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Abstract—A dictionary learning based audio source classifi-
cation algorithm is proposed. Cosine similarity measure is used
to select the atoms during dictionary learning. Three proposed
objective measures, namely, signal to distortion ratio (SDR), the
number of non-zero weights and the sum of weights have been
used for classification. A frame-wise source classification accuracy
of 98.86% is obtained for twelve different sources using SDR
measure and a secondary support vector machine classifier. 100%
accuracy has been obtained using moving SDR accumulated over
14 successive frames. For ten of the audio sources tested, 100%
accuracy requires accumulation of only 6 frames of a signal.

Index Terms: Dictionary learning, cosine similarity, audio

classification, source recovery, sparse representation.

I. INTRODUCTION

A. Motivation for the present study

The nature of noise in an audio signal varies with the

environment such as traffic, restaurant, railway and bus station.

Even competing speakers and music may impair intelligibil-

ity of speech. In the case of speech enhancement [1] and

noise source separation, especially for hearing impaired [2],

[3], the suppression of background audio for improving the

intelligibility of speech would be more effective, if the type

of background audio source can be classified. Other interesting

applications of noise identification are forensics [4], machinery

noise diagnostics [5], robotic navigation systems [6] and

acoustic signature classification of aircrafts or vehicles [7].

Noise classification can be seen as a first step in machine lis-

tening [8], which enables the system to know the background

environment. Classification of noise types has been reported

in the case of pure noise sources. Kates [9] addressed the

problem of noise classification for hearing aid applications

based on the variation of signal envelope as features. Maleh

et al. [10] used line spectral frequencies as features for

classification of different kinds of noise as well as noise

and speech classification. Chu et al. [12] recognized fourteen

different environmental sounds using matching pursuit based

features combined with mel-frequency cepstral coefficients.

Liu et. al. [13] devised a TV broadcast video classifier using

hidden Markov model (HMM) with audio features. Zhang et.

al. [14] and Lu et. al. [15] segmented and classified audio

signals using statistical analysis of simple audio features and

a rule-based classifier. Ma et. al. [16], [17] and Couvreur et.

al. [18] devised a HMM based noise classifier for context

awareness. Cherla et. al. [19] and Ramasubramanian et. al.[20]

proposed a novel technique for audio analytics and audio

indexing using template based modeling of audio classes and

HMMs. Ramasubramanian et. al. [21] addressed the problem

of audio indexing into a target and background class using

Gaussian mixture models. Giannoulis et al. [22] conducted

a public evaluation challenge on acoustic scene classification

(similar to noise classification), where eleven algorithms were

evaluated along with a baseline system. The algorithms use

time and frequency domain features extracted from the audio

signal followed by a statistical model or majority vote based

classifier. Cauchi [23] used non-negative matrix factorization

for classification of auditory scenes.

This paper addresses the basic problem of classification of

the type of audio from a finite set of sources. Representation

of audio signals as a sparse, linear combination of non-

negative vectors called as dictionary atoms has been used for

audio source separation [24], [25], [26], recognition [27], [28],

classification [29], [30] and coding [31], [32]. In this work, we

only address the problem of audio classification of clean noise

sources using sparse non-negative representation of audio by

proposing a novel dictionary learning and a source recovery

method. However, the proposed audio classification also works

with a mixed audio signal, where segments have higher noise

energy than speech.

B. Review of dictionary learning and source recovery

A dictionary is a matrix D ∈ IRP×K (with P as the

dimension of the acoustic feature vector) containingK column

vectors called atoms, denoted as dn, 1 ≤ n ≤ K . Any real

valued feature vector can be represented as y ≈ Dx, where

x ∈ IRK is the vector containing weights for each dictionary

atom. The vector x is estimated by minimizing the distance

dist(y,Dx), where dist() is a distance metric between y and

Dx such as L2 norm or Kullback-Leibler (KL)-divergence

[33]. In case the dictionary D is overcomplete, the weight

vector x tends to be sparse. This method of estimating weights



is termed as sparse coding or source recovery. Matching

pursuit [34], orthogonal matching pursuit (OMP) [35], basis

pursuit [36], focal underdetermined system solver (FOCUSS)

[37] and active-set Newton algorithm (ASNA) [33] are some

of the source recovery algorithms.

