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Abstract—We propose a threshold-based algorithm to choose
between model uncertainty-based and DNN-classifier-based se-
lection of noise-specific DNN models for speech enhancement,
using Monte Carlo dropout. This method tries to compensate
for the poor performance of the former scheme on speech with
seen noises compared to classifier-based scheme. We show some
promising results on speech corrupted with a mixture of unseen
noises and on time varying, non-stationary noises, affecting
random segments of speech. We use TIMIT speech, NOISEX-92
noises, and real world, traffic noise recorded by us. Our algorithm
performs well on real world, traffic noise from 10 down to -10
dB.

I. INTRODUCTION

Deep learning [1], [2] based speech enhancement techniques
are being widely used recently because of the ability of
DNNs to learn any complex functions [3]. One of the major
drawbacks of DNN based enhancement is its inability to
perform well for an unseen noise scenario, that is, the case
where the network is less adapted to the noise that affects the
input speech. One way to address this issue is to train the
DNN model using a variety of acoustic conditions [4], [5],
[6].

Model-specific enhancement techniques [7], [8], [9], [10]
have gained popularity recently which depend on a model
selector, which ensures that the model chosen for enhancing
each frame entails an overall improved performance. In [11],
they employ multiple noise-specific regression models and use
a DNN-based classifier to find the model matching closest
to the input noise for robust SNR estimation. They use this
classifier to get the closest matching noise model in the case
of an unknown noise. But this technique does not ameliorate
the original problem of mismatch between the training and
testing conditions.

Nazreen and Ramakrishnan [12] report on their preliminary
experiments where, Mote Carlo dropout proposed by Gal
and Ghahramani [13] is used for modeling uncertainty in
each noise-specific DNN model. Monte Carlo dropout, unlike
conventional dropout [14], [15] uses dropout during inference
stage and multiple forward passes of the input are carried out
dropping random neurons of the network each time. The output

samples could be considered as Monte Carlo (MC) samples
from the model posterior [16]. In [12], a measure of the model
uncertainty obtained from the output samples of each noise-
specific DNN model is used to pick the appropriate model for
enhancing a noisy speech frame (Var-MC). For the uncertainty
measurement, the trace of the covariance matrix of the output
samples (V ar) is used [16].

Even though the above Var-MC algorithm gives superior
performance than a DNN classifier-based selection scheme for
unseen noise cases, the algorithm gives poorer performance for
seen noise cases than the classifier-based scheme. In order to
rectify this, we propose a conditional selection criterion for
the noise models in which the selection of noise models can
be switched from model uncertainty-based to classifier-based.
We show our results on unseen as well as seen noises. We
also show some promising results in the case where speech is
corrupted by a mixture of noises and a non-stationary scenario
where random segments of speech are affected by different
unseen noises. In another real world experiment, we record
real world, traffic noise and add to clean speech in order to
test our models.

II. µ-MC: A V ar THRESHOLD (µ) BASED ALGORITHM TO
CHOOSE EITHER CLASSIFIER-BASED OR

MODEL-UNCERTAINTY-BASED SELECTION OF MODEL

A threshold is set on the V ar values of all the five models
and based on this, one could go for either a classifier-based
selection or V ar based selection, as shown in Fig. 1.

The magnitude STFT of the input noisy frame Yf ∈ RK×1,
is passed through all the M available MC dropout models
(five for our experiments) J different times, by dropping
out random units each time. The corresponding outputs are
{Ŝi

j(Yf )}; 1 ≤ j ≤ J ; 1 ≤ i ≤ M ; where i is the model
index and M = 5. If the V ar(Si) values of all the five models
are above a threshold µ, this could be an indication that the
noise corrupting that frame does not match with any of these
M models and hence it is an unseen noise. In such a case, the
model which gives the minimum V ar value is considered as
the best model for enhancing that frame. The enhanced output



is obtained by taking the empirical mean of the J outputs of
the corresponding model: {Ŝi∗

j (Yf )}; 1 ≤ j ≤ J ; 1 ≤ i∗ ≤M .
On the other hand, if the V ar values are below the threshold

