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Cumulative Impulse Strength for Epoch Extraction
Prathosh A. P., Member, IEEE Sujith P, Ramakrishnan A. G. , Senior Member, IEEE and Prasanta Kumar

Ghosh, Senior Member, IEEE

Abstract—Algorithms for extracting epochs or glottal closure
instants (GCIs) from voiced speech typically fall into two cate-
gories: (i) ones which operate on linear prediction residual (LPR)
and (ii) those which operate directly on the speech signal. While
the former class of algorithms (such as YAGA and DPI) tend to
be more accurate, the latter ones (such as ZFR and SEDREAMS)
tend to be more noise-robust. In this paper, a temporal measure
termed the cumulative impulse strength is proposed for locating
the impulses in a quasi-periodic impulse-sequence embedded
in noise. Subsequently, it is applied for detecting the GCIs
from the inverted integrated LPR using a recursive algorithm.
Experiments on two large corpora of speech with simultaneous
electroglottographic recordings demonstrate that the proposed
method is more robust to additive noise than the state-of-the-art
algorithms, despite operating on the LPR.

Index Terms—GCI detection, epoch extraction, cumulative
impulse strength, impulse tracking.

I. INTRODUCTION

Pitch-synchronous analysis of the voiced speech signal is
a popular technique in which the glottal closure instants
(GCIs or epochs) are used to define the analysis frames.
Epochs are utilized in various applications including pitch
tracking, voice source estimation [1], speech synthesis [2],
[3], prosody modification [4], [5], [6], [7], voiced/unvoiced
boundary detection [8] and speaker identification [9], [10].
Hence, automatic detection of the GCIs from the voiced speech
signal is considered to be an important problem in speech
research. Comprehensive reviews of the importance of the
GCI detection problem and summary of the state-of-the-art
algorithms may be found in [11], [12].

Many of the popular GCI detectors can be categorized into
two classes. Detectors belonging to the first class adhere to
the source-filter model of speech production and locate GCIs
from an estimate of the glottal source signal such as linear
prediction residual (LPR) and the voice source (VS) signal.
Algorithms like Hilbert Envelope (HE) based epoch extractors
[13], Dynamic Programming Phase Slope Algorithm (DYPSA)
[14], Yet Another GCI Algorithm (YAGA) [15], Dynamic
Plosion Index (DPI) [16] and sub-band decomposition method
[17] fall into this category. The second class of algorithms such
as Speech Event Detection using the Residual Excitation And
a Mean-based Signal (SEDREAMS) [18] and Zero-frequency
resonator (ZFR) [19] operate directly on the speech signal
without any model assumption or deconvolution. The former
class of algorithms are more accurate than the latter ones
[12]. This may be because the GCIs are associated with the
source signal, which forms the basis for the analysis for these
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algorithms. However, they are believed to be more susceptible
to noise compared to SEDREAMS and ZFR, mainly because
of inaccurate estimation of the LPR in the presence of noise.
Further, ZFR and SEDREAMS assume that the average pitch
period (APP) is known a priori while the former class of
algorithms do not require the information of APP. Motivated
by these observations, in this paper, we explore whether an
LPR based GCI detection scheme could be noise robust if
the APP can be estimated a-priori. Specifically, we propose
a generic measure named the cumulative impulse strength
(CIS) to locate the impulses in a quasi-periodic impulse train
corrupted by additive noise. Further, using CIS, we devise a
recursive algorithm to extract GCIs from the integrated LPR
(ILPR) [16] of the voiced speech and evaluate the proposed
algorithm using two speech databases with simultaneous elec-
troglottographic (EGG) recordings in both clean and noisy
conditions.

II. IMPULSE-LOCATION DETECTION USING CIS

A. Motivation

It is known that the GCIs coincide with the local negative
peaks of the voice source signal [20]. Thus, a GCI extraction
algorithm which uses the voice source signal typically involves
two stages - (i) transformation of the speech signal into a
domain where the voice source signal is best represented
(such as ILPR), (ii) accurately picking the peaks corresponding
to GCIs from the transformed signal. To reduce the error
committed by the peak-picking algorithm, the temporal quasi-
periodicity property of the voiced speech can be exploited.
In a quasi-periodic impulse-train like sequence, the accuracy
of detection of each impulse could be improved by using the
knowledge of the location and the strength of the previous
impulses. That is, the impulse-like behavior at a given instant
of time may be determined not only by analyzing some local
properties of the signal around that instant but also by taking
into account the global behavior of the signal around all the
previous impulse locations. Based on this intuition, we define
a measure named the cumulative impulse strength to estimate
the locations of the impulses in a quasi-periodic impulse train.

