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Abstract—We consider a dictionary based speech enhancement
in the context of automatic recognition of noisy speech. Speech
in each analysis frame is denoised as a front-end processing
using a class-specific (e.g., phoneme) dictionary selected based
on the estimated class label. However, when the estimated label
is erroneous, a wrong class model is chosen for many frames.
We propose a Joint Enhancement-Decoding (JED) algorithm
to overcome this issue by jointly optimizing for labels of all
the frames and the decoding path. The algorithm optimizes
over multiple enhanced versions of each frame using different
phoneme specific dictionaries and gives the maximum likelihood
path of state sequences as well as the best (in the maximum
likelihood sense) choice of the enhanced observation sequence as
its output. The number of phoneme-specific dictionaries used for
enhancement in an analysis frame is varied from 1 to 5 based
on the phoneme confusion matrix and the recognition results
are reported for each case. Experiments with TIMIT corpus
and five different noises at 0, 5 and 10 dB SNRs show that the
recognition performance varies with the number of dictionaries,
and in most of the cases, is the best when two or three dictionaries
are employed.

Index Terms—speech enhancement, robust speech recognition,
sparse coding, dictionary learning.

I. INTRODUCTION

Despite the improvement in the performance of automatic
speech recognition (ASR) systems over the last few decades,
the accuracy obtained over noisy test conditions is still poor.
The presence of noise in the test data distorts the spectrum,
thereby reducing the recognition performance.

The earliest techniques proposed to address this problem
and improve the performance in noisy environments include
parallel model combination [1], HMM adaptation [2][3][4],
cepstral mean subtraction [5] and vector Taylor series [6].
Another approach is to enhance the speech as a front end
processing before it is fed into the recognizer, thereby obviat-
ing the need to retrain the ASR system for different noise
statistics [7] [8]. A comparative study on the performance
of ASR system for various enhancement schemes has been
reported in [9]. Sigg et al. [10] proposed a speech enhancement
scheme based on sparse coding and showed that it performs
better than techniques like geometric spectral subtraction [11].

Several exemplar based techniques [12][13] have also been
proposed for noise-robust speech recognition.

Speech signal is composed of several sound classes which
can be categorized into phonemes (PHN). A given noise type
may correlate more with a few of these classes than the rest.
The bases in a dictionary learned using these classes may
represent noise power to varying degrees. Hence these bases
may leak noise power into the enhanced speech and cause
poor speech reconstruction [14]. By removing the contribution
from bases of these classes that correlate well with noise,
one could improve the enhancement performance. Raj et al.
[15] proposed an approach using this concept, where they use
phoneme-dependent non-negative matrix factorization (NMF)
for separation of music from speech. Nazreen et al. [14]
extended this idea to sparse coding by using class-specific
dictionaries and compared its performance to that of a class-
independent dictionary. Wang et al [16] investigated the use of
class-specific, ideal ratio mask estimation for speech enhance-
ment. But the recognizer as well as the mask estimator were
trained using noisy speech.

All the class specific enhancement schemes mentioned so
far depend on the estimated class label for each frame, which
may be erroneous. This leads to the selection of wrong
class model for the enhancement in the respective frames.
To overcome this, we propose a Joint Enhancement-Decoding
(JED) algorithm that jointly optimizes these class labels and
the final recognized speech labels. By this approach, we aim to
find the best possible frame-wise model for enhancement and
the recognition labels together for an input speech signal in a
single optimization framework. We develop this algorithm by
integrating the class label estimation into the Viterbi decoder
[17] typically used for speech recognition. We implement the
same using the HTK toolkit. The proposed algorithm accepts
multiple enhanced observations and chooses the best in each
frame such that the overall likelihood is maximized. Multiple
observations are obtained by enhancing every noisy frame
using multiple class-specific dictionaries. The best sequence
of observations is chosen to maximize the likelihood. Thus
we don’t separately choose a class label and consequently the
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class model for frame-wise enhancement as in [14] [15]or [16].
We analyze the performance of our algorithm on TIMIT

database. We use the confusion matrix obtained from the
recognition output of clean speech to select the pool of dic-
tionaries. This results in an improvement in the performance
in most of the cases compared to the enhancement using a
class-independent dictionary. It is to be noted that when the
number of dictionaries is set to 1, the algorithm becomes the
same as the one in [14].

