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Abstract—Sanskrit is one of the Indian languages
which fares poorly, with regard to the development
of language-based tools. In this work, we build a
connectionist temporal classification (CTC) based end-
to-end large vocabulary continuous speech recognition
system for Sanskrit. To our knowledge, this is the
first time an end-to-end framework is being used for
automatic speech recognition in Sanskrit. A Sanskrit
speech corpus with around 5.5 hours of speech data
is used for training a neural network with a CTC
objective. 80-dimensional mel-spectrogram together
with their delta and delta-delta is used as the input
features. Spectrogram augmentation techniques are
used to effectively increase the amount of training data.
The trained CTC acoustic model is assessed in terms
of character error rate (CER) on greedy decoding.
Weighted finite-state transducer (WFST) decoding is
used to obtain the word level transcriptions from the
character level probability distributions obtained at
the output of the CTC network. The decoder WFST,
which maps the CTC output characters to the words in
the lexicon, is constructed by composing 3 individual
finite-state transducers (FST), namely token, lexicon
and grammar. Trigram models trained from a text cor-
pus of 262338 sentences are used for language modeling
in grammar FST. The system achieves a word error
rate (WER) of 7.64% and a sentence error rate (SER)
of 32.44% on the Sanskrit test set of 558 utterances
with spectrogram augmentation and WFST decoding.
Spectrogram augmentation provides an absolute im-
provement of 13.86% in WER.

Index Terms—connectionist temporal classification,
CTC, ASR, Sanskrit, spectrogram augmentation,
WFST decoding

I. Introduction

Automatic speech recognition (ASR) technologies re-
quire a large amount of annotated training data to work
reasonably well. Recent approaches to speech recognition
employ deep learning techniques and this has made the
data scarcity problem more severe, as the deep learning
methods are quite data hungry. It is estimated that
only 1% of the languages of the world have the minimum
amount of data needed to train an ASR [1]. Due to this,
speech recognition researchers have been focusing mainly
on high resource languages like English and Mandarin till
a few years back.

In recent years there has been a stronger focus on de-
veloping ASR for low resource languages [2]–[5]. Different
approaches like multilingual pre-training [6]–[11] and data
augmentation [12]–[15] have been applied to improve the
performance of ASR for low resource languages. However
such advancements in technology have not been prop-
agated to many of the low resource Indian languages.
The eighth schedule of the constitution of India, lists
22 official languages, most of which are low resource in
nature. Sanskrit is one among them and is considered as
the second oldest language next to Tamil. It is believed
to be the mother of many languages in the Indo-European
family in the sense that their genesis is tracked to Sanskrit.
A huge body of literature in various areas spanning from
mathematics, astronomy, science, linguistics, mythology,
history and mysticisms are available in this language.
Sanskrit assumes enormous importance given the afore-
mentioned considerations although it is not used widely for
active communication. There are only very few attempts
on building technical tools for Sanskrit [16], [17]. This
motivates us to investigate on the application of some of
the state-of-the-art technologies and techniques towards
building a Sanskrit ASR. We believe that these efforts will
aid in enhancing accessibility of the language and thus its
contents to a larger population.

Conventional ASR systems consists of three sub-
modules namely acoustic models, pronunciation models
and language models. The existence of these modules give
rise to the following limitations [18].

1) Each of these modules are trained independently
with different objectives, which may result in the
sub-optimal performance of the resulting system.

2) Preparation of acoustic models requires phonetic
alignments, which needs to be obtained from some
other system. For example, to train a hybrid ASR
architecture with deep neural network (DNN) and
hidden Markov models (HMM) [19], we need tied-
triphone state alignments which are prepared using
a separate ASR architecture consisting of Gaussian
mixture models (GMM) and HMMs.

3) Preparation of pronunciation models requires lin-



guistic knowledge and are generally curated by ex-
pert linguists. This being a manual process is
subjected to human errors.