B. Cumulative impulse strength

Let r[n] be an amplitude-perturbed, quasi-periodic impulse
train of length N represented as follows:

r[n] =

N∑
k=1

Akδ[n− nk], (1)

nk = nk−1 +N0 + ∆k, 2 ≤ k ≤ N. (2)
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where nk is the location of the k-th impulse with amplitude
Ak, δ[n − nk] denotes the Kronecker delta function, N0 is
the average period of r[n] and ∆k is the deviation of nk −
nk−1 from N0. The measure CIS is defined recursively at
each location n, by combining the effect of the signal r and
the CIS C around the previous impulse location. That is, if
ρ = maxk |∆k|, the CIS C[n] at the n-th sample is defined as
follows:

C[n] = max
n−N0−ρ≤m≤n−N0+ρ

(
C[m] + r[m]

)
(3)

In order to locate the impluses from C[n], we define one
more sequence V [n] as follows.

V [n] = argmax
n−N0−ρ≤m≤n−N0+ρ

(
C[m] + r[m]

)
. (4)

That is, at each sample n, V [n] stores the location that
maximizes C[n] within the search interval defined in Eq. 3.
Once the location of the last impulse is known, a back tracking
procedure is employed to locate all the impulses from V [n]
as follows: if nk corresponds to the kth impulse location, the
(k− 1)th impulse location is given by V [nk]. The location of
the final impulse is defined to be that which maximizes r[m],
N − 1−N0 + ρ ≤ m ≤ N − 1. This is because the location
of the maxima of the r[m] within the last periodic interval
corresponds to the final impulse.

C. Illustration of CIS on synthetic data

In this section we report an experiment where the objective
is to estimate the locations of the impulses using the CIS,
from an impulse train (N0=150) of 10 impulses spanning over
1500 samples, having perturbations in amplitudes (up to 30%
of a fixed amplitude) and period (up to 10 % of N0) and
corrupted with additive white Gaussian noise at -10 dB signal
to noise ratio (SNR). To account for the random nature of the
noise, we consider the mean and standard deviation (SD) of
the deviation (σ) of the estimate from the actual location over
1000 noisy realizations of the impulse train. Fig. 1 depicts
the five different experiments conducted: (a) exactly periodic
impulse train without amplitude perturbation and noise, (b)
and (c) are exactly periodic noisy impulse trains without
and with amplitude perturbation, respectively. Fig. 1 (d) and
(e) are quasi-periodic noisy impulse trains without and with
amplitude perturbation, respectively. The impulse locations are
estimated without any error for the cases (a), (b) and (c). For
the cases (d) and (e), the mean and standard deviation of the
σ for all impulse locations are approximately zero and less
than five samples, respectively. This result suggests that the
perturbation in the amplitudes of the impulses has no effect
on the estimation of impulse locations using the CIS whereas
the estimation error depends on the extent of fluctuation of
the period. Further, in most of the cases there are well-defined
peaks in the CIS, at the locations of impulses even at -10 dB
SNR.
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Figure 1. Illustration of the cummulative impulse strength (CIS) (for the
cases described in the text of section II. C) of a quasi-periodic impulse train
(left panels are the impulse trains, middle panels are the CIS and last panels
show the error in the estimated locations)

D. GCI detection using CIS on ILPR

It has been shown that the use of the ILPR is more robust
for GCI detection compared to LPR [15], [16]. Since the
GCIs manifest as local negative peaks in the ILPR [20],
ILPR samples other than the local minima, do not contain
information regarding the GCIs. Thus we first consider the
inverted ILPR and then convert the inverted ILPR (call it c[n])
to a peak-strength sequence ps[n], which is non-zero only
at the local maxima of c[n]. In r[n], if lmax represents the
location of a maximum between two successive local minima
lmin− and lmin+ , the ps[n] at lmax is defind as

ps[lmax] = c[lmax]/
√

(|c[lmin− ]|)× (|c[lmin+ ]|) (5)

