigned Unicode space and share the same
SLP1 codes.

from different languages occur at the same offset from the
beginning of the respective tables. Common label sets (CLS)
[43] and Sanskrit library phonetic encoding (SLP1) [44] are
two popular schemes for generating language-independent
tokens for multilingual ASR training in Indian languages.
Both exploit the structure of the Unicode tables. In [45] and
[46], the authors represent similar phonetic units through the
common label set. SLP1 tokens are used for monolingual
ASR training in [38], [47] and multilingual training in [48].
Examples of the SLP1 transliteration scheme for our source
languages are shown in Fig. 3.

SLP1 encoding can be inferred from the Unicode for the
character based on its offset from the beginning of the range
assigned to that language. It maps vowels and vowel mod-
ifiers (symbols used when vowels are not at the beginning
of the words) to the same tokens, eliminating redundancy in
the native characters. Due to its simplicity in implementation,
we use SLP1 in this work. The complete mapping of native
characters to SLP1 for the languages used in our study is
shown in Appendix A. The SLP1 transliteration scheme
yields 54 tokens representing the characters from all the
Indian languages covered in our work.

Some special characters like anusvara, visarga, and nukta,
and properties like schwa deletion cause slight modifications
to the pronunciation of words in Indian languages. We handle
such deviations as suggested in [49] and [50] to ensure
maximum correlation between the token sequences and the
underlying acoustic data.

C. ARCHITECTURE FOR MULTILINGUAL TRAINING
AND MAML

We use an end-to-end (E2E) architecture for joint mul-
tilingual training and meta-learning, as shown in Fig. 4.
Similar to [51], we use an upstream-downstream setup. We
use IndicWav2Vec [52] large model in the upstream. It acts
as a front-end feature extractor. IndicWav2Vec-large is pre-
trained on 17,000 hours of raw speech data from 40 Indian
languages. The 1024-dimensional output of the model is
converted to 80 dimensions by a linear layer and fed to
the downstream ASR task. The parameters of the upstream
model are fixed during the training phase of the ASR.

Conformer [53] encoders and transformer [54] decoders
are used for acoustic modeling in the downstream ASR. The
hyperparameters of the model are listed in Table 2. Joint
connectionist temporal classification (CTC) [55] - attention
scheme [56] is used for training the model with a CTC weight
of 0.3 and an attention weight of 0.7. We use Adam opti-
mizer [57] with a peak learning rate of 0.005 and warm-up
steps of 30000 during the monolingual and joint multilingual
training. For MAML training, we use stochastic gradient
descent (SGD) with a learning rate of 0.0001 for inner loop
optimization. Adam is used for outer loop optimization. We
train the model for 25 epochs in the pretraining phase. The
resulting model is fine-tuned for 5 epochs using the data from
the target languages. No language models are used in our
experiments.

We use beam-search decoding and compute the most prob-
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SLP1
sequence

Speech
waveform

Indic wav2vec2.0

(Upstream)

ASR (Downstream)

Conformer 

Encoder

Transformer
Decoder

Pctc(Y|X) Patt(Y|X)

Beam search
decoding

FIGURE 4: End-to-end (E2E) architecture employed for joint
multilingual training and MAML in our experiments.

TABLE 2: Hyperparameters of the conformer used in acoustic
modeling.

Parameters Value
Kernel size 15
Encoder layers 12
Decoder layers 6
Attention heads 4
Attention dimension 256
Feed-forward dimension 2048

able output sequence Ŷ as:

Ŷ = argmax
Y ∈V ∗

(
α log pctc(Y |X) + (1− α)log patt(Y |X)

)
(5)

where pctc and patt are the CTC and attention scores,
α is the CTC weight and V ∗ is the set of all possible
target hypotheses. We use a beam size of 20 and α = 0.3
during decoding. All the experiments are conducted using the
ESPNet toolkit [58].

V. RESULTS AND ANALYSIS
In this section, we discuss our results on the fast adaptation
and few-shot learning capability of MAML in the context
of Indian languages. Further, we investigate the effects of
varying the number of epochs in the pretraining and fine-
tuning phases.

A. PERFORMANCE OF MAML IN FAST-ADAPTATION
SETTINGS
We use three different initializations for fine-tuning the ASR
model to low-resource languages.