The above limitations have prompted the ASR community
to move away from the conventional ASR systems to end-
to-end trained systems which map the input acoustic fea-
tures directly to graphemes or word sequences. Two most
popular approaches to end-to-end speech recognition are:
i) attention-based encoder-decoder [20] and ii) connection-
ist temporal classification (CTC) [21]. Attention-based
methods have the advantage that they do not require
any conditional independence assumptions. However, the
disadvantage is that they do not guarantee the monotonic
alignments required in speech recognition problems. On
the other hand, CTC allows only monotonic alignments
but suffers from conditional independence assumptions,
i.e., every output is conditionally independent of other
outputs.

To utilise the monotonic alignments offered with CTC,
we choose the CTC-based scheme for building a large
vocabulary continuous speech recognition (LVCSR) sys-
tem for Sanskrit. We propose an architecture based on
residual convolutional neural networks (CNN) [22] and
bidirectional gated recurrent units (GRU). As the multi-
lingual pre-training experiments require paired audio and
transcriptions from other languages, we restrict ourselves
to the experiments with data augmentation alone. Specif-
ically, we use a feature augmentation technique called
SpecAugment [15] to effectively increase the amount of
data available for training. We use greedy decoding to
assess the performance of the learnt CTC acoustic model.
Weighted finite-state transducers (WFST) are used for
word level decoding.

The remaining part of the paper is organized as follows:
Section II gives an overview of the theoretical background
of the CTC-based ASR. Section III describes the Sanskrit
data corpus used in this work. Section IV describes
the training of the CTC acoustic model followed by the
decoding approaches in section V. Performance of the
system in terms of the CER and WER are stated in section
VI. Conclusions of our experiments are summarised in
section VII.

II. An overview of the approach
In speech recognition problem, we have to generate a

sequence of output symbols (letters) given a sequence of
input features. However, when to output the symbol is
unknown, as the alignment of letters in the transcription
to the input audio is not available. CTC overcomes this
issue by computing the probability of an output sequence
given the input sequence as the sum of probabilities of all
possible alignments between the two.

Consider a sequence of input acoustic features X =
{x1, x2, . . . , xT } and the corresponding output labels Y =
{y1, y2, . . . , yU}, U ≤ T . Each of the output labels yi ∈
U , i = 1, 2, . . . , U , where U is an alphabet of size L.

The alignment between X and Y is unknown. However,
the alignments are monotonic in the speech recognition
problem, i.e., the alignment between input and output
happens to be in the same order. CTC introduces a special
blank character “−” to the alphabet U . Let the modified
alphabet be U ′ = U ∪ {−}. For a given xi, i = 1, . . . , T ,
the CTC network gives the distribution over over all the
possible output labels in U ′. This distribution is used to
evaluate the probability of any given output sequence Y.

Consider a path Z = {z1, z2, . . . , zT } ∈ U ′T in the CTC
output distribution over time. Define a many-to-one func-
tion F , which maps any given path Z to a label sequence
Y, by collapsing repeats and then removing all the blank
symbols in the path. For example, the function F maps
the sequence { म,म,−,म,म,−,<SPACE>,−,न,न,−,ा,−,म,− }
to { म,म,<SPACE>,न,ा,म }. Symbols separated by the blank
symbol are not merged during the process of collapsing
repeats. Thus the blank symbol helps to handle the
repetition of letters in the orthography.

The probability of a path Z can be computed as

P (Z|X) =

T∏
t=1

p(zt|z1, z2, . . . , zt−1,X) (1)

≈
T∏

t=1

p(zt|X) (2)

Each term inside the product in (2) can be obtained
from the output probability distributions computed by the
CTC. Now the probability of the output sequence Y can
be computed by summing over all the possible paths Z
that gets mapped to Y by the function F .

P (Y|X) =
∑

{Z|F(Z)=Y}

P (Z|X) (3)

The summation over all the paths is achieved through
dynamic programming. During the training, blank sym-
bols are inserted between each of the labels in the output
and also at the beginning and end of the output sequence.
Training proceeds with the objective to maximise the
probability of the correct label sequence. During the
decoding, we infer the most likely label sequence Y given
X.

Y∗ = arg max
Y

P (Y|X) (4)

The approximation in (2) means that the output at
any time instant is conditionally independent of the other
outputs given the input. Though this assumption is
rather strong, considering the benefits of the monotonic
alignment property offered by CTC, we chose to build our
architecture based on CTC.