The CIS is computed using the ps[n] of the ILPR to locate
the GCIs. Note that, given a speech signal, the computation
of the CIS can be initiated at any point in time, in the speech
signal. The back tracking algorithm ensures that the peaks
picked are the GCIs at the voiced segments and arbitrary
locations at the unvoiced segments, that occur post the ini-
tialization point. However, in practice, computation of CIS
is started at the beginning of the utterance so that the GCIs
within the entire utterance are detected. Figure 2 illustrates
the workflow of the algorithm on three pitch periods of the
inverted ILPR. The search interval (required for back-tracking)
for an arbitrary instant n0 which appears between the final and
penultimate GCI locations (nk and nk−1) is indicated between
n0 − T0 −∆ and n0 − T0 + ∆. It is seen that once the final
GCI is detected, the CIS measure along with the back-tracking
function ensures that the previous GCIs are correctly located.
Figure 3 illustrates the estimation of GCIs using the proposed
method on a segment of the voiced speech corrupted with
white Gaussian noise at different SNR levels down to -10 dB.
It is seen that the ps[n] serves two purposes: (a) emphasizing
the local peaks and (b) reducing the number of locations
considered for analysis. The locations of the GCIs are correctly
(i.e., there are no misses and false insertions) estimated for all
the cases. However, the deviation of the estimated locations
from the true locations increases with decreasing SNR.
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Figure 2. Illustration of the CIS algorithm on three pitch periods of the
inverted ILPR. The search interval for computation of CIS for the point n0

is indicated. Further, the location of the final GCI and the preceeding GCIs
as determined from the back tracking using V (n) are also marked.
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Figure 3. Illustration of the GCI estimation at different noise levels (a)
speech signal at different SNRs, (b) inverted ILPR signal, (c) peak strength
signal (d) CIS and (e) the estimated (square beads) and actual (circular beads)
locations of the GCIs.

III. EXPERIMENTS AND RESULTS

A. Databases and performance measures

The proposed technique is evaluated on two corpora, com-
prising simultaneous recordings of the speech and the EGG
signals - (i) the data provided with the book by D. G.
Childers [21], henceforth referred to as the Childers’ data.
This is recorded from 52 speakers (both male and female)
in a single-wall sound room. The Childers’ data consists of
utterances of 12 sustained vowels, 16 sustained fricatives, an
utterance counting one to ten, one counting one to ten with
a progressively increasing loudness, singing the musical scale
using ‘la’ and three sentences. In this study, all the speech
materials of the Childers’ data except the fricative stimuli
are used. (ii) a subset of the CMU ARCTIC databases which
contain 1132 phonetically balanced sentences. Each of these
is a single speaker database corresponding to BDL-US male,
JMK-Canadian male and SLT-US female. We use a negative
threshold (1/6 of the maximum value [22]) on the dEGG
signal to distinguish the voiced from the unvoiced speech.
The negative peaks of dEGG provide the ground truth GCIs
for validation, which is done only on the voiced speech. We
use the standard performance measures of identification rate

(IDR), miss rate (MR), false alarm rate (FAR) and the standard
deviation of error (SDE) or identification accuracy (IDA) and
the accuracy to 0.25 ms (A25) which are illustrated in Fig. 6 of
[12]. Experiments are carried out on clean speech and speech
degraded with additive white Gaussian and babble noise at
SNR 20 to -20 dB in steps of 5 dB. The noise samples are
taken from the NOISEX-92 database [23]. We compare the re-
sults with four state-of-the-art algorithms: DPI, SEDREAMS,
ZFR and DYPSA. The average pitch period required for ZFR,
SEDREAMS and CIS are derived from the pitch estimation
algorithm [24] (both for clean and noisy speech) and the
maximum pitch deviation parameter ρ, is empirically set at 0.3
times the average pitch period1. ILPR is estimated by inverse
filtering the speech signal (over each disjoint voiced segment),
with prediction coefficients calculated on the pre-emphasized
Hanning windowed speech samples using the autocorrelation
method by setting the number of predictor coefficients to the
sampling frequency in kHz plus four.

Table I
RESULTS OF DIFFERENT GCI ESTIMATION ALGORITHMS ON CLEAN

SPEECH. THE TWO ENTRIES CORRESPOND TO THE RESULTS ON
CHILDERS’ DATA AND CMU ARCTIC DATABASES, RESPECTIVELY.

Method IDR % SDE in ms A25 %
CIS 95.85, 98.82 0.35, 0.26 82.83, 78.85
DPI 96.12, 99.25 0.38, 0.28 86.09, 80.10
SED 95.47, 99.10 0.35, 0.26 87.81, 77.81
ZFR 94.15, 94.12 0.42, 0.21 52.61, 78.01
DYP 97.01, 98.02 0.43, 0.45 83.28, 71.72

B. Results and discussion

1) Clean speech: Table I summarizes the performance of
the five GCI detection algorithms on clean speech. The first
entries in Table 1, show that, on Childer’s data, the IDR of
the CIS method (95.85%) is marginally better than that of the
ZFR (94.15%) and SEDREAMS (95.47%), which are based
on direct processing of speech signal. However, DYPSA and
DPI algorithms have higher IDR because they do not use any
APP information and hence GCIs from these algorithms are
not affected by the erroneous APP estimates. On the CMU
ARCTIC data (second entries in Table 1), all the measures
IDR, SDE and A25 of the CIS algorithm are comparable to
those of the other algorithms. However, as corroborated by
the observations made in the previous studies [16], [12], the
DPI algorithm and the SEDREAMS are the best in terms of
the GCI estimation accuracy on clean speech.