1) Random (no pretraining) initialization is used, and the
monolingual models are trained from scratch.

2) A joint multilingual model pretrained for 25 epochs is
used as the initial model. The data from all the source
languages are employed for training using the standard
ESPNet [58] recipes.

3) A meta-learning model pretrained for 25 epochs is used
as the initialization.

The initial model is fine-tuned for five epochs using the
limited data available for the target languages. We compare
the performances of these models in Table 3.

The random initialization (monolingual training) yields the
worst performance and seems incapable of learning good
model weights with a few epochs (5 in this case). With
around 10 hours of speech data in target languages and just
five epochs of training, monolingual models fail to perform
reasonably for any language. Both joint multilingual and
MAML pretraining schemes provide significant performance
improvements. It can be seen from Table 3 that MAML
provides the best initialization for the model weights. Its
performance is significantly better than that of joint multilin-
gual training. On average, there are absolute improvements
of 5.4% in CER and 20.3% in WER. The maximum benefits
are seen for Odia, where the training data is extremely limited
(just 7 hours). The results suggest that pretraining with meta-
learning is extremely useful for fast adaptation to multiple
languages when the target languages are closely related to
source languages, as in the case of languages of the Indian
subcontinent.

B. EFFECT OF THE SIZE OF TRAINING DATA ON THE
PERFORMANCE OF TARGET LANGUAGE ASR
Here we study the few-shot capability of our joint multilin-
gual and MAML pretrained models. We choose 0%, 25%,
50%, and 100% of the target data as subsets. Since we use
SLP1 tokens in the output layer for all languages, the models
pretrained on source languages can be used directly for target
languages without finetuning. We refer to this case as 0%
shot. In other cases, we perform finetuning for five epochs
with the subsets and evaluate the performance of the resulting
ASR. The zero-shot case is expected to fare poorly compared
to the rest. The results are shown in Table 4.

The average zero-shot performance of the models pre-
trained with MAML is almost similar to joint multilingual
pretraining. The average zero-shot CER for MAML and joint
training are 27.4% and 28.5%, respectively. The CER of the
MAML pretrained model becomes almost half that of joint
multilingual pretrained model after fine-tuning with just 25%
(2 to 3 hrs) of the target dataset. The absolute improvements
in CER (WER) are 12.0% (34.5%), 17.1% (40.4%), 17.9%
(35.0%), 13.9% (41.4%), and 13.8% (53.2%) for Marathi,
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TABLE 3: CER and WER for ASR models trained/fine-tuned for five epochs using low-resourced target datasets.

Model CER (%) WER (%)
mr pa or sa kn mr pa or sa kn

Random initialization (no pretraining) 82.5 140.9 98.2 84.8 98.3 156.8 114.1 123.0 106.7 100.0
Joint multilingual pretraining 13.0 14.2 17.1 8.3 9.2 53.6 40.7 62.7 56.0 53.8
MAML pretraining 8.3 6.3 8.4 6.1 5.5 35.6 17.5 34.2 43.2 34.9
Absolute improvements with MAML
over joint multilingual pretraining 4.7 7.9 8.7 2.2 3.7 18.0 23.2 28.5 12.8 18.9

TABLE 4: CER and WER for ASR models with few-shot fine-tuning for five epochs on target datasets. Performance of MAML
pretraining with 25% of the data is comparable to that of joint multilingual training with the complete data.

Target Language MAML Pretraining Joint Multilingual Pretraining
0%-shot 25%-shot 50%-shot 100%-shot 0%-shot 25%-shot 50%-shot 100%-shot

CER (%)
mr 25.6 13.6 10.3 8.3 31.5 27.1 16.0 13.0
pa 31.0 13.9 9.0 6.3 29.5 26.5 20.3 14.2
or 34.6 16.7 10.8 8.4 39.7 34.3 24.2 17.1
sa 22.8 8.9 7.0 6.1 22.1 17.0 10.5 8.3
kn 22.8 9.0 7.0 5.5 19.6 17.2 11.3 9.2

WER (%)
mr 90.3 55.8 44.0 35.6 93.6 86.7 63.6 53.6
pa 82.7 42.3 26.7 17.5 76.1 71.5 59.0 40.7
or 99.6 64.6 43.7 34.2 109.2 100.0 80.2 62.7
sa 99.5 58.1 48.4 43.2 102.8 84.3 63.9 56.0
kn 107.1 53.9 44.1 34.9 92.0 82.8 63.2 53.8