III. Dataset preparation
We have collected around 6.5 hours of Sanskrit speech

data consisting of 3395 utterances from 23 speakers. All
the data were collected online, mainly from 4 sources: (a)
news recordings from All India Radio (AIR) website [23],



(b) video lectures from Indian Heritage Group (IHG), C-
DAC, (c) video lectures from Central Sanskrit University
[24], and (d) short stories read by Samskrita Bharati
volunteers [25]. The data is mainly read speech and
lectures and are encoded in mp3 format. The collected
data was converted to single channel raw wav file format
with 16 kHz sampling frequency and 16 bits per sample.
There are 23 speakers: 17 male and 6 female. Each audio
file contains recordings from a single speaker. The corpus
contains around 12250 words.

The data was randomly divided into 2 sets - train and
test, with approximately 5.5 hours in the train set and
1 hour in the test set, the details of which are shown in
Table I. The word-level transcriptions of these utterances
are saved in Unicode text format. There were 1712 new
words in the test set not belonging to the training set. Due
to the limited size of the dataset, we have speaker overlap
between the train and test sets.

Table I
Details of the Sanskrit dataset

Train Test
Files 2837 558
Words 10541 2911
Speakers 23 22

Male 17 16
Female 6 6

Duration 5:22:12 1:05:56
Male 4:09:19 0:50:32
Female 1:12:52 0:15:23

We have randomly selected 6% of the training data for
the validation set. Thus, 2667 utterances are used for
training and 170 utterances are used for validation.

The text corpus for building the language models makes
use of the wiki Sanskrit data dump [26]. We have
extracted text data from several Sanskrit websites as
well. The extracted text is cleaned to remove unwanted
characters and pre-processed to restrict the graphemes to
the Devanagari Unicode symbols. There are a total of
262338 sentences in the text corpus with around 436800
unique words. We use 3-gram language models.

IV. Acoustic model training
A. Feature extraction

We use mel-spectrogram as the input features. Input
wav files have a sampling rate of 16000 Hz. Window length
of 25 ms and hop length of 10 ms are used for framing.
Hanning window is applied to each of the frames and 1024
point short-time Fourier transform (STFT) is computed.
Power spectrum is computed using the magnitude STFT
and fed to a mel- filterbank consisting of 80 filters. Delta
features are computed from the filterbank output using a
window of 5 frames. Delta-delta features were computed
from delta features in a similar manner. Filterbank
features, delta and delta-delta features are stacked as 3

channels of an image and used as the input to the neural
network.

B. Feature augmentation
Data augmentation schemes help us to increase the

effective amount of data available for training the neural
networks. We use data augmentation at the feature-level
using SpecAugment [15]. SpecAugment has been shown to
achieve state-of-the-art performance in LibriSpeech 960h
and Swichboard datasets. We apply frequency masking
and time masking in the mel-spectrogram domain with
parameters 10 and 70 respectively, before the computation
of delta and delta-delta features. In frequency masking, f
consecutive mel frequency channels [f0, f0+f) are masked.
First f is chosen from a uniform distribution from 0 to the
frequency mask parameter F , and then f0 is chosen from
[0, ν−f), where ν is the number of mel frequency channels.
In time masking, t consecutive time steps [t0, t0 + t) are
masked, where t is chosen from a uniform distribution from
0 to the time mask parameter T , and then t0 is chosen
from [0, τ−t), where τ is the number of time steps. Figure
1 shows an example of the frequency and time masking
scheme in SpecAugment.

Figure 1. Time and frequency masking using SpecAugment. Top
image is the original spectrogram and the bottom image is the
augmented spectrogram.

