
Design and development of a large vocabulary,
continuous speech recognition system for Tamil

A. Madhavaraj
Electrical Engineering,

Indian Institute of Science,
Bangalore, India - 560012

madhavaraja@iisc.ac.in

A. G. Ramakrishnan
Electrical Engineering,

Indian Institute of Science,
Bangalore, India - 560012

agr@iisc.ac.in

Abstract—This paper presents our work on building a large
vocabulary continuous speech recognition system for Tamil using
deep neural networks (DNN). Well known techniques, namely,
maximum likelihood linear transformation and speaker-adaptive
training have been used to build our final deep neural network
based speech recognition system. We have used 6.5 hours of
Tamil speech recorded from 30 speakers covering a vocabulary
of 13,026 words, of which 4.5 hours of data was used for training,
1 hour of data for testing and 1 hour of data for cross-validation.
Two independent recognition systems were built, one for phone
recognition (PR) and the other for continuous speech recognition
(CSR) and they achieve phone error rate of 24.9% and word
error rate of 3.5%, respectively. DNN-based triphone acoustic
model shows an absolute improvement of about 1% and 23%
over the monophone acoustic model for CSR and PR, respectively.

Index Terms—Speech recognition, acoustic model, language
model, deep neural networks, hidden Markov model, ASR, Tamil

I. Introduction

In the last 40 years, we have seen steady progress in speech
recognition research [1]. This progress can be attributed to
two factors: (i) the use of hidden Markov model (HMM)
in modeling the temporal variations in speech [2] and (ii)
the increasing computational power of modern computers
[3]. In the past ten years alone, we have seen many low-
cost, commercial interactive speech recognition applications
developed by Apple, Google, Microsoft, Amazon, etc. It is also
well known that automatic speech recognition (ASR) research
is mainly focused on English and other European languages
[4]. It can be said that no substantial progress has been made
for Indian languages, especially Dravidian languages such as
Tamil. One of the main drawbacks in developing a Tamil
speech recognition system is the unavailability of standard
speech and text corpora. Our research focuses on overcoming
these limitations to build a reasonably good, large vocabulary,
continuous speech recognition (LVCSR) system for Tamil.

Speech recognition researchers around the world have ac-
knowledged the efficiency of deep neural networks (DNNs)
in building ASR systems. DNNs trained on several thousand
hours of speech have reduced the word error rate signifi-
cantly compared to the traditional methods and achieve word-

level accuracies of nearly 90% for vocabulary sizes of about
200,000 for English language [4]. Such ASR systems are now
widely used for commercial and entertainment purposes. Due
to the lack of standard speech databases, ASR research in
Tamil has not progressed at all. This motivated us to take up
the work on building a domain and speaker-independent ASR
system for a large vocabulary task.

The rest of the paper is organized as follows. Section II
describes the building blocks of an ASR system. Section III
discusses the tools and databases used in building our Tamil
ASR system. In Section IV, we describe the steps in building a
Tamil ASR. We provide the evaluation results of our phone and
continuous speech recognition systems in Section V. Finally,
we conclude and briefly discuss our future research directions
in Section VI.

II. Description of our Tamil ASR system

The process of speech recognition involves many modules as
indicated in Fig. 1. The first step is to acquire the speech signal
through a microphone and convert it to digital format. The next
step is pre-processing, which involves noise removal and con-
verting the signal to a sequence of frames using a windowing
technique. The next step is to extract relevant features from
the frame sequence. The commonly used features are Mel-
frequency cepstral coefficients (MFCC) and perceptual linear
prediction coefficients. The extracted features are presented to
the decoder, which uses an acoustic model (AM), a language
model (LM) and a lexicon model (pronunciation dictionary)
to decode the best possible word sequence.

A. Pre-emphasis and framing

The speech signal, acquired through a microphone, is first pre-
processed. This stage involves mean subtraction, noise removal
and pre-emphasis to minimize the effects due to channel
degradation. Since speech is a quasi-stationary signal, we take
overlapping frames, each of size 20 msec with a frame shift
of 5 msec, so that the properties of speech for a phone remain
invariant within a frame. Each frame is then multiplied by a
Hamming window function so as to reduce the ripple effects
of the framing process.



Fig. 1. Block diagram of our Tamil, large vocabulary, automatic speech recognition system.

B. Extraction of MFCC features

The next stage involves extracting relevant features, which can
characterize the phonemes in the speech frames. Conventional
ASR systems use one of the following features: Mel-frequency
cepstral coefficients, log filter-bank energy, perceptual linear
prediction cepstral coefficients [5]. The feature extraction
block essentially extracts features, which serve as a good
acoustic representation of the speech units (or phones), while
suppressing other irrelevant variations in the signal due to the
other factors such as the speaker, the channel, the speaking
style of the speaker and the recording environment.