II. JOINT ENHANCEMENT-DECODING ALGORITHM FOR
CLASS-SPECIFIC ENHANCEMENT

Block 1 in Figure 1 shows a generic class-specific enhance-
ment framework [14] [15]. The class label is estimated for each
frame of the noisy speech, and the corresponding class-specific
dictionary is used for enhancement. When this estimate of
class label is erroneous, it selects the wrong class dictionary
resulting in poor enhancement of the respective frames. We
propose a joint enhancement-decoding (JED) formulation to
compensate for this error. The block diagram of class-specific
enhancement using the proposed JED algorithm is shown in
block 2 of Figure 1. The algorithm accepts multiple enhanced
observations in each frame and selects the best observation in
each frame as well as the best state sequence that maximize
the likelihood of the chosen observations. We use multiple
class-specific dictionaries for enhancing a single frame and
these different denoised versions of a frame are fed into the
JED algorithm. We use sparse coding based dictionary learning
approach for obtaining the enhanced speech observations. This
approach involves learning of speech and noise dictionaries as
well as a sparse coding stage for learning the coefficients.
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Fig. 1: Generic and JED based class-specific enhancement
framework

A. Speech enhancement using learned dictionary

Let yt(m), st(m) and nt(m) be the mth samples of the
noisy speech, clean speech and noise, respectively. Consid-
ering additive model, noisy speech can be represented as,
yt(m) = st(m) + nt(m). By taking the short time Fourier
transform (STFT) we get, y(ωk) = s(ωk) + n(ωk), where
ωk = 2πk

R , k = 0, 1, 2...R− 1 , R is the number of frequency
bins and k is the index. Considering only the magnitude
spectra, we can write, y ≈ s + n ∈ RR×1, where s and
n represent the spectra of the clean speech and the noise,

respectively. Using speech and noise dictionaries and their
corresponding sparse coefficients, an estimate of the STFT of
the noisy speech is given by ŷ = Ds × cs +Dn × cn where
Ds and Dn ∈RR×L , L > R, denote the speech and noise
overcomplete dictionaries of L atoms each. cs and cn are the
corresponding sparse coefficient vectors. Thus the enhanced
speech is estimated as ŝ = Ds×cs . For the present work, we
use K-singular value decomposition (KSVD) based dictionary
learning [18]. For sparse coding, we use batch LARS with
coherence criterion (LARC) [10]. In LARC, a threshold is
applied on the residual coherence as a stopping criterion.

B. JED Algorithm

Let the enhanced observation at the tth frame using class-
specific dictionary with ith label be denoted by θit. If T
denotes the total number of frames and N denotes the number
of best labels considered for enhancement in each frame,
Θ = {θit; 1 ≤ t ≤ T, 1 ≤ i ≤ N}. The JED algorithm
optimizes the observation sequence θi

∗(t)
t , 1 ≤ t ≤ T as well

as the state sequence s∗1, s
∗
2, . . . , s

∗
T to maximize the likelihood

of the observation as follows :

{θi
∗(t)
t , s∗t , 1 ≤ t ≤ T} = argmax

θit,st

P (s1, s2, . . . sT |Θ)

= argmax
θit,st

P (Θ|s1, s2, . . . sT )P (s1, s2, . . . sT )

= argmax
st

{
max
θit

P (Θ|s1, s2, . . . sT )
}
P (s1, s2, . . . sT )

(1)

Assuming independence among observations, given the state
sequence, we write

{s∗1, s∗2, . . . s∗T } = argmax
st

{ T∏
t=1

max
1≤i≤N

P (θit|st)
}
P (s1, s2, . . . sT )

= argmax
st

{ T∏
t=1

P (θ
i∗(t)
t |st)

}
P (s1, s2, . . . sT )

(2)

where i∗(t) = argmax1≤i≤N P (θit|st).
Algorithm 1 below gives the steps of the JED algorithm.