2) Noisy speech: Figures 4 and 5 depict the results of
the algorithms on the speech corrupted with additive white
Gaussian and babble noise, respectively. In the case of the
white Gaussian noise, the IDR, of the CIS method is better
than all the algorithms at SNRs between 0 and -15 dB. The
accuracy measures namely, SDE and A25 are also consistently
the lowest and the highest for the CIS method, respectively.

1It is experimentally observed that the choice of the value of ρ is not very
critical for a wide range of values. Specifically, the IDR varies (on a subset of
the database) is about 1 % when ρ varies from 0.1 and 0.45. IDR is maximum
for ρ = 0.3 and hence this value is used in all further experiments.
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Figure 4. Performance of the five different algorithms averaged over both the databases at different SNRs (-20 to 20 dB) with additive white Gaussian noise.

−20   0   20
50

60

70

80

90

100

−20   0   20
0

5

10

15

20

−20   0   20
0

5

10

15

20

25

30

35
FAR 

SNR in dB
−20   0   20
0

0.5

1

1.5

2

−20   0   20
0

20

40

60

80

 

 

CIS SEDREAMS DPI DYP ZFR

IDR MR Accuracy to 0.25 msSDE (ms)

Figure 5. Performance of the five different algorithms averaged over both the databases at different SNRs (-20 to 20 dB) with additive babble noise.

The superior performance of the CIS method may be attributed
to the fact that the sequence of CIS uses locations of all
the previous impulses to estimate the location of the current
impulse in a recursive manner. In the case of the babble
noise, the IDR and A25 for all the algorithms are worse
than those in the case of the white Gaussian noise. This
may be due to the speech-like characteristics of the babble
noise. The performance of the CIS method is comparable to
that of SEDREAMS and ZFR, in terms of IDR. However,
CIS performs better than all the other algorithms considered
in terms of accuracy measure A25. In summary, for the
experiments in clean and noisy conditions, it is observed that
the performance of the CIS method is comparable (superior
in some cases) to that of all the algorithms examined despite
being based on the ILPR. CIS method is found to be superior
than the other algorithms which are based on the LPR (DPI
and DYPSA) in the presence of noise. It is known that DYPSA
algorithm degrades the most with noise. The DPI algorithm,
despite using ILPR is comparable to SEDREAMS and ZFR.
Based on these experiments, it may be concluded that if
the average pitch information is available a-priori, then an
algorithm based on the linear prediction residual can reach a
performance comparable to those based on the speech signal
alone in the presence of noise.

3) Dependency on average pitch period: In the earlier sec-
tions, it was mentioned that the proposed algorithm, along with
ZFR and SEDREMS require the average pitch information a-
priori. To quantify the dependency of these algorithms on the
accuracy of average pitch value, the IDR obtained with dif-
ferent noisy average pitch estimates on ARCTIC databases is
shown in Fig. 6. The base estimate for the average pitch period
is obtained using the dEGG signal to ensure that the errors in
its computation do no affect the experiments. Subsequently
pitch period is varied such that the error between the actual
and the estimated pitch periods are in the range of -0.6 to 1.4
(with respect to the actual pitch period) in steps of 0.1. The

performance of all the three algorithms degrade with error
in average pitch estimate. However, the degradation trends
corresponding to different algorithms are slightly different. If
the estimated pitch period is less than the actual pitch, the
degradation in ZFR is more severe compared to the other two,
which are comparable with each other. However ZFR is more
robust than the other two if the estimated pitch is more than
the actual pitch, with a decrease in IDR from 98 % to just
above 85 % when the error in the estimated pitch varies from
0 to 140 % of the actual pitch. SEDREAMS and CIS have
their IDR more than 80 % when the estimated pitch is within
± 35 % of the actual average pitch whereas IDR for ZFR
degrades to 50 % if the error in the estimated average picth
is -0.2.
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Figure 6. Illustration of dependency of three GCI detection algorithms on
average pitch period. The variation in IDR with varying error in average pitch
period is shown for the CMU ARCTIC data.