C. Network architecture
For acoustic model training we use an architecture

employing CNNs and bidirectional GRUs (BiGRU) as in
[27], [28]. The details of the architecture are given in
Figure 2, for a mel-spectrogram input with 788 timesteps.
The architecture uses 3 residual CNN blocks and 5 Bi-
GRU blocks. Each convolutional layer, including those
in the residual CNN, uses kernels of size 3x3, stride of
1 and padding of 1, except the first convolutional layer
which uses a stride of 2. Each of the BiGRUs has a
hidden dimension of 512. Residual CNNs and BiGRUs
are preceded by layer normalisation and Gaussian error
linear units (GeLU) activation function. A dropout of 0.1
is used in each stage of the network. Logarithm of the
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Figure 2. Block diagram of our architecture for learning the CTC acoustic model illustrating an input utterance with timesteps T = 788.
80-dimensional mel-spectrogram, their delta and delta-delta are fed as 3 channels of an image. x 3 in the figure indicates that the blocks are
repeated 3 times. Conv2d represents the 2D convolutional layers and FC represents the fully connected layers.

softmax function is applied to the CTC output to convert
it into log-probabilities. The alphabet U consists of 13
independent vowel symbols, 12 dependent vowel symbols,
34 consonants, 4 consonants with nukta (ज़, ड़, ढ़, फ़),
chandrabindu( ँ ), anusvara( ं), visarga( ः), avagraha(ऽ),
virama( ्), ohm(ॐ), <SPACE> and <UNK>. <UNK>
stands for any unknown grapheme symbol occuring in
the input labels apart from the above listed ones. The
alphabet size, L = 71. Including the blank label (−), we
have 72 output classes.

D. Training of the CTC acoustic model
AdamW optimiser [29] is used for training. The network

is trained with CTC objective [21] for a maximum of
200 epochs. Early stopping, with a patience value of
30 is applied. A batch-size of 10 is employed during
training. We adopt the one cycle learning rate policy [30]
with a maximum learning rate of 0.001. The network is
implemented in PyTorch.

V. Decoding

We use greedy decoding [21], [31] to assess the classifi-
cation performance of the trained CTC network. Greedy
decoding does not use any linguistic information. To assess
the word level performance of the ASR, WFST decoding
[32]–[34] is used.

A. Greedy decoding
In greedy decoding, the best path Z∗ ∈ U ′T is computed

in a greedy fashion by picking up the most probable letter
from the CTC output distribution at each time step.

z∗t = arg max
l∈U ′

P (zt = l|X), t = 1, 2, . . . , T. (5)

To obtain the decoded output, the repeats are collapsed
(i.e., letters appearing successively, but not separated by
the blank symbols are merged together) and thereafter
blank symbols are removed.

Y∗ = F(Z∗) (6)

Output is post-processed to remove some of the invalid
combinations of graphemes. This post-processing step
includes:

1) removal of multiple occurrences of viramas ( ्),
2) removal of viramas before and after the depen-

dent/independent vowel symbols, and
3) replacing multiple occurances of vowels with the last

vowel appearing in the sequence.
The output of the post-processing step is used to compute
the character and word error rates.
B. WFST Decoding

A weighted finite-state transducer (WFST) [32] is a
finite automata in which each state transition is associated
with an input/output label pair and a weight. A path
in the WFST accepts a sequence of input symbols and
emits the corresponding sequence of output symbols and
the weights associated with that path. WFST constructed
for CTC decoding should accept a sequence of letters
zt ∈ U ′ as input and should output a sequence of words
from the lexicon. Such a WFST is constructed by fusing
3 individual WFSTs as in [34].

0

1ϵ:ϵ

-:ϵ

3क:क

क:ϵ

2

ϵ:ϵ
ϵ:ϵ

-:ϵ

Figure 3. An example of a token FST. Input labels appear before
‘:’ and output labels appear after ‘:’. Node 0 is the start node and
double circled node is the end node. ‘-’ denotes the blank label and
‘ε’ indicates that no inputs are accepted or no outputs are emitted.
This FST maps different CTC paths like “--ककक-”, “कककककक”,
“--कककक”, etc. to a single unit “क” (collapse-repeats and blank
removal operations).

1) Token FST (T ): Maps the sequence of frame level
CTC labels l ∈ U ′ to a single character in U .
This FST effectively performs the collapse-repeat
and blank label removal on the input sequence. An
example of token FST is shown in Figure 3.



2) Lexicon FST (L): Maps the sequence of characters
in U to words. Each entry in the lexicon is the rep-
resentation of the word in terms of the constituent
characters. An example of the lexicon FST is shown
in Figure 4.

