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A. P. Prathosh, T. V. Ananthapadmanabha, and A. G. Ramakrishnan, Senior member, IEEE

Abstract—Epoch is defined as the instant of significant exci-
tation within a pitch period of voiced speech. Epoch extraction
continues to attract the interest of researchers because of its
significance in speech analysis. Existing high performance epoch
extraction algorithms require either dynamic programming tech-
niques or a priori information of the average pitch period.
An algorithm without such requirements is proposed based on
integrated linear prediction residual (ILPR) which resembles the
voice source signal. Half wave rectified and negated ILPR (or
Hilbert transform of ILPR) is used as the pre-processed signal. A
new non-linear temporal measure named the plosion index (PI)
has been proposed for detecting ’transients’ in speech signal.
An extension of PI, called the dynamic plosion index (DPI)
is applied on pre-processed signal to estimate the epochs. The
proposed DPI algorithm is validated using six large databases
which provide simultaneous EGG recordings. Creaky and singing
voice samples are also analyzed. The algorithm has been tested for
its robustness in the presence of additive white and babble noise
and on simulated telephone quality speech. The performance of
the DPI algorithm is found to be comparable or better than five
state-of-the-art techniques for the experiments considered.

Index Terms—Epoch extraction, glottal closure instant, GCI
detection, integrated linear prediction residual, plosion index.

I. INTRODUCTION

Flanagan defined epoch as the instant of significant excita-
tion within a pitch period; He remarked, “presumably if such
an epoch could be determined, the pulse excitation of a synthe-
sizer could duplicate it and preserve natural irregularities in the
pitch period” [1]. Miller proposed inverse filtering technique
and used it to deduce that epoch lies close to the instant
of glottal closure [2]. This has motivated a large number of
researchers [3]-[15] to address the problem of identification of
epochs or glottal closure instants (GCIs) which has assumed a
great significance. We prefer to use the term epoch since it is
signal-based in contrast to GCI which is a physiological term.
A critical review of the state of the art methods can be seen in
[15]. Also, the importance of determining the epochs or GCIs
has been covered in detail in [16]. It would be a duplication
of effort to review these methods or the importance of deter-
mining the epochs or GCIs. However, a brief discussion of the
key features of the five state-of-the-art techniques viz., Hilbert
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Envelope-based detection, the Dynamic Programming Phase
Slope Algorithm (DYPSA), the Zero Frequency Resonator-
based method (ZFR), the Speech Event Detection using the
Residual Excitation And a Mean-based Signal (SEDREAMS)
and the Yet Another GCI Algorithm (YAGA) reviewed in [15]
is presented.

There are two major steps in epoch extraction algorithms:
(a) Pre-processing of the speech signal (b) Selection of appro-
priate candidates corresponding to the epochs. Motivated by
the work reported in [4], some methods use center of gravity
[5] and Gabor filtering [11] of Hilbert Envelope (HE) of the
linear prediction residual (LPR) for pre-processing. However,
a recent study [15] has shown that these approaches give the
lowest scores in terms of five different performance measures
considered. Smits and Yegnanarayana [7] proposed the use
of a signal arrived at by computing the mean group delay
(GD) of a frame of the LPR samples centered at every sample,
as an alternative to the HE of LPR. Here the candidates for
epochs happen to be positive-going zero-crossings. However,
this method suffers from a large number insertions [10]. Hence
Naylor et al proposed DYPSA [10] algorithm where Dynamic
Programming (DP) technique, with several suitably defined
cost functions, was applied on the candidates derived from GD
function to select the most appropriate candidates and reduce
the number of insertions. An alternative method, YAGA [14]
selects zero-crossing candidates of the GD function computed
on the multiscale product of voice source signal instead of
the LPR. Subsequently, DP technique is applied as in DYPSA
to select the most appropriate candidate and reduce insertions.
The accuracy of YAGA outperforms those of other techniques.
Both these techniques, DYPSA and YAGA, give lower perfor-
mance in the presence of noise. The poorer performance in the
presence of noise may arise due to the pre-processing. Further,
techniques using DP employ parameters optimized for clean
speech, which might be inappropriate for noisy speech. To
alleviate these problems, ZFR [12] and SEDREAMS [13] have
been proposed which operate directly on the speech signal.
ZFR is based on the fact that the effect of discontinuity in exci-
tation is present over all frequencies. Hence a two-stage double
integrator (Zero Frequency Filter) has been used on the pre-
emphasized speech signal for pre-processing. However, this
introduces a dominant low frequency trend which is removed
by a mean subtraction process repeated thrice. Positive-going
zero-crossings are declared as the selected candidates. This
method has a tremendous noise robustness. However, ZFR
method has a relatively lower accuracy (percentage of detected
epochs within ±0.25 ms of the ground truth). SEDREAMS
simplifies the pre-processing by using a mean based signal
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where the mean is computed by applying a Blackman-Tukey
window over an appropriately selected interval. The GCI is
assumed to lie within a fuzzy interval of the pre-processed
signal around the zero-crossings and the exact location is
postulated to be the major discontinuity in the LPR within
that interval. This method retains the advantages of noise
robustness of ZFR and an improved accuracy which arises
due to the use of the LPR. Although HE based methods also
use the LPR, it is surprising that their reported accuracy [15]
is lowest.