C. DNN-HMM based acoustic model

The acoustic model statistically represents the relation between
the phone labels and the features from the speech signal.
Modern ASR systems use left-to-right hidden Markov models
to capture and model the temporal variations in each phone.
Each state in a HMM models a probability density function
specified by a Gaussian mixture model (GMM) [6]. Recently,
GMMs have been replaced by deep neural networks in mod-
eling the probability density function of the state (also called
as state-posteriors), thus giving rise to DNN-HMM acoustic
models [4][7]. The ability of DNNs in being able to accurately
learn highly non-linear functions is exploited in modeling the
complex posterior density functions.

D. Word bigram language model

The language model is a statistical model, which facilitates
the ASR system to distinguish between words or phrases that
sound similar. Usually, word N-gram models are used as the
LM, which models the conditional density function of a word
given the previous N − 1 words. Thus, the joint probability
of any hypothesis word sequence can be approximated as the
product of these conditional probabilities as indicated in (1).
These N-gram models are learned from a huge corpus of text.

Back-off and other estimation techniques can be used to prune
the LM for a desired language perplexity [8].

p(w1,w2, ..,wK) ≈
K∏

i=2

p(wi|wi−1, ..,wi−N+1) (1)

E. Pronunciation model

The lexicon model or pronunciation dictionary serves as a link
between the acoustic and language models. The lexicon maps
the words in the vocabulary to their corresponding phoneme
sequences. It also handles multiple pronunciations for a single
word, using pronunciation probabilities [9]. Lexicons can be
thought of as a grapheme-to-phoneme converter, which are
designed by linguists (phonologists). For English ASR, the
Carnegie Mellon University (CMU) dictionary is a widely used
lexicon [10].

F. Viterbi word sequence decoder

The Viterbi graph search algorithm decodes the best possible
word sequence for a given sequence of feature vectors [11].
The decoder uses the AM, LM and lexicon probabilities to
predict the best likely word sequence. Mathematically, the
decoder solves the optimization problem given in (2). As
the search space amongst all the possible word hypotheses
becomes exponentially large, beam search can be employed
to prune the low probability paths during the search [12].

{w∗1, ..,w
∗
M} =

argmax
w1, ..,wM

p(x1, .., xN |w1, ..,wM)p(w1, ..,wM)

(2)
Finally, the post-processing stage converts the recognized best
word sequence to human/machine readable format, namely a
sequence of Unicode strings. For an ASR system to perform
efficiently, we need to train the AM on several hundred hours
of transcribed speech corpus. Similarly, the LM needs to be
trained on a text corpus of huge size.



Fig. 2. List of phonemes in Tamil language and one example word each for their occurrences. For each entry, the Tamil phoneme label (as per International
Phonetic Alphabet notation) is given in the first line, an example word containing the phoneme in the second line, and the transcription of the word using
Roman alphabet in the last line.

III. Tools and dataset used for Tamil ASR

To develop our Tamil ASR system, we have used the state-of-
the-art open source toolkit named Kaldi [13]. It has numerous
functionalities, which can be used to build the AM of our
desired choice. To build the LM, we have used the toolkit
named IRSTLM to compute the bigram word probabilities
[14]. We have built our own grapheme to phoneme converter
tool [15] to build the lexicon model (in order to convert words
to the corresponding phone sequences). We have identified a
total of 40 phonemes in Tamil language and our ASR system
is built based on this phoneme set. Figure 2 shows the set
of Tamil phones used and gives one example word for the
occurrence of each phoneme. Along with the 40 phonemes,
we have an additional silence phoneme.

Learning an acoustic model and a language model requires
transcribed speech corpus and text corpus, respectively. We
have obtained 6.5 hours of transcribed speech recordings from
the Central Institute of Indian Languages, Mysore [16]. The
recordings are single-channel, close-talk, PCM data sampled
at 16 kHz with a resolution of 16 bits per sample. This corpus
is a newspaper read-speech covering a vocabulary of 13,026
words recorded from 30 speakers (18 male and 12 female). The
entire corpus is divided into three chunks: 4.5 hrs (training),
1 hour (development) and 1 hour (test). The training set is
used to learn the AM parameters and the development set is

used for the purpose of validation and the test set is used for
reporting the recognition performance of our ASR system.

We have used two NVIDIA GeForce GTX TITAN X graphics
processing units (GPUs) on a 40-core Intel Xeon workstation
to run all our training and testing modules.