Several methods have been proposed for dictionary learning

(DL): random selection of observations [33], K-means clus-

tering [38] , vector quantization [39], dictionary update [40],

K-SVD [41], simultaneous codeword optimisation (SimCO)

[42] and fast dictionary learning [43]. DL and source recovery

methods have been used for classification of objects in images

by learning class-specific dictionaries [44]. Shafiee et al. [45]

have used three different DL methods to classify faces and

digits in images.

The proposed source classification method has been eval-

uated using ten different noise sources taken from Noisex

database [46] and two other instrument sources, one recorded

by us and the other, downloaded from an open source portal

[47]. The training phase for the audio classification problem is

DL from various noise/ instrument sources. We have adopted

the recently reported ASNA [33] for source recovery in the

testing phase. The advantage of this approach is that the audio

sources need not be stationary, since different dictionary atoms

capture the variation in the spectral characteristics.

C. Contributions of this work

The main contributions and the novelty of the paper are:

• Dictionary learning by using thresholds on the cosine

similarity to ensure distinction amongst the atoms of the

same as well as different source dictionaries.

• Proposing two new objective measures, namely, the num-

ber of non-zero weights and the sum of weights recovered

from ASNA [33] using a concatenation of dictionaries

[48], for selecting the most likely audio source from a

given set.

II. PROPOSED METHOD

A. Problem formulation

Given a test audio signal s[n], we need to identify the

signal as belonging to one of the audio sources. We train

M dictionaries for the M different sources and the test audio

signal is classified as that source which gives the highest value

for an appropriately defined objective measure.

B. Cosine similarity based dictionary learning

Similar to most of the audio source separation approaches

[24], [25], [26], the magnitude of the short-time Fourier

transform (mag. STFT) has been used as the feature vector.

Feature vectors are L2 normalized for dictionary learning. Any

test feature vector can be represented as an additive, non-

negative, linear combination of the dictionary atoms.

After an initialization, each dictionary atom is selected to

be as uncorrelated as possible from the rest of the atoms

belonging to the same as well as other sources. The correlation

between a pair of atoms dn,dj is measured using the cosine

similarity as:

cs(dn,dj) = dT
ndj/(||dn||||dj ||) (1)

Two types of cosine similarity measures are used: (a) intra-

class cosine similarity (intra-CS) is defined as csi(dn,dj),
dn,dj ∈ Dk, n 6= j where Dk is the dictionary for a specific

source; and (b) inter-class cosine similarity (inter-CS) defined

as csI(dn,dj), dn ∈ Dk, dj ∈ Dm, k 6= m.

For each source, the dictionary atoms are learnt such that the

cosine similarity between the atoms is below a set threshold,

chosen based on the desired performance. A randomly selected

feature vector from first source, denoted as yr is taken as the

first atom for the first source, d1
1 . The rest of the atoms are

learnt by random selection of the feature vectors (excluding

features already selected as atoms): tth feature, yt, is selected

as the nth atom, d1
n of dictionary D1 if maximum of intra-CS,

max csi(yt,d
1
j ), j < n (similar to coherence in [49]) is less

than a threshold Ti.

The selection of dictionary atoms is stopped once the

number of dictionary atoms reaches a pre-decided numberNA.

In case NA atoms are not obtained, additional mag. STFT

features, which do not satisfy the intra-class threshold Ti are

appended in the order of increasing max csi.
For learning dictionaries for subsequent sources, atoms are

learnt using an additional constraint: yt from kth source is

selected as the nth atom dk
n for the kth dictionary Dk, if

max csI(yt,d
h
j ), d

h
j ∈ Dh, h < k, 1 ≤ j ≤ NA is less than

a threshold TI .

The threshold Ti ensures that the atoms within the same

source dictionary are as uncorrelated as possible, while TI

ensures that atoms from different source dictionaries are

maximally uncorrelated. Lower the values of the thresholds Ti

and TI , greater is the uncorrelatedness between the dictionary

atoms.

The total number of atoms in D from the 12 sources is

1200 using Ti = TI = 0.95 and NA = 100. The proposed

DL is summarized in Algorithm 1. For the sake of simplicity,

the algorithm does not show the appending of additional

dictionary atoms when NA atoms could not be obtained.