Punjabi, Odia, Sanskrit, and Kannada, respectively, in the
case of MAML pretraining for 25%-shot fine-tuning. The
corresponding absolute improvements in joint multilingual
pretraining are 4.4% (6.9%), 3.0% (4.6%), 5.4% (9.2%),
5.1% (18.5%), and 2.4% (9.2%), respectively. The average
absolute improvements in CER (WER) are 14.9% (40.9%)
for MAML pretraining and 4.1% (9.7%) for joint multilin-
gual pretraining. It is also interesting to note that the average
CER performance of 25% shot MAML (12.4%) closely
matches that of 100%-shot joint training, and the WER is
off-target by just 1.6%. These figures illustrate the benefits
of MAML over joint multilingual pretraining in the case of
few-shot fine-tuning for low-resource languages.

Comparing the 0%-shot and 100%-shot columns, we can
see that the average absolute improvements in CER (WER)
with just five epochs of fine-tuning are 20.4% (62.8%) for
MAML and 16.1% (41.4%) for joint multilingual pretraining.
These values support the fast adaptation property of MAML
to any new dataset.

C. EFFECT OF THE NUMBER OF PRETRAINING
EPOCHS
In this section, we study the effect of the number of pre-
training epochs in MAML and joint pretraining on the ASR
performance on low-resourced languages. Models are trained
for 45 epochs using the speech data from source datasets. In-
termediate models are saved every five epochs. They are fine-
tuned for five epochs using the data from target languages,

and the performances of the resulting models are evaluated in
terms of CER and WER. The results are shown for Kannada
in Fig. 5. It can be seen that only around 15 to 25 pretraining
epochs are necessary for reasonable fine-tuning to target
languages. After that, the fine-tuning performance degrades.
Since the behavior is similar in other target languages, we use
25 epochs of pretraining in all our experiments.

D. EFFECT OF THE NUMBER OF FINE-TUNING STEPS
In this section, we study the effect of fine-tuning steps on the
performance of the ASR model. We use three initial models
as in Section V-A. We fine-tune the initial model for 5, 10, 15,
and 20 epochs and evaluate the performance of the resulting
ASR. The results are shown in Figs. 6 and 7. For MAML
and joint multilingual pretrained models, we also show the
CER and WER values with the initial model (0 epoch). The
errors for MAML and joint pretraining are always lower than
those for monolingual training showing the significance of
pretraining in low-resource speech recognition. MAML error
rates are lower than those for joint multilingual pretraining
for every number of pretraining epochs (5, 10, 15, and 20)
considered, which shows the fast-fine-tuning capability of
MAML. MAML curves also move towards saturation faster.

Table 5 summarises the performance of these models after
fine-tuning for 20 epochs. The joint pretraining fails to reach
the performance of 5-epoch fine-tuned MAML models for
most languages, even after 20 epochs. Comparing 20-epoch
fine-tuned models, MAML beats the joint pretraining by
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FIGURE 5: Effect of the number of pretraining steps on the performance of Kannada ASR: a) CER and b) WER. Blue triangles:
MAML pretraining; red squares: joint multilingual pretraining.

TABLE 5: CER and WER for ASR models trained/fine-tuned for 20 epochs using low-resource target datasets. Performance of
MAML pretraining is clearly superior to that of joint multilingual pretraining.

Model CER (%) WER (%)
mr pa or sa kn mr pa or sa kn

Random initialization (no pretraining) 10.7 9.0 12.2 9.8 10.0 44.3 22.8 46.5 58.5 55.4
Joint multilingual pretraining 8.5 7.7 9.5 6.0 5.7 34.7 20.0 34.9 41.8 34.7
MAML pretraining, fine-tuned 20 epochs 5.7 1.6 5.8 5.2 4.4 23.6 3.3 23.1 38.0 28.4
MAML pretraining, fine-tuned 5 epochs 8.3 6.3 8.4 6.1 5.5 35.6 17.5 34.2 43.2 34.9

an absolute 2.9% in CER and 9.9% in WER on average.
The average absolute improvements over direct monolingual
training are 5.8% in CER and 22.2% in WER.