3) Grammar FST (G): Encodes the permissible word
sequences in Sanskrit. They are generated using the
word level 3-gram language models learnt from the
text corpus.

0 1ϵ:ϵ
<SPACE>:ϵ

2क:कः 3◌ः:ϵ 4ϵ:ϵ
<SPACE>:ϵ

Figure 4. An example of a lexicon FST. Words are allowed to have
an optional <SPACE> character at the beginning and at the end.

0 1

अद्य:अद्य/0.5

श्वः:श्वः/0.3
ह्यः:ह्यः/0.2

2कः:कः/1 3वासरः:वासरः/1

Figure 5. An example of a grammar FST. The weights associated
with the arcs denote the probability of emitting the word given the
previous word.

These three WFSTs are composed into a search graph
which is used to find the most probable word sequence.

S = T o min(det(L o G)) (7)

where o, min and det are the FST operations; composi-
tion, minimisation and determinization and S is the search
graph.

During the WFST decoding, we normalise the posterior
probability of the classes by their priors. The priors
for the classes are computed using the label sequences
with the blank symbol inserted between each successive
character labels and also at the beginning and end of the
sentence. For example the label sequence “एषः<SPACE>कः
” will be converted to the sequence “-ए-ष-ः-<SPACE>-
क-ः- ” before the computation of prior. This technique
has been shown to improve the performance of WFST
decoding in [34].

VI. Results
Performance of the CTC acoustic model is measured

using character error rate (CER) on greedy decoding.
Recognition performance of the whole ASR sytem is mea-
sured using word error rate (WER) and sentence error
rate (SER) on WFST decoding. Both CER and WER
were computed using Levenshtein distance between the
reference sequence and the predicted sequence.

WER =
S +D + I

N
(8)

where S, D and I are the number of substitutions, dele-
tions and insertions at the word level and N is the total

number of words in the reference. CER is computed
in a similar manner, but with errors computed at the
character level. SER is calculated as the ratio of the
number of correctly decoded sentences to the total number
of sentences in the test set.

Table II
Results of greedy decoding on Sanskrit test set

Architecture CER WER
Proposed network 23.16 78.74
Proposed network
+ SpecAugment 20.05 72.04

The results of greedy decoding on the test set are listed
in Table II. There are absolute improvements of ≈ 3.1% in
CER and ≈ 6.7% in WER when SpecAugment is applied.

Table III
Results of WFST decoding on Sanskrit test set

Architecture WER SER
Proposed network 21.50 57.17
Proposed network
+ SpecAugment 7.64 32.44

Kaldi recipe 5.83 24.01

The results of WFST decoding on the test set are
given in Table III. SpecAugment achieves an absolute
improvement of 13.86% in WER and 24.73% in SER over
the system without spectral augmentation, when WFST
decoding is employed. To assess the performance of the
system, we also compare the results with a baseline hybrid
HMM/DNN system trained with feature space maximum
likelihood linear regression (fMLLR) features in Kaldi
[33], using the same training-validation split. This is a
multilayer perceptron system with 7 hidden layers and
2048 nodes in each layer. The baseline results are listed
as the third row in Table III. The kaldi system still
fares better, as our end to end system is limited by the
amount of training data available. However, SpecAugment
reduces the large gap of 15.67% between end to end CTC
architecture and hybrid DNN/HMM system to just 1.81%.
The limited size of the dataset may also be a factor in
attaining a WER closer to the hybrid DNN-HMM system.

VII. Conclusions
In this work, we have built a LVCSR system for Sanskrit

using CTC- based end-to-end framework and spectrogram
augmentation. The system achieves a WER of 7.64%
and a SER of 32.44% on the Sanskrit test set with 558
utterances. The trained CTC acoustic model achieves
a CER of 20.05% using greedy decoding. Since a large
amount of paired data (audio and transcriptions) were not
available for Sanskrit, we experimented with SpecAugment
to increase the effective amount of training data. This
gives an absolute improvement of 3.11% in CER on greedy
decoding and an absolute improvement of 13.86% in WER
on WFST decoding. We hope the results can be improved
further if more training data is available.
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