Algorithm 1: Dictionary learning

1: Initialize: Dictionary index k = 1; D1 = d1
1 = yr;

Atom index n = 2; set Ti and TI .

2: repeat

3: Extract N number of mag.STFT features denoted

as yt, 1 ≤ t ≤ N from the kth audio source.

4: repeat

5: If n > 1, find the maximum of intra-CS, mi as:

max(csi(yt,d
k
j ) ∀ j = 1...n− 1)

6: If k > 1, find the maximum of inter-CS, mI as:

max(csI(yt,d
h
j ) ∀ j = 1..NA, h < k)

7: if mi ≤ Ti and mI ≤ TI (for k > 1) then
8: Assign randomly selected yt as the nth

atom: dk
n = yt and append to the dictionary: Dk =

[Dk dk
n]

9: n = n+ 1



10: end if

11: until n > NA

12: k = k + 1; n = 1
13: until All source dictionaries are learnt

end

C. Metrics for source classification

The learnt dictionaries are used to extract measures for

identifying a source. Given an unknown audio signal, the

mag. STFT features are extracted, which are used to solve

a minimization using ASNA [33]:

minimize
x

KL(y||ŷ), ŷ = Dx s.t. x ≥ 0 (2)

where KL() is the KL divergence between two vectors, y is

the extracted feature, ŷ is the approximation of y, D is the

dictionary using which y is approximated and x is the weight

vector estimated using ASNA.

Since we know the dictionaries for all the sources, we

estimate three measures for classification:

1) Signal to distortion ratio (SDR) [50] between y and

ŷi = Dixi, 1 ≤ i ≤ M for the M dictionaries. The

SDR with respect to each dictionary Di is defined as :

SDRi = 20× log10(||y||2/||y − ŷi||2) (3)

A feature y belonging to the kth source can be approx-

imated to a good accuracy by atoms belonging to Dk,

since Dk has been learnt by threshold based selection of

atoms from the same source. So, ||y− ŷi||2 is expected

to be minimum for the kth source, since y may not

be approximated well by atoms from the dictionaries

of other sources. Thus, the SDRi is expected to be

maximum for the kth dictionary. The estimated source

index k̂ for the feature vector of each frame of the test

signal is given as k̂ = arg max SDRi.

2) Number of non-zero weights (NNZ): We propose this

new feature for each source in the weight vector x

recovered using a dictionary D, obtained by concate-

nating the dictionaries of all the M individual sources:

D = [D1 D2...DM ]. The vector x = [x1T x2T ...xMT ]T

obtained by using ASNA on (2) is a concatenation

of individual weight vectors xi of M sources, and is

expected to be sparse.

A test feature vector y belonging to the kth source

can be represented better by atoms from the kth dic-

tionary than by atoms from other dictionaries. Since

D contains atoms from all the sources, the number of

non-zero weights, NNZk corresponding to the correct

dictionary Dk, which is now a sub-matrix of D, may

be expected to be higher than NNZi, i 6= k. The

estimated source index k̂ for the test vector y is given

by k̂ = arg max NNZi, 1 ≤ i ≤ M .

The weight vector x is sparse for the dictionary D, as

shown in Fig. 1(a). The number of non-zero weights

for each source dictionary is illustrated in Fig. 1(b). For

a test frame of babble noise, the highest NNZ is 17
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Fig. 1. (a) Weights for a single frame of babble noise estimated by ASNA
using concatenated dictionary, D. (b) Number and sum of non-zero weights
in (a) as a function of dictionary type for Ti = TI = 0.95.

corresponding to babble noise dictionary (atom indices

700 to 800 in D), while 9 is the next highest for the

veena dictionary. Thus, a margin of 8 or a factor of 2,

is obtained for correct classification.

3) Sum of weights (SW) is another scalar measure pro-

posed, defined as the sum of the elements of the vector

xi, which is recovered using the same concatenated

dictionary, D. In case the weights are non-sparse, it is

observed that SW i is more reliable than NNZi. Figure

1(b) also illustrates the distribution of SW for each of

the dictionaries. k̂ = arg max SW i gives the estimated

source index for a test vector y. The sum of weights

is the highest (24.47) for babble noise dictionary, while

that of veena is 2.33, a factor of about 10.5 for correct

classification. It is to be noted that the dictionary used

for both NNZ and SW is a concatenated dictionary

D, while the measure SDR is derived using separate

dictionaries Di.