A recent study has shown that the frequency response
of ZFR resembles that of a lowpass filter [17]. The mean
based signal computed in SEDREAMS using a symmetric
Blackman-Tukey window is equivalent to convolving the
speech signal with the FIR filter whose frequency response
is that of a low pass filter. The pre-processing of ZFR and
SEDREAMS can thus be interpreted as lowpass filtering. We
believe that it is the lowpass filtering which is providing the
noise robustness in these methods. Lowpass filter effectively
picks up the fundamental, resulting in a signal which is almost
sinusoidal with the frequency equal to the pitch. For speech
signals with a relatively attenuated fundamental (or stronger
second harmonic) as in the case of telephone quality or high
pass filtered speech, these methods result in increased number
of insertions.

In ZFR and SEDREAMS, the global average pitch period
has to be known a priori. This average pitch period determines
the window length for trend removal in ZFR and running
average computation in SEDREAMS. This parameter is shown
to be critical [13] in the sense that an inappropriate value
degrades the performance. For a given database, with both
male and female speakers and also for a database where the
mean pitch period may vary over a wide range, the average
pitch period has to be estimated and specified for each speaker.
In addition, our experiments on synthetic vowels have shown
that the location of epochs as determined by ZFR varies
with open quotient. However, this problem does not arise in
SEDREAMS since it relies on LPR for refining the locations
of the candidates.

If the average pitch period is known a priori then iden-
tification of epochs becomes simpler. An approach such as
assuming the current epoch to be known and choosing the
immediate next epoch as the maximum value in the speech
signal within ±40% of the assumed average pitch period, with
random initialization can be adopted. When such an approach
is experimented on a male speaker database (CMU Arctic
BDL), it gave an identification rate of about 95% at 0 dB
SNR (with additive white noise) with an accuracy of about
57%. On clean speech, it yielded about 97.5% identification
rate with about 70% accuracy. Hence a bigger challenge lies
in detecting epochs when the average pitch period is unknown
and achieving a higher accuracy.

In this paper, we propose a non-linear signal processing
algorithm for the identification of epochs with the following
key features.

1) It operates on the half wave rectified integrated LP
residual.

2) It selects the epochal candidates using a new non-linear

temporal measure named the Plosion Index.
3) It does not assume the signal to be periodic and is

independent of the energy contour.
4) It does not require a priori information of the average

pitch period.
5) It does not depend on thresholds and cost functions.

The proposed method is validated using the entire CMU ARC-
TIC and APLAWD databases, which provide simultaneous
recordings of speech and electroglottograph (EGG) signals.
Illustrations of the performance of the algorithm on some
special cases are also provided. It has been tested in the
presence of additive white as well as babble noise. The
results are compared with five state-of-the-art algorithms in
terms of all the performance measures recently reviewed in
[15]. Further, it has also been tested on simulated telephone
quality speech and the performance is compared with ZFR,
SEDREAMS and DYPSA.

II. PROPOSED METHOD

The three major steps of the algorithm which are presented
in this section are

• Obtaining the half-wave rectified and negated ILPR as
the pre-processed signal

• Dealing with the effect of the phase on ILPR
• Using plosion index to determine the immediate next

epoch, assuming the current epoch is known

A. Pre-processing

A two level pre-processing technique is proposed which is
explained in this section.

1) Integrated linear prediction residual : Voiced speech is
often modeled as the output of the vocal tract filter excited by
a quasi periodic sequence of the derivative of glottal pulses.
Epochal information is inherent in the derivative of glottal
pulses, referred to as the voice source. Vocal tract transfer
function is estimated using the popular Linear Prediction
(LP) techniques [18], [19] applied on the pre-emphasized
speech signal. Strictly speaking, the term voice source signal
refers to the inverse filter output when the filter is tuned
accurately to the formant data estimated over the closed-
glottis interval. In linear prediction based inverse filtering,
pre-emphasized speech signal is filtered to obtain the LP
residual (LPR). Instead, if the inverse filtering is done directly
on the speech signal, the resulting signal is referred to as
integrated LP residual (ILPR) (see Fig. 7-1 in [20]) which
closely approximates the voice source signal. In the present
work, ILPR is obtained by inverse filtering the speech signal,
with LP coefficients calculated on the pre-emphasized Hanning
windowed speech samples using the autocorrelation method by
setting the number of predictor coefficients to the sampling
frequency in kHz plus four. Since the inverse filter is not
tuned accurately to the formant data, we prefer to use the
term ILPR instead of voice source in this paper. The locations
of maximum negative peaks in ILPR are the representatives
of the epochs.