IV. Training the acoustic model

Our aim is to build a DNN-HMM based acoustic model for
our speech recognition task. For this, we need the speech
corpus to have time-markings at the phone level (also called
as alignments) but we have transcription only at the sentence
level. So, the first step is to convert the words in the sentences
to phoneme sequences using the lexicon and assign equal
intervals for the phonemes corresponding to the speech file
under consideration, as shown in Fig. 3. These alignments
are called “equal alignments” and each step mentioned below
aims to refine the alignments and pass them on to the next
stage. At each stage, we do acoustic modeling by increasing
the complexity of the system.

A. Monophone training

We first build a simple 3-state, monophone HMM model for
each of the 41 phonemes and model each HMM state as a
GMM. We have used a total of 1000 diagonal covariance
Gaussians to be shared among all the 123 states (instead of



Fig. 3. Illustration of initial alignment - initial assignment of equal duration
to each phone of a sample speech file.

having a fixed number of Gaussians per state). The model
parameters of GMM-HMM (means, covariances, mixture
weights, transition probabilities) are learnt using maximum
likelihood estimation procedure (by expectation-maximization
algorithm), starting from the equal-alignments. The training is
performed for 40 iterations and after each iteration, we do re-
alignment and pass on the new alignments to the next iteration.

B. Context-dependent triphone training

In this stage, we perform context-dependency modeling of
each phone, considering its left and right context phones
(triphone context). Thus we have 413 HMMs, one for each
triphone. Not all the triphones are likely to occur in the training
set and so we share the states and parameters of the HMMs
by having a fixed number of diagonal-covariance Gaussians
(10,000) and a fixed number of states (2,000). The alignment
obtained at the end of monophone training is used to train
the triphone model iteratively and after each iteration, the
alignments are refined.

C. Maximum likelihood linear transformation (MLLT) train-
ing

The modeling power of AM can be further increased by hav-
ing full-covariance Gaussians instead of diagonal ones. This
involves the estimation of a transform, which can be applied
on the mean vectors of the trained GMM and simultaneously
applying the transformation on the input feature vector. More
details about this technique can be found in [17]. Such an
MLLT triphone system is trained using the alignments from
the previous step.

D. Speaker-adaptive training (SAT)

This stage involves complicating the acoustic model by learn-
ing parameters which are specific to the speakers. SAT [18]
involves estimating a linear transformation (for each speaker)
to be applied on the means of GMM-HMM of a global
model. This SAT model is learned using the alignments from
the previous stage. The intuition is that the likelihood of
the utterance given the speaker-specific model will be more
than the likelihood with respect to the global model, thereby
increasing the accuracy of the alignments.

E. DNN training

Using the alignments obtained from SAT, we train a DNN to
predict the state posterior distribution. We have used back-
propagation with momentum to train our 7-layer DNN (with
256 tanh non-linear nodes in each hidden layer) for 50 epochs.
There are several issues to be handled during the training
of a DNN, such as learning rate adjustment and gradient-
explosion/vanishing problem. This can be avoided by initial-
izing the network using a pre-trained restricted Boltzmann
machine-based deep belief network (RBM-DBN). This RBM-
DBN is learnt in an unsupervised manner from the validation
data. Finally, the trained DNN is combined with the bigram
LM and lexicon model to arrive at the complete ASR system.

V. Experiments and results

We have built two independent ASR systems: continuous
speech and phoneme recognizers and evaluated the perfor-
mance of both the systems on the 1-hour test set. For the con-
tinuous speech recognition (CSR) system, word-level bigram
LM has been used and for the phoneme recognition system
(PR), phone-level bigram LM has been used. The error rates
obtained for the two systems for different acoustic model types
are listed in Table I. It can be seen that the error rate gradually
reduces as the complexity of the acoustic model increases,
though there is an anomaly with respect to the speaker adaptive
trained model. This is due to the fact that we have only
18 (out of 30) speakers in the training set and the training
procedure fails to estimate the speaker transformation matrix
efficiently due to the limited speaker-space. The performance
can be improved if we train speech obtained from a large set
of speakers.

From Table I, we can see that the best performance is attained
by DNN-based acoustic model in both the cases. DNN models
show an absolute improvement of about 1% and 23% over
monophone models for CSR and PR, respectively.

VI. Conclusion

We have elaborated the steps involved in building an end-
to-end, DNN-based Tamil ASR system with the state-of-
the-art tools. With 6.5 hours of data (with a vocabulary of
13,026 words), our DNN-triphone AM for continuous speech



TABLE I
Performance evaluation of our phoneme and continuous speech recognition

systems on Tamil test data of one hour duration.