III. RESULTS AND DISCUSSION

Magnitude STFT features are extracted using a frame size

of 60 ms and a frame shift of 15 ms from each audio source of

duration from 3 to 4 minutes. We experimented with different

choices of frame size and arrived at these values as the

optimum. Since the number of atoms in each dictionary is

constrained to be 100, only 6 seconds from the training set

of each audio type form the dictionaries. For evaluating the

method, a test signal of duration 5 seconds, equivalent to 330

frames, is taken from the database, and the rest of the audio

signal is used in the training stage for learning the dictionaries.

Figure 2 shows the plot of percentage of frames of each

test signal correctly classified using SDR as the classification

measure for various combinations of Ti and TI . Table I sum-

marizes the overall audio classification accuracy for different

choices of Ti and TI , where the highest frame level accuracy is

obtained for TI = Ti = 0.95 using any of the measures SDR,

NNZ and SW. Random selection of mag. STFT features along

with the constraint on the cosine similarity has ensured distinct

dictionaries and adequate capture of the variations in the audio
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Fig. 2. Percentage of 60 ms frames correctly detected as the original audio
source using SDR as the measure, for different choices of Ti and TI .

TABLE I
OVERALL AUDIO CLASSIFICATION ACCURACY (%) FOR DIFFERENT

CHOICES OF Ti AND TI USING SDR, NNZ AND SW AS MEASURES.
MALEH ET. AL. [10]: 89%; GIANNOULIS ET. AL.: 78%

Ti TI SDR NNZ SW MASDR

p=6 p=14

0.95 0.95 98.23 87.78 88.51 99.85 100

0.95 1.00 98.01 87.13 88.01 99.64 100

1.00 0.95 98.11 87.05 88.21 99.82 100

1.00 1.00 98.06 87.03 88.42 99.74 99.97

characteristics by the atoms. We have used Ti = TI = 0.95
as the thresholds. Figure 3 shows the percentage of frames

correctly classified from each of the 12 audio sources for each

of the three measures.

Even though SDR outperforms the other two measures,

NNZ and SW are promising since they are computationally

simple and give a different insight into the distribution of

weights. In case the number of audio sourcesM is large, using

directly SDR as the classification measure is computationally

complex, since ASNA is run M number of times. In that

case, the measures NNZ or SW can act as the front end for

classification (since ASNA is run only once). These measures

can pick up the top ranking source dictionaries and then, SDR

can be used to find the best fit among them.

A one-vs-one multiclass support vector machine (SVM)

classifier is learnt from the training set for the 12 audio

classes to compare the performance. It is observed that SVM

gives an overall accuracy of 98.1% as compared to 98.23%
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Fig. 3. Individual classification accuracies for all the sources using the three
measures independently.

using SDR. Since SDR gives a low accuracy of 88.18% on

factory2 noise due to 8.18% of the test frames misclassified

as traffic noise, a two class SVM between traffic and factory2

is learnt as secondary classifier. When a frame is classified as

traffic, the secondary SVM classifier is used to disambiguate

the corresponding frame which increases the classification

accuracy of factory2 to 95%. Table II shows the final confusion

matrix using SDR measure with Ti = TI = 0.95 and a

secondary SVM classifer to resolve the confusion between

factory2 and traffic noise. The final classification accuracy over

all the audio sources is 98.86%.

In the above discussion we have given frame-wise accuracy.

Accuracy can also be computed at the level of a cluster of

contiguous frames. Two higher level measures are defined for

the ith dictionary, namely, accumulated SDR (ASDR) and

moving ASDR (MASDR) as:

ASDRi(q) =

q∑

j=1

SDRi(j) (4)

MASDRi(q) =

q∑

j=q−p+1

SDRi(j) (5)

where q is the index of the present frame and p is the number

of frames accumulated.