The epochal information is reflected as local peaks both
in LPR and ILPR. However, in LPR, it has been noted
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that there are multiple bipolar peaks around the epoch [4],
which makes unambiguous epoch extraction difficult [12]. This
is because, pre-emphasis, a differencing operation, enhances
high-frequency components. However, in ILPR, since there is
no pre-emphasis, the peaks corresponding to epochs are less
ambiguous. A 5-point symmetric moving averaging applied
on ILPR further reduces the ambiguity. Henceforth, we refer
to this smoothed version of ILPR simply as ILPR. As an
illustration, Fig. 1 compares ILPR, Fig. 1(d), for a voiced
speech segment shown in Fig. 1(a) with LPR, Fig. 1(b) and
HE of LPR, Fig. 1(c). There are local peaks around the epochs
in LPR along with undesired components. Although HE of
LPR is relatively a better representation, methods based on
HE [5], [11] are shown to have poorer performance. It may
be observed that the negative peaks in ILPR near epochs are
relatively unambiguous compared to peaks in LPR and peaks
in HE of LPR.
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Figure 1. Illustration of manifestation of epochs in various pre-processed
signals. (a) A voiced speech segment, (b) LPR, (c) Hilbert envelope of LPR,
(d) ILPR.

2) Half wave rectification: It is known that volume-velocity
air flow or glottal pulse reaches a peak and then decreases
during the closing phase and thus has a negative slope. At or
near closure, the pulse has a maximum discontinuity whose
polarity is negative due to the negative slope. Thus in general,
the excitation to the vocal tract primarily manifests as a large
negative peak in the glottal flow derivative. Since ILPR is an
approximate estimate of the glottal flow derivative, the positive
going part in the ILPR contains no information about the
instant of the glottal closure. Since the goal of this study is to
estimate the glottal closure instant, ILPR is half-wave rectified
by retaining only the negative part. Further, the rectified signal
is negated.

Here, we have assumed that the speech signal to be pro-
cessed is of appropriate polarity; that is the ILPR resembles the
natural voice source, wherein the closure interval is relatively
shorter than the opening interval resulting in a larger negative
peak than the positive peak. However, if the entire speech
signal is reversed in polarity due to recording conditions, then
the speech signal has to be negated before epoch extraction.
It has been shown that methods like ZFR and SEDREAMS

too have to address this issue [21] ; That is, the type of
zero-crossing (positive/negative) associated with the epochs
are reversed if the polarity of the speech signal is reversed.
Hence, one may use automatic methods for polarity detection
such as the one proposed in [21]. In the corpora considered,
there is no case of polarity reversal and hence we stick to
clipping-off the positive-going part of ILPR in this work.

Figure 2 illustrates LPR, ILPR, and negated half-wave
rectified ILPR (HWILPR) for a segment of voiced speech with
additive babble noise at 0 dB segmental SNR. This segment is
taken from Noizeus database [22] wherein the noisy signal is
generated by adding noise to the speech signal filtered with a
simulated telephone channel filter. The active speech level of
the filtered signal is first calculated and then the noise samples
are scaled and added to achieve the desired segmental SNR.
This is to make the SNR independent of the silence segments
which may be present in a given utterance. Such a noisy speech
segment is shown in Fig. 2 (a). It is clearly seen that the
HWILPR has the least ambiguity in spite of the presence of
noise.
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Figure 2. Illustration of the reduction of ambiguity associated with ’peaks’
in ILPR corresponding to epochs through half wave rectification. (a) Voiced
speech segment with additive babble noise at 0 dB segmental SNR, (b) LPR,
(c) ILPR, (d) ILPR after half-wave rectification and negation (HWILPR).

3) Effect of the phase on ILPR: Inverse filtering of voiced
speech using LP technique does not always compensate the
phase response of the vocal tract filter exactly. It has been
observed that the effect of phase angles of different formants
influence the wave-shape of LPR in a complex way [4]. Hence
the phase of the vocal tract filter affects the shape of the
estimated ILPR as well. ILPR resembles the natural voice
source signal for some speakers whereas for others the phase
(π/2 radians) shifted version of ILPR, i.e, the Hilbert trans-
form of ILPR (HTILPR) agrees well with the natural voice
source signal. Figure 3 illustrates both ILPR and HTILPR for
speakers belonging to these two categories. In Fig. 3(a), ILPR
resembles the natural voice source signal but, HTILPR appears
almost as a rectangular wave; this signal reaches the base-
line after a prolonged closing phase and possesses an abrupt
bipolar swing preceding (or following) the negative peak.
These characteristics deviate from the expected natural voice
source pulse shape based on the physiological considerations.
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Similar observations may be noted with respect to ILPR for the
speaker corresponding to Fig. 3(b), whereas HTILPR agrees
well with the expected shape of the natural voice source. From
this, it appears that either the ILPR or the HTILPR has to
be used as pre-processed signal depending on the speaker.
Although the choice of ILPR or HTILPR does not affect
the identification rate of epochs, it is useful for an accurate
location of epochs 1. This behaviour of the ILPR needs a
deeper investigation and is beyond the scope of the present
paper. Henceforth we refer to half-wave rectified version of
the appropriate signal (ILPR or HTILPR) as HWILPR for
simplicity of notation.