C. Best-N class-specific dictionary based enhancement using
JED

JED algorithm does not require the knowledge of frame
labels to do the class-specific enhancement and decoding. In
fact, all the phoneme dictionaries can be used for enhancement
of each frame and these multiple enhanced observations can
be given as the input. The algorithm then jointly optimizes the
class label in each frame and the decoding path. However the
use of all phoneme dictionaries for frame-wise enhancement
is computationally expensive. Hence we intelligently choose a
subset of labels such that the chance of actual label belonging
to this subset is high.

To choose this subset of labels, we use the confusion matrix
obtained by running the recognizer on a subset of the clean
TIMIT test sentences. For a given recognized label, selecting
a small set of labels with high likelihood from the matrix



Θ = {θit; 1 ≤ t ≤ T, 1 ≤ i ≤ N}: observation sequence
b(·|sj) :observation probability given state sj
a(sk → sj) :transition probability from sk to sj

1 for each state s! =Starting state do
D(1, s) = 0

end
2 for t← 1 to T do

for each state sj do
θ
i∗(t)
t = argmaxθit b(θ

i
t|sj)

end
for each state sj do

D(t, sj)← maxkD(t− 1, sk)b(θ
i∗(t)
t |sj)a(sk →

sj)
Ψ(t, sj) =

argmaxkD(t− 1, sk)b(θ
i∗(t)
t |sj)a(sk → sj)

end
end

3 P (Θ,S) = maxj D(T, sj)
4 Backtrack

Algorithm 1: Joint Enhancement-Decoding Algorithm

ensures that the likelihood of the actual label being in this set
is quite high. This assumption can be empirically seen to be
true from Table I. Hence we use this set of labels in class
specific enhancement for enhancing each frame in a noisy test
speech.

Figure 2 shows the block diagram summarizing the steps
of the best-N class-specific dictionary based enhancement
for phoneme recognition using the proposed JED algorithm.
At first, the phoneme label of each frame is estimated by
recognizing the speech enhanced using a class-independent
dictionary. The confusion matrix of ASR output for clean
speech is used to obtain the next N−1 best labels. These labels
are then used to obtain N enhanced observations for each
frame using the respective dictionaries. These observations
are then fed into the JED algorithm which gives the decoded
output by maximizing the likelihood.
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Fig. 2: Phoneme recognition of noisy speech using best-N
class-specific dictionaries using JED

The enhancement and recognition stages are similar to that
as Algorithm 1 in [14]. After obtaining the phoneme labels
using a phoneme recognizer on a class-independent enhanced
speech as in [14], we perform our Best-N class-specific
dictionary based enhancement. The steps are as follows:

1) Based on the class label of a frame, obtain the next
best N − 1 labels using the phoneme confusion matrix

obtained on a small subset of clean speech data.
2) Let the N best dictionaries corresponding to the obtained

class label be D∗
i ; 1 ≤ i ≤ N . Enhance the original

noisy speech observation y separately using each of
these N best dictionaries. Thus, the sparse coefficients
and the clean speech estimates obtained using the com-
posite dictionary Di = [D∗

i Dn] are[
c∗is
c∗in

]
= LARC(y,Di, µcoh) (3)

ŝ∗i = D∗
i × c∗is (4)

3) Input these N enhanced estimates for each frame to
the JED algorithm and evaluate the recognition perfor-
mance.

III. EXPERIMENTS AND RESULTS

A. Experimental setup
For all the experiments we use TIMIT [19] speech corpus

consisting of 6300 sentences from 630 speakers with train and
test sets containing 4620 and 1680 utterances, respectively.
The sampling frequency is 16 kHz. The sa utterances are not
used, since they are common to both training and testing sets.
We use factory2, m109, leopard, babble and volvo noises from
the NOISEX-92 [20] database after downsampling to 16 kHz,
to synthesize noisy test speech signals at 0, 5 and 10 dB SNRs.