µ, it is possible that the input noisy frame is corrupted by a
noise matching one of these models (seen noise) and hence
we could go for the classifier-based selection, as Var-MC per-
formance is not reliable on seen noises. The input noisy frame
Yf is first fed into the classifier which picks the best model c∗

for enhancing the frame. Let the outputs of the corresponding
model be; {Ŝc∗

j (Yf )}; 1 ≤ j ≤ J ; 1 ≤ c∗ ≤M . The enhanced
frame ŜC(Yf ) is obtained by taking the empirical mean of
these J different outputs. Inverse Fourier transform is applied
on Ŝ with the noisy phase information to obtain the enhanced
output.
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Fig. 1. µ-MC : A V ar threshold (µ) based algorithm for enhancement using
multiple models trained on distinct noises. The appropriate model output is
selected for each input frame of noisy speech, using model uncertainty as a
selection criterion, or a noise classifier.

III. DETAILS OF THE EXPERIMENTS CONDUCTED

For our experiments, we use TIMIT [17] speech corpus
which consists of 6300 sentences from 630 speakers with
the train and test sets containing 4620 and 1680 utterances,
respectively. The entire TIMIT training data is used for train-
ing and 50 test files are randomly chosen from the TIMIT
test utterances for testing. To add noise to the speech we use
NOISEX-92 [18] database. For our experiments, an additive
noisy framework is assumed. The noise files are downsampled
to 16 kHz so as to match the sampling rate of TIMIT, in-
order to synthesize noisy test and training speech data. We use
magnitude STFT to train each DNN model computed using a
frame size of 30 ms with 10 ms frame shift after applying a
Hamming window. A 512-point FFT is used and the first 257
points are used to train each DNN model due to the symmetry
of the spectrum.

During the inference stage, the number of repetitions for
MC dropout models J , is chosen as 50. Each DNN based
regression model is trained with the magnitude STFT of
noisy speech as input and clean speech as target. The Adam
optimizer [19] is chosen. The dropout rate is set to 20%.

The testing is done using TIMIT test set corrupted with un-
seen noises white, pink and factory1 and seen noises factory2,
m109 and leopard (babble and volvo noise results are omitted
due to space constraints) at SNRs varying from -10dB to 10

dB. We also evaluate the algorithm on a real world, traffic
noise which we have recorded. The results are reported in
terms of segmental SNR (SSNR) [20].

A. DNN architecture for enhancement

Each DNN model for enhancement consists of 3 fully
connected layers of 2048 neurons and an output layer of 257.
ReLu activation function is used in all the three layers as
well as the output layer due to the nonnegative nature of
magnitude STFT. We minimize the mean square logarithmic
error (El) loss function between the noisy and clean magnitude
spectra. The architecture is based on the best performing DNN
configuration in [6].

B. Classifier-based model selection for comparison

We compare the µ−MC and Var-MC results to that of the
case where a DNN classifier is used to pick the noise-specific
models which can either be trained on conventional dropout
(class-C) or MC dropout (class-MC). The DNN classifier
consists of 3 fully connected layers of 2048 neurons and an
output layer of 5 neurons for the five noises. ReLu activation
function is used in all the three layers and Softmax activation
function is used in the output layer. Categorical cross entropy
is used as the loss function. The classifier is trained on speech
corrupted with factory2, babble, leopard, m109 and volvo
noises at SNRs 0, 5 and 10 dB which we consider as the
seen noises.

C. Var-MC and µ-MC experimental setup

For Var-MC and µ-MC experiments, we train five different
DNN models separately on speech corrupted with factory2,
m109, leopard, babble and volvo noises, each at SNRs 0, 5 and
10 dB. Each of these DNN model is trained using MC dropout
as well as conventional dropout [14], [15], for comparison
using the entire TIMIT training data. The architecture of the
models are as defined in section III-A.

The threshold µ is selected based on the experiments on
a validation set of 30 files from TIMIT corrupted with seen
noises factory 2, m109, leopard, babble and volvo and unseen
pink noise at SNRs -10, -5 , 0, 5 and 10 dB. For our
experiments, this threshold is set at µ = 0.16.