Further, it is seen that when the ILPR is the appropriate
choice, the maximum amplitude at the negative peak in ILPR
is greater than that in HTILPR and vice-versa when the choice
is HTILPR for a given cycle. Based on this, the choice of
appropriate signal to be used for detecting the epochs for a
given utterance is determined automatically using an algorithm
described in the Appendix.
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Figure 3. Illustration of the effect of phase-shift on ILPR for two different
speakers. (a) ILPR and HTILPR for a speaker. (b) ILPR and HTILPR for
another speaker. For the case shown in (a), ILPR resembles the natural voice
source signal and for that shown in (b), HTILPR resembles the natural voice
source signal.

B. Temporal features

1) Plosion Index : The goal now is to identify the in-
stants corresponding to epochs, in the pre-processed signal,
HWILPR. For this, we adopt a time domain measure which
detects the location of transients.

Transients may be defined as impulse-like events occurring
in a signal. Stop bursts are typical examples of such tran-
sients occurring in speech signal. It is important to detect
such discontinuities in continuous speech for performing burst
detection, voicing onset detection, landmark detection etc. We
have proposed a point measure named plosion index (PI)
for detecting such transients. Intuitively, for a signal with
a transient (characterized by a significant change in local
energy), the ratio of the peak amplitude in the transient to
the average of absolute values over an interval of interest
excluding the instant of the peak, may be expected to be very
high. In order to capture the intrinsic nature of a transient-
like signal, we define the temporal measure PI at an instant of
interest n0 for any signal s[n] as

1Phase shift causes the negative peak in ILPR to get shifted only by a few
samples, typically of order of 1 ms and hence does not affect the identification
rate.

PI(n0,m1,m2) =
|s(n0)|

savg (n0,m1,m2)
(1)

where savg (n0,m1,m2) =

i=n0−m1−1∑
i=n0−(m1+m2)

|s(i)|

m2
(2)

when m1 and m2 are the number of samples corresponding
to appropriately chosen intervals preceding n0 and

savg (n0,m1,m2) =

i=n0+m1+m2∑
i=n0+m1+1

|s(i)|

m2
(3)

when m1 and m2 are the number of samples corresponding
to appropriately chosen intervals following n0.

The values to be chosen for m1 and m2 depend on the
specific application. PI is a dimensionless measure since it is
a ratio and is independent of the recording level.

To illustrate the usefulness of PI for the purpose of detecting
the transients (stop bursts), we consider a segment of speech
signal consisting of a fricative followed by a stop followed
by a vowel. Fig. 4 illustrates the PI computed (using Eq. 2
for savg) at every sample, n0 with m1 and m2 corresponding
to intervals of 6 and 16 ms respectively. PI is relatively high
(above 500) around the stop burst (160 ms) and low elsewhere.
Hence, an appropriately chosen threshold on PI can detect a
transient. The concept of PI has been applied and validated
for the detection of bursts associated with stops and affricates
and reported recently [23].

20 40 60 80 100 120 140 160 180 200 220
−0.5

0

0.5

1

A
m

pl
itu

de

20 40 60 80 100 120 140 160 180 200 220
0

200

400

600

Time in ms

P
lo

si
on

 in
de

x

(b)

(a)

Figure 4. Illustration of the use of plosion index (PI) to capture transients.
(a) A segment of speech signal with a fricative followed by a stop followed
by a vowel, (b) corresponding PI.

The definition of plosion index may remind a reader of the
measure crest factor or peak-to-average ratio existing in the
literature [24]. However, crest factor is defined as an index
for an entire signal, where both the peak and the average
values are derived from the complete signal. In contrast, PI is
an instant measure. Also, PI is a function of two parameters
(m1,m2) at any given instant.
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2) Dynamic plosion index: In order to measure inter-epoch
interval, we define an extended temporal feature named the
dynamic plosion index (DPI). DPI is PI computed as a function
of varying m2 for a given n0 and m1 using Eq. 3 for savg.
Assuming that the lowest pitch to be extracted is 65 Hz which
corresponds to a pitch period of approximately 15 ms, m2 is
varied over a range corresponding to an interval of 0 to 15
ms. DPI is a vector of dimension 1×N where N is the extent
of variation of m2. In the present context, m2 is to the right
of current epoch n0 which is assumed to be known and the
variable m1 is chosen to be -2. The problem is to identify the
immediate next epoch. We shall see later how to initialize the
process for the current epoch.

DPI computed for HWILPR (Fig.5 (a)) of a voiced segment
of duration 18 ms is depicted in Fig.5 (b). There are four pitch
peaks in HWILPR. As m2 increases past the reference instant,
marked as n0 in Fig. 5(a) , DPI gradually increases, reaches a
peak and then decreases when m2 begins to include the signal
corresponding to next cycle. It attains a local minimum around
the peak in HWILPR which is close to the next epoch. Similar
behavior is repeated for the subsequent cycles.
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Figure 5. Illustration of determination of next epoch given the current epoch
using DPI. (a) HWILPR of a voiced segment, (b) DPI computed with reference
to n0 on the signal shown in Fig. 5(a) .