IV. CONCLUSIONS

We propose a non-linear measure called the cumulative
impulse strength to locate the impulses in a noisy quasi-
periodic impulse train. We apply the CIS measure on the
ILPR to detect the GCIs of the voiced speech, using an
estimate of average pitch period. Experiments with different
noisy conditions on data with simultaneous speeech and EGG
data reveal that the CIS method is comparable to the best state-
of-the-art algorithms indicating its robustness to noise despite
operating on the linear prediction residual.
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Cumulative Impulse Strength for Epoch Extraction
Prathosh A. P., Member, IEEE Sujith P, Ramakrishnan A. G. , Senior Member, IEEE and Prasanta

Kumar Ghosh, Senior Member, IEEE

Abstract

Algorithms for extracting epochs or glottal closure instants (GCIs) from voiced speech typically fall into two

categories: (i) ones which operate on linear prediction residual (LPR) and (ii) those which operate directly on the

speech signal. While the former class of algorithms (such as YAGA and DPI) tend to be more accurate, the latter

ones (such as ZFR and SEDREAMS) tend to be more noise-robust. In this paper, a temporal measure termed the

cumulative impulse strength is proposed for locating the impulses in a quasi-periodic impulse-sequence embedded in

noise. Subsequently, it is applied for detecting the GCIs from the inverted integrated LPR using a recursive algorithm.

Experiments on two large corpora of speech with simultaneous electroglottographic recordings demonstrate that the

proposed method is more robust to additive noise than the state-of-the-art algorithms, despite operating on the LPR.

Index Terms

GCI detection, epoch extraction, cumulative impulse strength, impulse tracking.

I. INTRODUCTION

Pitch-synchronous analysis of the voiced speech signal is a popular technique in which the glottal closure

instants (GCIs or epochs) are used to define the analysis frames. Epochs are utilized in various applications

including pitch tracking, voice source estimation [1], speech synthesis [2], [3], prosody modification [4], [5], [6],

[7], voiced/unvoiced boundary detection [8] and speaker identification [9], [10]. Hence, automatic detection of the

GCIs from the voiced speech signal is considered to be an important problem in speech research. Comprehensive

reviews of the importance of the GCI detection problem and summary of the state-of-the-art algorithms may be

found in [11], [12].

Many of the popular GCI detectors can be categorized into two classes. Detectors belonging to the first class

adhere to the source-filter model of speech production and locate GCIs from an estimate of the glottal source

signal such as linear prediction residual (LPR) and the voice source (VS) signal. Algorithms like Hilbert Envelope

(HE) based epoch extractors [13], Dynamic Programming Phase Slope Algorithm (DYPSA) [14], Yet Another GCI

Prathosh is with Xerox research center India, Sujith is with Ittiam systems India, and the other authors are with Indian Institute of Science,
Bangalore - 560012, India. (e-mail: prathosh.AP@xerox.com, sujith.p4@gmail.com, ramkiag@ee.iisc.ernet.in, prasantg@ee.iisc.ernet.in.)
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Algorithm (YAGA) [15], Dynamic Plosion Index (DPI) [16] and sub-band decomposition method [17] fall into

this category. The second class of algorithms such as Speech Event Detection using the Residual Excitation And

a Mean-based Signal (SEDREAMS) [18] and Zero-frequency resonator (ZFR) [19] operate directly on the speech

signal without any model assumption or deconvolution. The former class of algorithms are more accurate than

the latter ones [12]. This may be because the GCIs are associated with the source signal, which forms the basis

for the analysis for these algorithms. However, they are believed to be more susceptible to noise compared to

SEDREAMS and ZFR, mainly because of inaccurate estimation of the LPR in the presence of noise. Further, ZFR

and SEDREAMS assume that the average pitch period (APP) is known a priori while the former class of algorithms

do not require the information of APP. Motivated by these observations, in this paper, we explore whether an LPR

based GCI detection scheme could be noise robust if the APP can be estimated a-priori. Specifically, we propose

a generic measure named the cumulative impulse strength (CIS) to locate the impulses in a quasi-periodic impulse

train corrupted by additive noise. Further, using CIS, we devise a recursive algorithm to extract GCIs from the

integrated LPR (ILPR) [16] of the voiced speech and evaluate the proposed algorithm using two speech databases

with simultaneous electroglottographic (EGG) recordings in both clean and noisy conditions.