1) Enhancement setup: The dictionaries are learned on the
magnitude STFT computed using a frame size of 30 ms with
10 ms frame shift. A 512-point FFT is taken and only the
first 257 points is used for learning the dictionary because
of symmetry in the spectrum. The number of iterations for
KSVD is set to 30. The dictionaries are speaker independent
and contain 512 basis vectors each. The class-independent
dictionary is learned on a subset of 2× 105 frames, randomly
sampled from the training data. The training frames are clas-
sified into different phoneme classes, using the TIMIT labels.
Phoneme specific dictionaries are learned from the spectra of
these frames. The 61 phonemes in TIMIT are mapped to a
reduced set of 39 phonemes [21], [22]. We learn phoneme-
specific dictionaries based on this reduced phoneme set.

2) Recognition setup: The ASR is trained on the entire
clean TIMIT training data. The TIMIT test set is randomly
divided into two equal sets. One of them is used to obtain
the clean speech confusion matrix after recognition. The
recognition accuracies are compared on the second test set. To
implement our JED algorithm, we modified the source code
of Viterbi decoding for recognition in the HTK toolkit [23].
The analysis frame is chosen to be 30 ms with 10 ms frame
shift. 39-dimensional mel frequency cepstral coefficients [24]
are used for recognition with 0-th coefficient, delta and delta-
delta coefficients. Cepstral mean normalization is applied. A
three-state monophone HMM model with diagonal covariance
matrix is used for recognition. The number of Gaussian
mixtures per state is set to 32, since increasing it further
does not improve the recognition performance significantly.
A bigram phoneme language model is used. The results are
reported on the reduced phoneme set.
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Fig. 3: Performance of JED in terms of phoneme recognition accuracies on speech with five different noises. In each figure,
results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are given for noisy speech, speech
enhanced using MBSS, NC, HRNR, GA, class independent enhancement scheme and best-N class dependent enhancement
(best-N ) schemes for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground truth phoneme labels are
used for enhancement.

B. Results and discussion

Improvements in the phoneme recognition accuracies are
compared for the proposed best-N class-dependent enhance-
ment scheme using JED for N varying from 1 through 5.
Figure 3 shows the phoneme recognition accuracies for the five
noises. We compare the recognition accuracies of the proposed
method with class-independent enhancement scheme and also
with four other enhancement schemes: multi-band spectral
subtraction (MBSS) [25], non-causal apriori SNR estimator
(NC) [26], harmonic regeneration noise reduction (HRNR)
[27] and geometric spectral subtraction (GA) [11].

From figure 3, we notice that the best-N enhancement
scheme yields accuracies superior to the class independent
case for all noise types. We get a marked improvement
over class-independent scheme when N = 1. However, the
improvement for N > 1 is minimal over N = 1 case.

For factory2 noise, best-N enhancement scheme gives an
average relative accuracy improvement (RAI) of 5.6%, 6.2%,
6.9%, 6.0% and 5.4% respectively, for values of N = 1 to 5,
over class-independent enhancement scheme, when averaged
over SNRs 0, 5, and 10 dB. For leopard noise, the average
RAI values are 2.3%, 3.6%, 3.9%, 3.2% and 3.2%. The RAI
values for M109 noise are 3.9%, 4.3%, 5.4%, 4.9% and 4.8%
respectively.

In the case of babble noise, the proposed scheme gives
superior performance only when N = 1. The average RAI
values over class-independent scheme are 2.3%, -1.0%, 0.8%,
-1.1% and -1.3% for values of N = 1 to 5.

In the case of volvo noise, it is observed that after CMN,
the recognition accuracy using noisy speech outperforms the
class-independent and class-dependent schemes in most cases.
Thus the proposed scheme shows average RAI values of -
0.2%, 0.1%, -0.02%, -0.4% and -0.8% respectively, for N
varying from 1 to 5, over the noisy performance. However,

TABLE I: Percentage of frames for which none of the esti-
mated N labels are correct. The two columns for each noise
correspond to N=1 and N=5.