C. Epoch Extraction

1) Initialization : As mentioned earlier, the problem is
posed as that of determining the next epoch given the current
epoch. This requires a knowledge of the current epoch. It
has been found that the proposed method is insensitive to
the initialization for the very first cycle which may be done
arbitrarily. Subsequently, the estimated epoch location is used
for initialization for the next cycle.

2) Determination of successive epochs: Having known the
current epoch, the next epoch is detected as follows.

• DPI of HWILPR is computed with the current epoch as
n0.

• The peaks and valleys in the DPI are computed by
detecting the positive and negative zero-crossings in its
derivative, respectively.

• As noted previously, each peak-valley pair in HWILPR
corresponds to a cycle. The absolute difference in the
values of DPI at each peak-valley pair is computed.

• It is evident from Fig. 5(a) and Fig. 5(b), that the peak-
valley pair with the largest difference corresponds to the
immediate next cycle. The time instant corresponding to
such a valley is noted.

• Thus, the instant of peak in HWILPR within ±2 ms of the
valley determined in the previous step, is hypothesized as
the estimate of the immediate next epoch.

• The above procedure is repeated over the entire speech
signal irrespective of voiced/un-voiced regions.

The proposed algorithm is henceforth referred to as DPI algo-
rithm. Figure 6 shows a segment of voiced speech along with
the corresponding DEGG signal (whose negative peaks are
considered the ground truth) and the epoch locations estimated
using the DPI algorithm. It may be seen that the epochs
are correctly determined irrespective of the signal energy and
also their locations nearly coincide with the negative peaks in
DEGG signal.
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Figure 6. Illustration of the epochs estimated by the proposed algorithm.
(a) A segment of voiced speech, (b) Estimated epoch locations (top trace),
DEGG signal (bottom trace).

III. EVALUATION

A. Databases considered and the performance measures

1) Comparison with DEGG signal: It has been shown that
negative peaks in DEGG signal are very close to the instants
of glottal closure [25], [26]. Epoch extraction techniques
are often validated by considering negative peaks in DEGG
signal as the ground truth. The DPI algorithm is validated
only on the voiced segments of any given utterance since
epochs are meaningful only for voiced segments. Voiced-
Unvoiced decision is made by applying a negative threshold
on DEGG signal. A previous study [27] has used 1/6 times
the peak-to-peak value of DEGG as the threshold for V-UV
decision. However, we use a worse case choice of (1/9)
times the maximum negative value of the DEGG signal for
a given utterance so that even low energy voiced segments are
captured. The compensation for the delay between the EGG
signal and the acoustic signal captured by the microphone is
done manually for each speaker and is assumed to be constant
for all the utterances of the speaker in the database.

2) Databases: Six large databases containing speech and
simultaneous EGG recordings are used for validation. The
first five are from CMU ARCTIC databases. The first three
contain 1132 phonetically balanced sentences. Each of these
are single speaker databases corresponding to BDL-US male,
JMK-Canadian male and SLT-US female. The fourth database
contains non-sense words containing all phone-to-phone tran-
sitions in English uttered by a male speaker (RAB-UK male).
The fifth database contains 452 sentences used in TIMIT
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databases uttered by a male speaker (KED-US male). These
are available in public domain in Festvox webpage [28].
APLAWD [29] is the sixth database consisting of five English
sentences repeated five times by five male and five female
speakers. It has been mentioned in [15], that the all pass
equalization filter used in this database for correcting low
frequency phase distortion has no effect on GCI detection.
This database has been obtained from the author of [13]. Table
I lists the number of true epoch candidates (obtained from the
DEGG signal) in each of these databases.

Table I
SUMMARY OF DATABASES USED FOR VALIDATION.

Name of the Database No. of epochs (duration
in min)

BDL (1-Male) 218802 (54)
SLT (1-Female) 338875 (55)
JMK (1-Male) 152510 (54)
KED (1-Male) 64072 (20)
RAB (1-Male) 67176 (29)

APLAWD (5-Males, 5-Females) 114430 (20)
Total number of true epochs 955865 (232)

3) Performance measures: We employ the same standard
performance measures, identification rate (IDR), miss rate
(MR), false alarm rate (FAR), identification accuracy (IDA)
and accuracy to ±0.25 ms, as those described in many of the
recent studies [10], [12], [15] which are illustrated in Fig. 6
of [15]. The first three of the above are collectively called
the reliability measures and the others are called the accuracy
measures.

B. Results on Clean Speech

The results of the DPI algorithm validated on clean speech
using the above performance measures, are given in Table II.
Also given are the results of algorithms with maximum and
minimum performances amongst those compared (HE based,
DYPSA, YAGA, ZFR, SEDREAMS) in a recent review paper
[15]. In Table II, algorithms SEDREAMS and DYPSA have
been abbreviated as SED and DYP, respectively. The fifth per-
formance measure is considerably low for HE based method
on all databases. Hence, while comparing that measure, we
present the maximum and minimum amongst the remaining
four algorithms along with the results of DPI algorithm.