II. IMPULSE-LOCATION DETECTION USING CIS

A. Motivation

It is known that the GCIs coincide with the local negative peaks of the voice source signal [20]. Thus, a GCI

extraction algorithm which uses the voice source signal typically involves two stages - (i) transformation of the

speech signal into a domain where the voice source signal is best represented (such as ILPR), (ii) accurately

picking the peaks corresponding to GCIs from the transformed signal. To reduce the error committed by the peak-

picking algorithm, the temporal quasi-periodicity property of the voiced speech can be exploited. In a quasi-periodic

impulse-train like sequence, the accuracy of detection of each impulse could be improved by using the knowledge

of the location and the strength of the previous impulses. That is, the impulse-like behavior at a given instant of

time may be determined not only by analyzing some local properties of the signal around that instant but also

by taking into account the global behavior of the signal around all the previous impulse locations. Based on this

intuition, we define a measure named the cumulative impulse strength to estimate the locations of the impulses in

a quasi-periodic impulse train.
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B. Cumulative impulse strength

Let r[n] be an amplitude-perturbed, quasi-periodic impulse train of length N represented as follows:

r[n] =

N∑
k=1

Akδ[n− nk], (1)

nk = nk−1 +N0 + ∆k, 2 ≤ k ≤ N. (2)

where nk is the location of the k-th impulse with amplitude Ak, δ[n − nk] denotes the Kronecker delta function,

N0 is the average period of r[n] and ∆k is the deviation of nk − nk−1 from N0. The measure CIS is defined

recursively at each location n, by combining the effect of the signal r and the CIS C around the previous impulse

location. That is, if ρ = maxk |∆k|, the CIS C[n] at the n-th sample is defined as follows:

C[n] = max
n−N0−ρ≤m≤n−N0+ρ

(
C[m] + r[m]

)
(3)

In order to locate the impluses from C[n], we define one more sequence V [n] as follows.

V [n] = argmax
n−N0−ρ≤m≤n−N0+ρ

(
C[m] + r[m]

)
. (4)

That is, at each sample n, V [n] stores the location that maximizes C[n] within the search interval defined in Eq.

3. Once the location of the last impulse is known, a back tracking procedure is employed to locate all the impulses

from V [n] as follows: if nk corresponds to the kth impulse location, the (k − 1)th impulse location is given by

V [nk]. The location of the final impulse is defined to be that which maximizes r[m], N−1−N0+ρ ≤ m ≤ N−1.

This is because the location of the maxima of the r[m] within the last periodic interval corresponds to the final

impulse.

C. Illustration of CIS on synthetic data

In this section we report an experiment where the objective is to estimate the locations of the impulses using

the CIS, from an impulse train (N0=150) of 10 impulses spanning over 1500 samples, having perturbations in

amplitudes (up to 30% of a fixed amplitude) and period (up to 10 % of N0) and corrupted with additive white

Gaussian noise at -10 dB signal to noise ratio (SNR). To account for the random nature of the noise, we consider

the mean and standard deviation (SD) of the deviation (σ) of the estimate from the actual location over 1000 noisy
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realizations of the impulse train. Fig. 1 depicts the five different experiments conducted: (a) exactly periodic impulse

train without amplitude perturbation and noise, (b) and (c) are exactly periodic noisy impulse trains without and

with amplitude perturbation, respectively. Fig. 1 (d) and (e) are quasi-periodic noisy impulse trains without and with

amplitude perturbation, respectively. The impulse locations are estimated without any error for the cases (a), (b) and

(c). For the cases (d) and (e), the mean and standard deviation of the σ for all impulse locations are approximately

zero and less than five samples, respectively. This result suggests that the perturbation in the amplitudes of the

impulses has no effect on the estimation of impulse locations using the CIS whereas the estimation error depends

on the extent of fluctuation of the period. Further, in most of the cases there are well-defined peaks in the CIS, at

the locations of impulses even at -10 dB SNR.
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Figure 1. Illustration of the cummulative impulse strength (CIS) (for the cases described in the text of section II. C) of a quasi-periodic
impulse train (left panels are the impulse trains, middle panels are the CIS and last panels show the error in the estimated locations)

D. GCI detection using CIS on ILPR

It has been shown that the use of the ILPR is more robust for GCI detection compared to LPR [15], [16]. Since

the GCIs manifest as local negative peaks in the ILPR [20], ILPR samples other than the local minima, do not

contain information regarding the GCIs. Thus we first consider the inverted ILPR and then convert the inverted

ILPR (call it c[n]) to a peak-strength sequence ps[n], which is non-zero only at the local maxima of c[n]. In r[n],

if lmax represents the location of a maximum between two successive local minima lmin− and lmin+ , the ps[n] at

lmax is defind as

ps[lmax] = c[lmax]/
√

(|c[lmin− ]|)× (|c[lmin+ ]|) (5)