VI. EXPLOITING LANGUAGE SIMILARITIES IN MAML
There is considerable overlap among the lexical and acoustic
content of different sets of Indian languages due to the
language family relationships. We study whether such sim-
ilarities can be exploited to improve the average performance
of MAML for a set of target languages. We first investigate
the importance of source language selection in MAML. Then
we examine whether similarities between sentences in the
source and target languages can be exploited for performance
improvements in ASR for target languages.

A. IMPORTANCE OF SOURCE LANGUAGE SELECTION
We have used Hindi, Bengali, Telugu, and Gujarati as source
languages representing the northern, eastern, southern, and
western parts of India, in that order. The target languages are
Marathi, Punjabi, Odia, Sanskrit, and Kannada. The native
speakers of all our target languages, except Sanskrit, are
largely confined to particular states in India. There are only
limited speakers of Sanskrit, and they are distributed over
different geographic areas. The geographic locations where

the source and target languages are spoken are shown in Fig.
8. To understand the importance of the selection of source
languages for pretraining, we remove one of the source
languages at a time and evaluate the ASR performance in the
target languages. The results are shown in Fig. 9. The first
bar shows the results when all four languages are included in
pretraining. The remaining bars are the results of pretraining
with only three source languages, with a different fourth
language excluded each time. Based on Fig. 9, we deduce the
most impactful pretraining language for each target language
and summarise the results in Table 6.

TABLE 6: Most impactful source language for the perfor-
mance of ASR in each target language and the degree of
impact (absolute degradation or increase in CER or WER)
when that language is removed from the pretraining set.

Target
language

Most impactful
Source language

Degradations in
CER WER

Marathi Gujarati 0.5 2.1
Punjabi Hindi 0.5 1.7
Odia Bengali 0.9 3.6
Sanskrit Telugu 0.1 1.3
Kannada Telugu 0.9 4.5

Table 6 indicates that the impact of the removal of a source
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FIGURE 6: CER (in %) Vs. the number of fine-tuning epochs (0, 5, 10, 15, 20) for the different target languages: (a) Marathi (b)
Punjabi (c) Odia (d) Sanskrit (e) Kannada. Blue triangles: MAML pretraining; Red squares: joint multilingual pretraining; Brown
circles: monolingual training.

language on a target language ASR depends on the geo-
graphic closeness of the regions where they are spoken. For
example, the performance of Odia ASR degrades the most
when Bengali is removed from the pretraining languages.
Similarly, the performance of Kannada ASR degrades the
most when Telugu is removed from the pretraining lan-

guages. For Marathi and Punjabi, the maximal degradations
happen with the removals of Gujarati and Hindi, respectively.
Fig. 9 gives some other useful information. Sanskrit is not im-
pacted much by the removal of any of the source languages.
This can easily be correlated to the fact that the speakers
of Sanskrit are not confined to any specific geographic lo-
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FIGURE 7: WER (in %) Vs. the number of fine-tuning epochs (0, 5, 10, 15, 20) for the different target languages: (a) Marathi (b)
Punjabi (c) Odia (d) Sanskrit (e) Kannada. Legends same as that of Fig. 6.

cation in India. When Gujarati is removed from the source
languages, the performance of Sanskrit ASR improves. This
indicates that Gujarati may have minimal acoustic similarity
with Sanskrit. Kannada has no implicit schwa deletion, and
the performance degradations due to the removal of schwa
deletion-based languages - Hindi, Bengali, and Gujarati- are
almost similar.

B. CAPTURING THE TEXT SIMILARITIES IN THE SLP1
SPACE

In section VI-A, we have seen that choosing a pretraining
language close to the geographic location where the target
language is spoken helps improve the MAML performance
on the target language. This motivates us to use the similarity
between the source and target languages to improve the
MAML pretraining. For this, we need an embedding of the
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FIGURE 8: Languages used in this work and the geographies
where they are spoken. This map is taken from the Geograph-
ical Society of India.

source and target sentences in the SLP1 space, which can
reliably capture such similarities.