IV. RESULTS AND DISCUSSION

A. Results of µ-MC model on unseen and seen noises

Table I shows the performance of µ-MC compared to class-
C, class-MC and Var-MC in terms of SSNR [20] for unseen
noises white, pink and factory1. The results are averaged over
50 files randomly selected from TIMIT [17] test set. Var-
MC gives the best performance of all, especially at lower
SNRs. But at higher SNRs like 5 and 10 dB for example, the
performance of Var-MC drops below those of class-MC and
class-C in some cases. µ-MC algorithm not only compensates
for this performance drop, but also gives performance superior
to class-C and class-MC at lower SNRs even though it is not
as much as that of Var-MC at lower SNRs.



TABLE I
RESULTS ON UNSEEN AND SEEN NOISES: PERFORMANCE COMPARISON (IN TERMS OF SSNR: SEGMENTAL SNR) OF VAR-MC AND µ-MC

ALGORITHMS WITH CLASS-C AND CLASS-MC FOR SPEECH CORRUPTED WITH UNSEEN NOISES WHITE, PINK AND FACTORY1 AS WELL AS SEEN NOISES
FACTORY2, LEOPARD AND M109, AT SNRS -10, -5, 0, 5 AND 10 dB AVERAGED OVER 50 FILES RANDOMLY SELECTED FROM TIMIT TEST SET.

White (Unseen) Pink (Unseen) Factory1 (Unseen)

SNR (dB) Noisy
input Class-C Class-MC Var-MC µ-MC

µ = 0.16
Noisy
input Class-C Class-MC Var-MC µ-MC

µ = 0.16
Noisy
input Class-C Class-MC Var-MC µ-MC

µ = 0.16
10 2.0 2.6 2.6 2.7 2.7 2.2 4.8 4.8 4.5 4.7 2.3 4.9 4.9 4.8 4.9
5 -1.6 -0.8 -0.8 -0.7 -0.7 -1.4 1.7 1.7 1.6 1.7 -1.3 2.0 2.0 2.0 2.0
0 -4.6 -4.1 -4.0 -3.8 -4.0 -4.5 -1.6 -1.6 -1.3 -1.6 -4.4 -1.1 -1.1 -0.83 -1.1
-5 -7.2 -6.7 -6.6 -6.5 -6.6 -7.1 -4.5 -4.5 -3.7 -4.5 -6.9 -4.1 -4.1 -3.3 -4.0

-10 -8.9 -8.7 -8.6 -8.4 -8.5 -8.8 -7.1 -7.1 -5.4 -6.9 -8.7 -6.6 -6.6 -5.3 -6.3
Factory 2 (Seen) Leopard (Seen) M109 (Seen)

SNR (dB) Noisy
input Class-C Class-MC Var-MC µ-MC

µ = 0.16
Noisy
input Class-C Class-MC Var-MC µ-MC

µ = 0.16
Noisy
input Class-C Class-MC Var-MC µ-MC

µ = 0.16
10 2.6 9.5 9.5 8.1 9.5 2.5 8.9 8.9 8.5 8.9 2.5 9.1 9.1 8.1 9.1
5 -0.9 7.7 7.7 5.8 7.6 -1.1 7.4 7.4 7.0 7.4 -1.1 7.3 7.3 6.3 7.3
0 -4.1 5.8 5.8 3.3 5.8 -4.3 5.9 5.9 5.6 5.9 -4.2 5.3 5.3 4.3 5.3
-5 -6.7 4.0 4.0 1.3 3.9 -6.8 4.3 4.4 4.2 4.3 -6.8 3.5 3.5 2.5 3.5

-10 -8.5 2.1 2.1 0.5 2.1 -8.6 2.7 2.9 2.7 2.8 -8..6 1.9 1.9 1.0 1.9

TABLE II
MIXED, NON-STATIONARY UNSEEN AND REAL WORLD TRAFFIC NOISE EXPERIMENTS: PERFORMANCE EVALUATION (IN TERMS OF SSNR:
SEGMENTAL SNR) OF VAR-MC AND µ-MC ALGORITHMS FOR THE CASES; MIX: SPEECH IS CORRUPTED WITH A MIXTURE OF UNSEEN NOISES,

FACTORY1 AND PINK; TV: EACH TEST UTTERANCE OF DURATION 2 TO 3 SEC. IS DIVIDED INTO A RANDOM NUMBER (5 TO 10) OF SEGMENTS OF
RANDOM LENGTH AND UNSEEN NOISES WHITE, FACTORY1 AND PINK ARE ADDED RANDOMLY TO THESE SEGMENTS; TRAFFIC: REAL WORLD TRAFFIC

NOISE IS RECORDED AND CLEAN SPEECH IS CORRUPTED WITH THIS NOISE. THE RESULTS AVERAGED OVER 50 FILES RANDOMLY SELECTED FROM
TIMIT TEST SET.