The CIS is computed using the ps[n] of the ILPR to locate the GCIs. Note that, given a speech signal, the

computation of the CIS can be initiated at any point in time, in the speech signal. The back tracking algorithm

ensures that the peaks picked are the GCIs at the voiced segments and arbitrary locations at the unvoiced segments,

that occur post the initialization point. However, in practice, computation of CIS is started at the beginning of the
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utterance so that the GCIs within the entire utterance are detected. Figure 2 illustrates the workflow of the algorithm

on three pitch periods of the inverted ILPR. The search interval (required for back-tracking) for an arbitrary instant

n0 which appears between the final and penultimate GCI locations (nk and nk−1) is indicated between n0−T0−∆

and n0 − T0 + ∆. It is seen that once the final GCI is detected, the CIS measure along with the back-tracking

function ensures that the previous GCIs are correctly located. Figure 3 illustrates the estimation of GCIs using the
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Figure 2. Illustration of the CIS algorithm on three pitch periods of the inverted ILPR. The search interval for computation of CIS for the
point n0 is indicated. Further, the location of the final GCI and the preceeding GCIs as determined from the back tracking using V (n) are
also marked.

proposed method on a segment of the voiced speech corrupted with white Gaussian noise at different SNR levels

down to -10 dB. It is seen that the ps[n] serves two purposes: (a) emphasizing the local peaks and (b) reducing

the number of locations considered for analysis. The locations of the GCIs are correctly (i.e., there are no misses

and false insertions) estimated for all the cases. However, the deviation of the estimated locations from the true

locations increases with decreasing SNR.
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Figure 3. Illustration of the GCI estimation at different noise levels (a) speech signal at different SNRs, (b) inverted ILPR signal, (c) peak
strength signal (d) CIS and (e) the estimated (square beads) and actual (circular beads) locations of the GCIs.
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III. EXPERIMENTS AND RESULTS

A. Databases and performance measures

The proposed technique is evaluated on two corpora, comprising simultaneous recordings of the speech and the

EGG signals - (i) the data provided with the book by D. G. Childers [21], henceforth referred to as the Childers’

data. This is recorded from 52 speakers (both male and female) in a single-wall sound room. The Childers’ data

consists of utterances of 12 sustained vowels, 16 sustained fricatives, an utterance counting one to ten, one counting

one to ten with a progressively increasing loudness, singing the musical scale using ‘la’ and three sentences. In

this study, all the speech materials of the Childers’ data except the fricative stimuli are used. (ii) a subset of the

CMU ARCTIC databases which contain 1132 phonetically balanced sentences. Each of these is a single speaker

database corresponding to BDL-US male, JMK-Canadian male and SLT-US female. We use a negative threshold

(1/6 of the maximum value [22]) on the dEGG signal to distinguish the voiced from the unvoiced speech. The

negative peaks of dEGG provide the ground truth GCIs for validation, which is done only on the voiced speech.

We use the standard performance measures of identification rate (IDR), miss rate (MR), false alarm rate (FAR) and

the standard deviation of error (SDE) or identification accuracy (IDA) and the accuracy to 0.25 ms (A25) which are

illustrated in Fig. 6 of [12]. Experiments are carried out on clean speech and speech degraded with additive white

Gaussian and babble noise at SNR 20 to -20 dB in steps of 5 dB. The noise samples are taken from the NOISEX-92

database [23]. We compare the results with four state-of-the-art algorithms: DPI, SEDREAMS, ZFR and DYPSA.

The average pitch period required for ZFR, SEDREAMS and CIS are derived from the pitch estimation algorithm

[24] (both for clean and noisy speech) and the maximum pitch deviation parameter ρ, is empirically set at 0.3

times the average pitch period1. ILPR is estimated by inverse filtering the speech signal (over each disjoint voiced

segment), with prediction coefficients calculated on the pre-emphasized Hanning windowed speech samples using

the autocorrelation method by setting the number of predictor coefficients to the sampling frequency in kHz plus

four.

Table I
RESULTS OF DIFFERENT GCI ESTIMATION ALGORITHMS ON CLEAN SPEECH. THE TWO ENTRIES CORRESPOND TO THE RESULTS ON

CHILDERS’ DATA AND CMU ARCTIC DATABASES, RESPECTIVELY.

Method IDR % SDE in ms A25 %
CIS 95.85, 98.82 0.35, 0.26 82.83, 78.85
DPI 96.12, 99.25 0.38, 0.28 86.09, 80.10
SED 95.47, 99.10 0.35, 0.26 87.81, 77.81
ZFR 94.15, 94.12 0.42, 0.21 52.61, 78.01
DYP 97.01, 98.02 0.43, 0.45 83.28, 71.72

1It is experimentally observed that the choice of the value of ρ is not very critical for a wide range of values. Specifically, the IDR varies
(on a subset of the database) is about 1 % when ρ varies from 0.1 and 0.45. IDR is maximum for ρ = 0.3 and hence this value is used in
all further experiments.
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B. Results and discussion

1) Clean speech: Table I summarizes the performance of the five GCI detection algorithms on clean speech.