The reliability measure, IDR, of DPI algorithm is the highest
for all CMU ARCTIC databases. For the APLAWD database,
it it is slightly less than the best, but well above the lowest
reported. Irrespective of the database, DPI algorithm’s IDR is
more than 97%. As far as the standard deviation of timing
error (IDA) and accuracy to ±0.25 ms are concerned, it is
observed that DPI algorithm outperforms all other algorithms
for all databases. For the speakers JMK, KED and RAB, the
choice for the pre-processed signal happens to be HTILPR and
for others the choice is ILPR. In case we use ILPR for JMK,
the accuracy to 0.25 ms would fall down significantly to about
75% from 88%.

Table III summarizes the IDR and accuracy performance
measures for all the algorithms averaged over all the databases.
For DPI algorithm, IDR averaged over all six databases is

99.13% which is the highest amongst all the algorithms
compared. Figure 7 is a normalized histogram of the timing
error of the DPI algorithm averaged over all the six databases.
Identified epochs which lie within ±0.25 ms of the ground
truth is 90.77% which is the highest. IDA is 0.23 ms for DPI
algorithm which is the least amongst all the algorithms.

These results may be due to the fact that DPI algorithm uses
an appropriate choice of ILPR or HTILPR for pre-processed
signal and rectification. The performance measures of YAGA
algorithm is close to that of DPI algorithm, which may be
explained by the fact that YAGA also uses the estimated voice
source signal. The methods which use LPR or voice source
for refinement give a better accuracy. This shows that epochs
can be more precisely detected in these representations. In
summary, the performance of the DPI algorithm is comparable
to the best amongst the state-of-the-art algorithms, without the
need for average pitch information and dynamic programming.
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Figure 7. Normalized histogram of epoch timing error made by the DPI
algorithm over all databases.

C. Demonstration of the efficacy on some special cases

In this section, we illustrate the efficacy of the DPI algo-
rithm on typical examples of some special cases.

1) Voice-bar and nasal murmur: To demonstrate the fact
that the DPI algorithm is independent of the energy contour,
we consider a segment of speech taken from the utterance
“will Robin wear a yellow lilly” from KED database. This
segment shown in Fig. 8 consists of a strong vowel followed
by a weak-voice bar of a voiced-stop consonant followed by a
vowel and a nasal. It also depicts the detected epochs and the
DEGG signal. It is clear from Fig. 8 that the DPI algorithm
detects epochs irrespective of the energy contour and even
during the low-level voiced segments.

2) Creaky voice segment: Since the DPI algorithm does not
make quasi-periodicity assumption, it has been applied on an
arbitrarily chosen segment of creaky voiced speech taken from
Voqual03 database [30] (BrianCreak3.wav). Two important
distinctions of creaky voiced speech from normal speech are
(i) irregular periodicities with long pitch periods (ii) presence
of secondary and tertiary excitations which may arise due to
ventricular incursion [31]. Figure 9 shows a segment of speech
of creaky voice, along with the corresponding DEGG signal
and the determined epochs. Locations of primary excitations
are shown by solid lines and those of secondary excitations
are shown by dashed lines. It may be seen from DEGG that
there are irregular periodicities throughout the entire segment.
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Table II
SUMMARY OF PERFORMANCE OF THE PROPOSED ALGORITHM ON CLEAN SPEECH ON SIX DATABASES AND COMPARISON WITH OTHER METHODS

Database IDR % MR % FAR % IDA in ms Accuracy to±0.25ms
%

BDL
DPI - 99.11 DPI - 0.15 DPI - 0.75 DPI - 0.21 DPI - 92.17

YAGA - 98.43 YAGA - 0.39 ZFR - 0.98 YAGA - 0.29 YAGA - 90.31
HE - 97.04 DYP - 2.12 DYP - 2.34 HE - 0.58 ZFR - 80.93

SLT
DPI - 99.47 SED - 0.12 DPI - 0.31 DPI - 0.19 DPI - 89.29
ZFR - 99.26 DPI - 0.22 ZFR - 0.59 ZFR - 0.22 YAGA - 86.16
HE - 96.16 HE - 2.38 DYP - 1.41 HE - 0.56 SED - 81.35

JMK
DPI - 99.45 DPI - 0.16 DPI - 0.39 DPI - 0.24 DPI - 88.53
SED - 99.29 SED - 0.25 ZFR - 0.40 YAGA - 0.40 SED - 81.05
HE - 93.01 HE - 3.94 HE - 3.05 HE - 0.90 ZFR - 41.62

KED
DPI - 99.64 DPI - 0.08 DPI - 0.02 DPI - 0.17 DPI - 98.59
SED - 98.65 YAGA - 0.63 SED - 0.68 SED - 0.33 YAGA - 95.14
ZFR - 87.36 ZFR - 7.90 ZFR - 4.74 HE - 0.56 ZFR - 46.82