We use fastText [59] to build the word embeddings in
the SLP1 space. The publicly available AI4Bharat IndicCorp
[60] is used as the text corpus to train fastText models. The
size of the text corpus in each language is listed in Table 7.
There are around 164 million utterances in the corpus. We
use the skip-gram model for training fastText. For sentence
embeddings, we use the mean vector of word embeddings.
To evaluate the suitability of fastText embeddings for our

TABLE 7: Details of AI4Bharat IndicCorp [60] text corpus
used for building fastText embeddings

Language # Utterances (in million)
Hindi (hi) 32.4
Bengali (bn) 20.3
Telugu (te) 26.1
Gujarati (gu) 20.9
Marathi (mr) 19.0
Punjabi (pa) 12.4
Odia (or) 4.3
Sanskrit (sa) 0.4
Kannada (kn) 28.0

application, we compute the average cosine similarities and
Euclidean distances between the sentences in our training
sets. The cosine similarity between two sentence vectors u
and v is computed as:

Cosine similarity(u,v) =
1

2

(
1 +

u · v
∥u∥ ∥v∥

)
(6)

The results are shown in Table 8(a). The order of similarity

of source datasets with the target languages based on Table
8(a) are shown in Table 8(b). The data in Table 8(b) reflects
the geographies in which the target languages are spoken.
To further establish the usefulness of fastText embeddings in
capturing the similarities between sentences from different
languages, we plot the two-dimensional UMAP (uniform
manifold approximation and projection) [61] of transcrip-
tions in the source and target datasets. UMAP is known
for its capability to find the critical structures in the high-
dimensional space and preserve them in the low-dimensional
space. 2-D UMAP plot of fastText embeddings of sentences
in the pretraining and target datasets is shown in Fig. 10. The
black dot at the center of the clusters in the figure denotes
the centroid of the sentence embeddings in that dataset. The
Marathi, Punjabi, Odia, Sanskrit, and Kannada clusters are
near the Gujarati, Hindi, Bengali, Hindi, and Telugu clusters,
respectively. Also, Sanskrit is closer to Hindi and Telugu
than the other source languages. The observations reflect
the relative positions of the geographic regions to which the
native speakers of these languages belong [62]. Table 8 and
Fig. 10 suggest that the fastText embeddings can capture the
similarity between sentences in the SLP1 space.

C. EXPLOITING THE TEXT SIMILARITIES IN MAML
PRETRAINING
In [63], [64], language level similarities were explored for
data selection to derive multilingual bottleneck features
in hybrid ASR systems. Authors of [65] propose a data-
weighing strategy on the training samples based on the
posterior of the target language extracted from a language
classifier. All these works are intended to improve multilin-
gual speech recognition in a specific target language. In task
similarity aware MAML (TSA-MAML) [66], authors use
multiple group initializations instead of a single initialization
for all the tasks. The group initializations are based on task
similarity estimated from the Euclidean distance between
task-specific model parameters. They use it to show improve-
ments in few-shot image classification tasks.

In this work, we propose a weighing strategy based on
the similarity of the source transcriptions with the SLP1 sen-
tences from the target languages. Unlike the earlier schemes
[65], our weighing strategy aims to improve MAML pretrain-
ing to increase the average ASR performance across all the
target languages. This approach is motivated by the study in
[67], where the authors derive an upper bound for the average
absolute meta-generalization gap based on the upper bound
for the divergence between data distributions of any two
tasks sampled from the task distribution. However, instead
of using a data selection approach to ensure the closeness
of languages (tasks) as in [64], we use a weighing strategy
to give more importance to the source samples “close“ to
the data distribution of the target languages. We measure
“closeness“ in terms of Mahalanobis distance and cosine
similarity. Unlike [66], where the distances are measured in
model parameter space, we make measurements in the SLP1
space.
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FIGURE 9: Effect of source language selection in meta-learning. a) CER and b) WER (in %) of the ASR in target languages
when one source language is excluded from pretraining. hi: Hindi; bn: Bengali; te: Telugu; gu: Gujarati.

TABLE 8: Measures of similarity between the source and target datasets estimated from fastText sentence embeddings

(a) Average cosine similarity and Euclidean distance between each pair of source and target
languages. The highest similarity values are marked in bold.