The first entries in Table 1, show that, on Childer’s data, the IDR of the CIS method (95.85%) is marginally better

than that of the ZFR (94.15%) and SEDREAMS (95.47%), which are based on direct processing of speech signal.

However, DYPSA and DPI algorithms have higher IDR because they do not use any APP information and hence

GCIs from these algorithms are not affected by the erroneous APP estimates. On the CMU ARCTIC data (second

entries in Table 1), all the measures IDR, SDE and A25 of the CIS algorithm are comparable to those of the

other algorithms. However, as corroborated by the observations made in the previous studies [16], [12], the DPI
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Figure 4. Performance of the five different algorithms averaged over both the databases at different SNRs (-20 to 20 dB) with additive
white Gaussian noise.

algorithm and the SEDREAMS are the best in terms of the GCI estimation accuracy on clean speech.

2) Noisy speech: Figures 4 and 5 depict the results of the algorithms on the speech corrupted with additive

white Gaussian and babble noise, respectively. In the case of the white Gaussian noise, the IDR, of the CIS method

is better than all the algorithms at SNRs between 0 and -15 dB. The accuracy measures namely, SDE and A25 are

also consistently the lowest and the highest for the CIS method, respectively. The superior performance of the CIS

method may be attributed to the fact that the sequence of CIS uses locations of all the previous impulses to estimate

the location of the current impulse in a recursive manner. In the case of the babble noise, the IDR and A25 for all

the algorithms are worse than those in the case of the white Gaussian noise. This may be due to the speech-like

characteristics of the babble noise. The performance of the CIS method is comparable to that of SEDREAMS and

ZFR, in terms of IDR. However, CIS performs better than all the other algorithms considered in terms of accuracy

measure A25. In summary, for the experiments in clean and noisy conditions, it is observed that the performance

of the CIS method is comparable (superior in some cases) to that of all the algorithms examined despite being

based on the ILPR. CIS method is found to be superior than the other algorithms which are based on the LPR

(DPI and DYPSA) in the presence of noise. It is known that DYPSA algorithm degrades the most with noise.

The DPI algorithm, despite using ILPR is comparable to SEDREAMS and ZFR. Based on these experiments, it

may be concluded that if the average pitch information is available a-priori, then an algorithm based on the linear

prediction residual can reach a performance comparable to those based on the speech signal alone in the presence
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Figure 5. Performance of the five different algorithms averaged over both the databases at different SNRs (-20 to 20 dB) with additive
babble noise.

of noise.

3) Dependency on average pitch period: In the earlier sections, it was mentioned that the proposed algorithm,

along with ZFR and SEDREMS require the average pitch information a-priori. To quantify the dependency of these

algorithms on the accuracy of average pitch value, the IDR obtained with different noisy average pitch estimates

on ARCTIC databases is shown in Fig. 6. The base estimate for the average pitch period is obtained using the

dEGG signal to ensure that the errors in its computation do no affect the experiments. Subsequently pitch period is

varied such that the error between the actual and the estimated pitch periods are in the range of -0.6 to 1.4 (with

respect to the actual pitch period) in steps of 0.1. The performance of all the three algorithms degrade with error in

average pitch estimate. However, the degradation trends corresponding to different algorithms are slightly different.

If the estimated pitch period is less than the actual pitch, the degradation in ZFR is more severe compared to the

other two, which are comparable with each other. However ZFR is more robust than the other two if the estimated

pitch is more than the actual pitch, with a decrease in IDR from 98 % to just above 85 % when the error in the

estimated pitch varies from 0 to 140 % of the actual pitch. SEDREAMS and CIS have their IDR more than 80 %

when the estimated pitch is within ± 35 % of the actual average pitch whereas IDR for ZFR degrades to 50 % if

the error in the estimated average picth is -0.2.
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Figure 6. Illustration of dependency of three GCI detection algorithms on average pitch period. The variation in IDR with varying error in
average pitch period is shown for the CMU ARCTIC data.

IV. CONCLUSIONS

We propose a non-linear measure called the cumulative impulse strength to locate the impulses in a noisy quasi-

periodic impulse train. We apply the CIS measure on the ILPR to detect the GCIs of the voiced speech, using an

estimate of average pitch period. Experiments with different noisy conditions on data with simultaneous speeech and
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EGG data reveal that the CIS method is comparable to the best state-of-the-art algorithms indicating its robustness

to noise despite operating on the linear prediction residual.
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