Figure 4 shows the frame-wise SDR and the corresponding

ASDR for five test frames of factory noise (worst performing

audio source in Fig.2). Only two other audio sources having

highest SDR’s are shown, for clarity. It is seen in Fig.4 that

even though frame-wise SDR for the fourth frame is lower for

factory noise, the corresponding ASDR is higher and gives

correct classification. In our experiment, we find that 100%

classification accuracy can be obtained using MASDR with

p = 6 for ten of the sources implying that any set of six

consecutive frames (135 ms) of the test noise are sufficient

for correct classification. Test factory noise requires p = 10,
and veena, p = 14 for 100% classification.
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Fig. 4. Advantage of accumulated SDR over frame-wise SDR for Ti =

TI = 0.95 for test frames of factory noise.

In addition to showing classification on already known

audio source classes, we have shown classification of new

noise samples recorded by us in Table III. Similar results

on classification of new noises have been shown in Maleh

et al. [10]. We have recorded new noise samples in different

background environments like bus, mess, railway station,



TABLE II
FINAL CONFUSION MATRIX USING SDR MEASURE WITH Ti = TI = 0.95 AND RESOLVING CONFUSION OF FACTORY2 VS TRAFFIC NOISE USING A

SECONDARY SVM CLASSIFIER.

Original/ Estimated white car interior tank military vehicle hfchannel f16cockpit factory2 babble guitar jet cockpit2 veena traffic

white 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

car interior 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tank 0.00 0.00 99.39 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.30

military vehicle 0.00 0.00 0.00 99.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91

hfchannel 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f16cockpit 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00

factory2 0.00 0.91 2.73 0.00 0.00 0.00 95.76 0.00 0.00 0.00 0.00 0.61

babble 0.00 0.00 0.00 0.00 0.00 0.00 0.30 99.09 0.61 0.00 0.00 0.00

guitar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.39 0.00 0.61 0.00

jet cockpit2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00

veena 2.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.88 0.00

traffic 0.00 0.00 0.91 0.00 0.00 0.91 0.91 1.21 0.30 0.00 0.00 95.76

market and metro. Given a new noise sample, we mapped each

of the frames to one of the already learnt four noise sources

using SDR measure. For example, recorded metro noise is

classified as hfchannel (≈ 64%), f16 cockpit (22%) and babble

noise (14%), which is reasonable since people are speaking in

a metro intermittently. This is very useful in the cases where

we encounter a new background environment and we need to

estimate its composition with respect to already learnt known

audio classes.

TABLE III
DISTRIBUTION OF FRAMES (IN %) OF NEWLY RECORDED NOISES

CLASSIFIED AS FOUR ALREADY LEARNT NOISE SOURCES I.E.
HFCHANNEL, F16COCKPIT, BABBLE AND TRAFFIC USING SDR MEASURE.

Recorded Noise hfchannel f16cockpit babble traffic

bus 0.00 8.18 89.39 2.42

mess 3.94 31.21 64.85 0.00

railway.stn 29.39 7.27 62.73 0.61

market 17.27 27.58 33.03 22.12

metro 63.64 22.42 13.94 0.00

mall 17.58 0.91 81.52 0.00

construction 43.64 11.52 44.85 0.00

In a real life scenario, the accuracy of classification based on

accumulated classification measures is more relevant than indi-

vidual frame level accuracy, since the classification algorithm

gets a stream of test audio signal as input. So, even though a

few frames may be individually misclassified, the accumulated

classification measure correctly classifies the source.

A. Comparison with previous work

Maleh et. al [10] performed frame-wise noise identification

(frame size of 20 ms) using line spectral frequencies as

features and pattern recognition based classifiers. They trained

using 18.75 minutes of audio data each from 5 noise classes

(three of them from NOISEX database), and tested on 500

frames of data for each class. Chu et. al [12] obtained an

overall accuracy of 83.9% in recognizing 14 environmental

sounds. We have used 12 classes, and obtained an overall

frame level accuracy of 98.86% using SDR and a secondary

SVM classifier, compared to 89% reported in [10]. The highest

accuracy given by majority vote classifier in [22] is around

78%. The accuracy is 100% using MASDR.

IV. CONCLUSION AND FUTURE WORK

A new approach to audio source classification has been

proposed adopting ASNA as the source recovery algorithm.

Experiments have shown a good overall frame level accuracy

of 98.86%. We plan to explore and devise other discriminative

dictionary learning and source recovery algorithms for faster

and more efficient background source classification. Also, we

are working on the classification of the type of background

noise from noisy speech and the subsequent separation of

speech.
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