Acoustic model type Phone error
rate (%)

Word error
rate (%)

Monophone 47.48 4.42
CD-triphone 37.90 4.25
CD-Triphone+MLLT 27.74 4.20
CD-Triphone + SAT 29.25 6.46
DNN 24.52 3.48

recognizer is able to achieve a word error rate of 3.5% with an
absolute improvement of 1% over monophone AM. Similarly,
the DNN-triphone AM for phone recognizer achieves a phone
error rate of 24.9% with an absolute improvement of 23% over
monophone AM. We plan to collect about 150 hours more of
speech data for training and scale the vocabulary size to about
100,000 words and use cross-lingual training to further reduce
the word error rate.

VII. Acknowledgement

The authors would like to thank Dr. L. Ramamoorthy,
Head, Linguistic Data Consortium for Indian Languages, CIIL
Mysore for providing us the transcribed speech corpus, which
has been used in this work.

References

[1] Lawrence Rabiner and Biing-Hwang Juang. 1993. “Fundamentals of
Speech Recognition,” Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[2] Lawrence R. Rabiner. “A tutorial on hidden Markov models and selected
applications in speech recognition,” Readings in speech recognition, Alex
Waibel and Kai-Fu Lee (Eds.). Morgan Kaufmann Publishers Inc., 1990,
San Francisco, CA, USA 267-296.

[3] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel,
L. Fan, C. Fougner, T. Han, A. Hannun, B. Jun, P. LeGresley, L. Lin, S.
Narang, A. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh, D. Seetapun,
S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J.
Zhan, Z. Zhu, “Deep speech 2: End-to-end speech recognition in English
and Mandarin,” Proceedings of the 33rd Intl. Conference on Machine
Learning, New York, NY, USA, 2016

[4] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: the shared views of four research groups,” IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012.

[5] Beth Logan, “Mel Frequency Cepstral Coefficients for Music Modeling,”
International Symposium on Music Information Retrieval, 2000.

[6] Mark Gales and Steve Young. “The application of hidden Markov models
in speech recognition,” Found. Trends Signal Process. 1, 3 (January 2007),
195-304.

[7] Fred Richardson, Douglas Reynolds and Najim Dehak, “Deep neural net-
work approaches to speaker and language recognition,” Signal Processing
Letters IEEE, vol. 22, pp. 1671-1675, 2015.

[8] M Mohri, F Pereira and M Riley, “Weighted finite-state transducers in
speech recognition,” Computer Speech & Language, 2002.

[9] Chen, Guoguo, Hainan Xu, Minhua Wu, Daniel Povey and Sanjeev
Khudanpur. “Pronunciation and silence probability modeling for ASR.”
INTERSPEECH 2015.

[10] http://www.speech.cs.cmu.edu/cgi-bin/cmudict

[11] Zhu Xuan, Chen Yining, Liu Jia and Liu Runsheng, “A novel efficient
decoding algorithm for CDHMM-based speech recognizer on chip,”
Acoustics, Speech, and Signal Processing, Proceedings. (ICASSP ’03).
IEEE International Conference on, 2003, pp. II-293-6 vol.2.

[12] H. Ney, D. Mergel, A. Noll, A. Paeseler, “A data-driven organization
of the dynamic programming beam search for continuous speech recog-
nition,” Proc. IEEE Int. Conf. on Acoustics Speech and Signal Proc. pp.
833-836 1987.

[13] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Nagendra Goel, Mirko
Hannemann, Yanmin Qian, Petr Schwarz and Georg Stemmer, “The Kaldi
speech recognition toolkit,” In IEEE 2011 workshop.

[14] Marcello Federico, Nicola Bertoldi and Mauro Cettolo, “IRSTLM: an
open source toolkit for handling large scale language models,” INTER-
SPEECH, 2008.

[15] A. G. Ramakrishnan and Laxmi Narayana M, “Grapheme to phoneme
conversion for Tamil speech synthesis,” Proc. Workshop in Image and
Signal Processing (WISP-2007), IIT Guwahati, Dec 28-29 2007, pp. 96-
99.

[16] http://www.ldcil.org/resourcesSpeechCorpTamil.aspx

[17] M. J. F. Gales, “Semi-tied covariance matrices for hidden Markov
models,” IEEE Transactions on Speech and Audio Processing, vol. 7,
no. 3, pp. 272-281, May 1999.

[18] M.J.F. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Computer Speech & Language, Volume 12,
Issue 2, 1998, Pages 75-98, ISSN 0885-2308.