RAB
DPI - 98.96 DPI - 0.01 DPI - 1.03 DPI - 0.27 DPI - 94.01
SED - 98.87 SED - 0.63 SED - 0.50 SED - 0.37 SED - 91.26
DYP - 82.33 ZFR - 6.31 DYP - 15.80 HE - 0.78 ZFR - 55.87

APLAWD
ZFR - 98.89 YAGA - 0.52 SED - 0.51 DPI - 0.34 DPI - 89.13
DPI - 97.17 DPI - 1.99 DPI - 0.84 SED - 0.45 YAGA - 85.51
HE - 91.74 HE - 5.64 HE - 2.62 HE - 0.73 ZFR - 57.87
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Figure 8. Demonstration of the independence of the DPI algorithm on the
energy contour of the signal. (a) A segment of voiced speech comprising a
strong vowel followed by a voiced stop consonant followed by a vowel and a
nasal, (b) epochs determined from DPI algorithm (top trace), corresponding
DEGG signal (bottom trace). DEGG has been shifted for illustrative purpose.
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Figure 9. Demonstration of DPI algorithm on creaky voiced segment. (a) A
creaky voiced segment, (b) epochs determined by DPI algorithm (top trace),
DEGG signal (bottom trace). DEGG has been shifted for illustrative purpose.

DPI algorithm detects the primary epochs for this difficult
case. Although there is a missed detection around 360 ms,
secondary excitations around 390, 410, 430 and 460 ms have
been detected. A large scale study on the performance of epoch
extraction on different voice qualities (breathy, creaky, loud
etc.) as reported in [32] is a problem by itself which is beyond
the scope of this paper.

3) Singing voice: Since the DPI algorithm does not require
a priori pitch information, it is expected to perform reasonably

well on singing voice where the pitch spans a very large
range. To ascertain this, we validate the DPI algorithm on
singing voice utterances taken from Voqual03 database [30],
which consists of simultaneous EGG recordings. It consists of
three singers - one male and two female. The number of true
epochs is 3338. We also compare the results with ZFR and
SEDREAMS which require a-priori average pitch informa-
tion for epoch detection2. Table IV compares the reliability
performance measures for the three algorithms on singing
voice. It may be seen that the large variation of pitch does
not degrade the performance of the DPI algorithm whereas
the performance of ZFR and SEDREAMS are relatively more
affected.

IV. ROBUSTNESS ASPECTS

Some applications demand epoch extraction algorithms to
be robust against various types of degradation in speech signal.
In this section, we study the performance of the algorithms
under two types of speech degradation namely addition of
noise (white and babble) and bandwidth reduction as in
telephone quality speech.

A. Noisy conditions

Two types of noise are considered in the present study, a
stationary white noise and a non-stationary babble noise or
cocktail party noise. White noise generated from sampling a
zero mean normal distribution is added to every utterance.
The variance is set in accordance with the desired global
SNR. Samples corresponding to babble noise are taken from
Noisex-92 database [33], scaled and added to speech signal
to achieve desired global SNRs. Figures 10 and 11 depict
the performance of six algorithms averaged over all databases
under various SNRs for the two noise cases, respectively.
Performance measures of the algorithms other than DPI are
taken from the recent review paper [15].

2Average picth period was estimated and provided for ZFR and SE-
DREAMS.
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Figure 10. Performance of six different algorithms over all databases at different SNRs (0 to 25 dB) with additive white noise. The values of performance
measures for algorithms other than DPI method have been taken from [15].
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Figure 11. Performance of six different algorithms over all databases at different SNRs (0 to 25 dB) with additive babble noise. The values of performance
measures for algorithms other than DPI method have been taken from [15].

In the case of white noise, it may be seen that the IDR of the
DPI algorithm is almost unchanged and comparable to ZFR
and SEDREAMS and is 96% at 0 dB SNR. The superiority
of the accuracy performance of the DPI algorithm is retained
even at 0 dB SNR. It has the lowest IDA at all SNRs and better
accuracy below 15 dB SNR. Even at 0 dB SNR, almost 72%
of the determined epochs are within 0.25 ms of the ground
truth.

In the case of babble noise, IDR of the DPI algorithm
degrades gradually below 10 dB SNR from about 97% and
reaches 87% at 0 dB SNR. This lowering of performance
below 10 dB may be due to the model dependence. However, it
is better than other model based techniques such as DYPSA,
YAGA and HE. IDA of the DPI algorithm is lowest above
10 dB SNR, and becomes slightly higher than ZFR and
SEDREAMS, below 10 dB. Accuracy to 0.25 ms of DPI
algorithm remains highest at all SNRs.

In summary, DPI algorithm is highly robust against white
noise in terms of every performance measure considered and
offers the highest accuracy at all SNRs. For babble noise, the
performance is comparable to the best in the literature till
10 dB SNR below which it slightly degrades. However, the
accuracy performance is superior for all SNRs.