Languages Cosine similarity Euclidean distance
tgt (↓) / src (→) hi bn te gu hi bn te gu

Marathi 0.802 0.720 0.672 0.777 0.651 0.783 0.913 0.703
Punjabi 0.851 0.729 0.706 0.777 0.556 0.759 0.855 0.693
Odiya 0.739 0.824 0.718 0.727 0.788 0.654 0.881 0.818

Sanskrit 0.702 0.717 0.761 0.694 0.837 0.825 0.810 0.863
Kannada 0.674 0.696 0.761 0.667 0.836 0.816 0.780 0.861

(b) Order of similarity of source lan-
guages with the target languages.

Tgt. Order of similarity
mr hi > gu > bn > te
pa hi > gu > bn > te
or bn > hi > gu > te
sa te > bn > hi > gu
Kn te > bn > hi > gu

TABLE 9: CER and WER for MAML-pretrained ASR models exploiting text similarities in the SLP1 space. The best values are
highlighted in bold.

Model CER (%) WER (%)
mr pa or sa kn avg. mr pa or sa kn avg.

5-epoch fine-tuned MAML model 8.3 6.3 8.4 6.1 5.5 6.9 35.6 17.5 34.2 43.2 34.9 33.1
+ Mahalanobis distance based similarity 8.0 6.3 8.0 5.8 5.3 6.7 34.7 17.6 32.3 41.8 33.6 32.0
+ Cosine similarity 8.1 6.4 8.0 5.8 5.3 6.7 34.6 17.7 32.4 41.5 34.1 32.1

1) Mahalanobis distance-based similarity measurements

We build a Gaussian mixture model (GMM) to model the
data distribution of all the target languages together. Text
corpus from AI4Bharat IndicCorp [60] is used for GMM
training. Each sentence from the text corpus is first converted
to SLP1 and embedded using fastText models learned in
Section VI-B. A 15-component GMM with diagonal covari-
ance matrices is trained using the fastText embeddings. k-
means++ is used to initialize the GMM. The learned GMM

is of the form:

p (t) =

K∑
k=1

λkN (t | µk,Σk) (7)

where µk, Σk, and λk represent the mean, covariance matrix
and mixing coefficient for the kth Gaussian. The number of
Gaussians K = 15 in our case. t is the fastText embedding
for the SLP1 sentence in the target text corpus.

For each source transcription, the Mahalanobis distance is
calculated from every Gaussian component in the GMM. If
s(i) is the fastText embedding for the ith speech transcription
in the source dataset, the Mahalanobis distance d

(i)
k from the
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FIGURE 10: UMAP plot showing similarities between the
source and the target languages using fastText representation
of the text data in the SLP1 space. The black dot at the
center of each cluster denotes the centroid of the sentence
embeddings in that dataset.

kth Gaussian is computed as:

d
(i)
k =

√(
s(i) − µk

)T
Σ−1

k

(
s(i) − µk

)
, (8)

k = 1, 2, . . . ,K and i = 1, 2, . . . , N.

where N is the total number of utterances in the source cor-
pus. These distances are weighted by the respective mixing
coefficients to arrive at a single distance measure d(i).

d(i) =

K∑
k=1

λkd
(i)
k , i = 1, 2, . . . , N (9)

The calculated distances are first scaled to the [0, 1] range
(d(i)norm) and then subtracted from 1 to get a similarity mea-
sure v(i).

d(i)norm =
d(i) − dmin

dmax − dmin
, i = 1, 2, . . . , N (10)

where dmax = max{d(i), i = 1, 2, . . . , N}
and dmin = min{d(i), i = 1, 2, . . . , N}.

v(i) = 1− d(i)norm, i = 1, 2, . . . , N (11)

The resulting values v(i) are then moved to the [-1, 1] range,
and sigmoid is applied to get the final weight w(i) for each
transcription in the source dataset. The final weights are in
the range

[
1

1+e ,
1

1+e−1

]
.

v(i)norm = 2.v(i) − 1, i = 1, 2, . . . , N (12)

w(i) =
1

1 + exp(−v(i)norm)
, i = 1, 2, . . . , N (13)

During the MAML pretraining phase, the mean weight of
each batch is used to weigh the corresponding loss function.