Mix: Additive noise Factory1+Pink (unseen) TV: White-Factory1-Pink (unseen) Traffic (unseen)

SNR (dB) Noisy
input Class-C Class-MC Var-MC µ-MC

µ = 0.16
Noisy
input Class-C Class-MC Var-MC µ-MC

µ = 0.16
Noisy
input Class-C Class-MC Var-MC µ-MC

µ = 0.16
10 2.2 4.8 4.8 4.6 4.8 3.0 4.9 4.9 4.7 4.9 3.4 4.9 4.9 5.0 5.0
5 -1.3 1.8 1.8 1.8 1.8 -0.6 1.9 1.9 1.9 1.9 -0.2 2.0 2.0 2.2 2.0
0 -4.5 -1.3 -1.3 -1.0 -1.3 -3.9 -1.4 -1.4 -1.2 -1.4 -3.4 -1.1 -1.1 -0.8 -1.0
-5 -7.0 -4.3 -4.3 -3.5 -4.1 -6.5 -4.3 -4.3 -3.7 -4.2 -6.0 -4.1 -4.1 -3.6 -3.9

-10 -8.8 -6.8 -6.8 -5.5 -6.5 -8.4 -6.9 -6.9 -5.6 -6.7 -7.9 -6.6 -6.6 -6.1 -6.2

Table I also shows the performance of Var-MC and µ-MC
for seen noises factory2, m109 and leopard (babble and volvo
noise results are omitted due to space constraints). It can
be seen that Var-MC performance is really poor compared
to class-C and class-MC for seen noises. µ-MC algorithm
compensates for this performance drop by using per frame
threshold µ to select between the Var-MC and class-MC
schemes. Thus µ-MC algorithm not only gives performance
superior to class-C and class-MC algorithm for unseen cases
but also gives comparable performance for seen noise cases.

B. Results of Var-MC and µ-MC on mixed, time varying and
real world, traffic noises

We have also carried out some experiments to evaluate the
performance of both Var-MC and µ-MC algorithms where a
mixture of factory 1 and pink noise (mix) affects the speech.
In another experiment, we show the evaluation on a non-
stationary scenario, where each test utterance of 2 to 3 seconds
is divided into a random number (chosen to lie between 5 and
10) of segments of random lengths. One among the unseen
noises factory1, pink or white is randomly chosen to affect
these segments (TV). Table II shows these results. In both
the cases mix and TV, we see that both Var-MC and µ-MC
give performance superior to class-C and class-MC. Though
Var-MC gives the best performance of all at lower SNRs, at
higher SNRs this performance drops below those of class-C

and class-MC. µ-MC compensates for this performance drop
and gives performance comparable to class-C and class-MC
at higher SNRs.

We also have performed a real world experiment, where we
record real world, traffic noise to evaluate the performance
of our algorithm. We believe this experiment is significant,
since in most cases DNNs for speech enhancement might
be untrained on these real world noises. Results reported by
Table II show that both Var-MC and µ-MC give performances
superior to class-MC and class-C at all SNRs.

V. CONCLUSION

We propose a V ar threshold µ based algorithm (µ-MC)
to switch between model uncertainty-based and classifier-
based selection scheme, in order to compensate for the poor
performance of the model uncertainty-based DNN model
selection scheme (Var-MC) proposed in [12], compared to
classifier-based selection scheme, for enhancement of speech
corrupted with seen noises. We show the performance of µ-
MC algorithm for unseen and seen noises at SNRs varying
from -10 dB to 10 dB. We also show some promising results
for the cases where speech is corrupted by a mixture of unseen
noises and where random segments of speech are corrupted by
random unseen noises. In another significant result, we show
the performance of the algorithms on speech corrupted by real
world, traffic noise.
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