SNR
(dB)

Factory2 M109 Leopard Babble Volvo
1 5 1 5 1 5 1 5 1 5

0 52 30 49 28 42 24 69 43 37 20
5 45 25 43 23 39 21 57 33 35 19
10 40 21 38 21 37 20 47 27 34 18

it is to be noted that the accuracies from the proposed scheme
are still better than those of the class independent scheme. For
phoneme recognition, the average RAIs over class-independent
scheme are 2.0%, 2.3%, 2.2%, 1.8% and 1.4% respectively,
for N varying from 1 to 5.

Figure 3 shows that as N varies from 1 to 5, the recognition
performance varies, giving the best with two or three dictionar-
ies in most of the cases. The benefit of using multiple enhanced
observations based on best-N class-specific dictionaries could
be explained from the fact that the class labels employed for a
frame have more chance of having the correct label when N=5
than when N=1. To illustrate this, we report the percentage of
frames where the estimated labels do not include the ground
truth class label for both N=1 and N=5 for different noise
and SNR conditions in Table I. It is clear that the percentage
of such frames reduces when N=5 compared to when N=1.

TABLE II: Log likelihood values of a few utterances for best-
N class-dependent schemes (best-N ) for N varying from 1 to
5 for factory2 noise at 0 dB SNR.

mnjm0/sx410 fpas0/sx404 mtaa0/sx115 fcal1/sx143
best-1 -21820 -21494 -23795 -19125
best-2 -20853 -20885 -22755 -18644
best-3 -20299 -20380 -22139 -18187
best-4 -20078 -20040 -21985 -18121
best-5 -19909 -19781 -21876 -18074



TABLE III: Phoneme recognition accuracies for best-N ; N =
2 to 5 using n-gram confusion matrix (N = 1 to 3 ) averaged
over Factory 2, Babble, Leopard, M109 and Volvo noises for
0, 5 and 10 dB SNRs

best-2 best-3 best-4 best-5
Single 50.0 50.3 49.9 49.8
Bigram 50.2 50.3 50.2 50.2
Trigram 50.2 50.4 50.3 50.2

As described in section II-C, the JED maximizes the overall
likelihood of the output utterance. Table II shows the log like-
lihood values of a few utterances for best-N class-dependent
schemes for factory2 noise at 0 dB SNR, from which we notice
that the likelihood increases monotonically from N = 1 to 5.
However, this does not always translate to monotonic increase
in recognition accuracy as is evident from Fig 3.

To explore the effect of dependency of phonemes, we also
repeated the experiments using a bigram and trigram confusion
matrix. In the bigram case, the best-N phonemes for each
frame was selected based on a bigram confusion matrix. This
matrix was populated by computing the occurrence of each
phoneme for a given combination of estimated phonemes
at the current and previous time instant. Similarly, trigram
confusion matrix uses the current, previous and next frames
for computing the frequency of occurrence of a phoneme.
Table III shows the recognition accuracies for this experiment
when averaged over all the five noises and the three SNRs.
It is observed that compared to the case of using a single
confusion matrix, the bigram and trigram cases give only
marginal improvements.

IV. CONCLUSIONS AND FUTURE WORK

We analyzed the phoneme recognition performance of JED
using best-N class-specific dictionaries. The recognition per-
formance varies with N , giving the best values at N = 2 or 3 in
most cases. Further, the performance also depends on the type
of noise corrupting the speech. Thus, in a real life scenario,
the performance can be optimized by first identifying the label
of the noise and then employing the relevant noise dictionary.

The input observations for JED algorithm need not nec-
essarily be enhanced using class-specific dictionary based
approaches. The recognition performance of different enhance-
ment techniques varies substantially over different noise types
and SNRs [9]. Hence one can choose any other denoising
technique depending upon the noise type and SNR. The pro-
posed algorithm can thus be used to find the best enhancement
scheme and recognition label for an input speech with any
noise. We intend to explore in this direction in future.
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