2) Cosine similarity-based measurements
Here we first estimate the cluster center for each target
language ct in the fastText embedding space using the text
corpus from AI4Bharat IndicCorp [60].

ct = mean {c(j)t , j = 1, 2, . . . , Nt}, t = 1, 2, . . . , 5. (14)

where c
(j)
t represents the fastText embedding for the jth

sentence from the tth target language and Nt is the total
number of sentences in the text corpus from that target lan-
guage. The number of target languages is 5 in our case. The
cosine similarity of the fastText embedding for each source
transcription s(i) with each target language cluster center
ct is calculated using Equation 6. The overall similarity of
the source transcription to the set of target languages v(i) is
computed as the mean of the cosine similarities of the source
transcription to each of the target language cluster center.

v(i) = mean {Cosine similarity(s(i), ct),

t = 1, 2, . . . , 5} (15)

The values are normalized to spread over the range [-1, 1] as
in Equation 12 and sigmoid of these values are calculated as
in Equation 13. The computed values are used to weigh the
losses during the MAML pretraining, similar to the case of
Mahalanobis distance-based processing.

D. RESULTS AND DISCUSSION
The results of MAML with batch losses being weighted by
the similarity of the source to the target language are shown
in Table 9. The models are fine-tuned for five epochs in all
the cases. Similarity-based weighing provides improvements
in all languages except Punjabi. The degradations in Pun-
jabi are minor. With Mahalanobis distance-based similarity
weighing, the absolute WER improvements in Marathi, Odia,
Sanskrit, and Kannada are 0.9%, 1.9%, 1.4%, and 1.3%,
respectively. Cosine similarity-based weights yield absolute
WER improvements of 1%, 1.8%, 1.7%, and 0.8% for the
above languages. Weighing the losses with text similarity
measures yields an average absolute improvement of at least
0.9% in WER. Both similarity measures yield almost the
same performance.

Most earlier works on Indian languages report their results
on Hindi, Telugu, Gujarati, Bengali, and Tamil, mainly due
to the non-availability of off-the-shelf datasets in other lan-
guages. In this work, we primarily conduct the experiments
in low-resource settings and test our results on recently
released datasets in Marathi, Punjabi, Odia, Sanskrit, and
Kannada. So, a direct comparison with the earlier works is
not possible in most cases. However, Sanskrit Vāksañcayah.
and Kannada SLR126 datasets have been used in some
works previously. [48] uses a multilingual training scheme
on transformer architecture and reports a CER/WER of
4.3%/20% in the Sanskrit-OOD subset. Our text-similarity-
based weighting scheme has a CER/WER of 5.8%/41.5%.
A direct comparison of results is still not possible as they
use 56 hours of training data, 50 epochs of fine-tuning and a
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monolingual LM during decoding. Our results are with just
10 hours of data, five epochs of fine-tuning, and no explicit
language models. Moreover, we test on a 1-hour subset in
our experiments. [38] reports a WER of 43.7% in Sanskrit-
OOD with monolingual training on time-delay neural net-
works (TDNNs). [48] reports a CER/WER of 4.1%/22.1%
in Kannada with multilingual acoustic and language models
trained on 168 hours of annotated speech data from four
Dravidian languages. It includes a 49-hour subset of SLR126.
We achieve 6.7%/33.6% without language models using just
a 10-hour subset of SLR126 and five epochs of fine-tuning.
[40] reports a WER of 12.97% on SLR126 using hybrid
DNN-HMM architecture and 3-gram language models with
subwords as the basic recognition units. However, their mod-
els are monolingual and trained on around 275 hours of data.

VII. CONCLUSION
In this work, we established the usefulness of MAML pre-
training for building ASR systems quickly for low-resource
Indian languages. Since most Indian languages share a com-
mon phoneme space, MAML pretraining is much more suited
than pretraining with joint multilingual training, as shown
by our experiments. MAML exhibits much better adaptation
capabilities than joint multilingual training. In the five-epoch
fine-tuning setting, MAML beats the joint multilingual pre-
training by an absolute 5.4% in CER and 20.3% in WER, on
average. MAML also helps in limited data settings where it
achieves performances similar to joint multilingual training
with just 25% of the data. We showed that language sim-
ilarities help the target language’s ASR performance, and
selecting a closely related pretraining language is impor-
tant in MAML pretraining. We also incorporated a textual
similarity-based weighing scheme in the MAML pretraining
to achieve average absolute improvements of around 1% in
WER.

.

APPENDIX A SLP1 MAPPING SCHEME
SLP1 mapping schemes for the character sets of different
Indian languages used in our study are shown in Fig. 11.
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