B. Telephone quality speech

To examine the robustness of epoch extraction algorithms
against bandwidth degradation as in telephone quality speech,
we validate the performance of four algorithms viz., DPI,
DYPSA, ZFR and SEDREAMS on simulated telephone qual-
ity speech, using the same performance measures as defined in
the earlier section. Since a large database consisting of actual

Table III
PERFORMANCE MEASURES AVERAGED OVER ALL DATABASES FOR

VARIOUS ALGORITHMS.

Method IDR in % IDA in ms Accuracy to 0.25 ms (%)
DPI 99.13 0.23 90.77

YAGA 98.38 0.34 83.40
SEDREAMS 98.81 0.34 80.80

ZFR 96.37 0.42 57.90
DYPSA 95.11 0.44 71.90

HE BASED 94.60 0.67 39.70

Table IV
PERFORMANCE OF THREE ALGORITHMS ON SINGING VOICE.

Algorithm IDR (%) MR (%) FA (%)
DPI 94.1 5.04 0.5
ZFR 88.2 0.01 11.8

SEDREAMS 83.3 3.03 13.63

telephone channel speech with simultaneous EGG recordings
is not available, we use simulated data.

Telephone channel can be approximated by a bandpass filter
(BPF) between 300 and 3400 Hz. We designed a BPF and used
it to simulate the telephone quality speech. The magnitude
response of the filter is defined in the frequency domain using
a raised cosine function between 0 and 300 Hz, unity between
300 and 3400 Hz and again a raised cosine function from the
folding frequency up to 3400 Hz. The speech signal is down-
sampled to 8 kHz and the frequency domain implementation
of BPF gives simulated telephone quality speech which is then
used as input for the epoch extraction algorithms.

The algorithms are evaluated on three databases namely
BDL, KED and SLT, which cover male speakers of two
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Table V
RESULTS OF VARIOUS ALGORITHMS ON SIMULATED TELEPHONE QUALITY SPEECH

Database Method IDR (%) MR (%) FAR (%) IDA (ms) Accuracy to 0.25
ms (%)

BDL

DPI 97.69 0.04 1.87 0.20 93.09
ZFR 42.05 0.01 57.95 0.28 35.21
SED 83.72 0.02 16.26 0.31 72.80
DYP 95.07 0.05 4.37 0.35 85.82

KED

DPI 93.44 0.04 6.14 0.26 93.88
ZFR 30.19 0.07 69.75 0.97 6.12
SED 78.70 0.01 21.29 0.36 79.55
DYP 98.12 0.04 0.14 0.28 86.24

SLT

DPI 98.66 1.01 0.03 0.28 87.60
ZFR 99.28 0 0.07 0.19 78.94
SED 99.18 0 0.08 0.33 78.56
DYP 96.15 0.09 2.92 0.41 72.56

different accents and one female speaker, respectively. The
results are presented in Table V.

The performance of ZFR and SEDREAMS degrade severely
for male speakers since the resulting zero-frequency resonator
output and mean-based signal, are not sinusoidal. As every
zero-crossing is deemed as an epoch candidate, false alarms
significantly increase. The degradation in the performance of
SEDREAMS is less than that of ZFR. This is due to the
fact that effective lowpass filter of ZFR is steeper than that
used in SEDREAMS (frequency response of Blackman-Tukey
window). Further, the performance is much worse in the case
of the speaker KED. This is because, the relative spectral
level of fundamental is lower for this speaker than that of
the others even in clean conditions. This explains the lowest
score of ZFR method for this speaker (87% IDR) under clean
conditions whereas it is consistently more than 98% for all
others. However, DPI method and DYPSA suffer very little
degradation in the performance on telephone quality speech.
This may be due to the absence of lowpass filtering. DPI
method is not only reliable but also accurate.

The scenario is completely different for the female speaker
SLT. There is no degradation in the performance in any of
the algorithms since the telephone channel does not degrade
the fundamental. There is a slight lowering of accuracy in the
case of SEDREAMS and ZFR.

V. CONCLUSION

In this paper, we have proposed an algorithm, named the
DPI algorithm, for epoch extraction. Half wave rectified and
negated integrated linear prediction residual is used as the pre-
processed signal which appears to be relatively less ambiguous
to identify epochs compared to other signal representations.
The effect of phase of formants on ILPR has been dealt
with appropriately. A new temporal measure, Plosion Index
proposed to detect ’transients’ in speech signals has been used.
An extension of PI, called the Dynamic Plosion Index (DPI)
is applied on the pre-processed signal to detect the epochal
candidates. The method has been validated using six large
databases comprising 15 speakers against EGG recordings. It
is tested for its robustness in the presence of additive white
and babble noise. Also, robustness is studied on simulated
telephone quality speech. The performance of DPI algorithm is
compared with several state-of-the-art algorithms. It has been

found the performance of DPI algorithm is comparable to the
best in the literature, for all the cases studied. DPI algorithm
is effective even for low-level voiced segments. It does not
require a priori pitch information which suggests that it may
be applied to speech with large range of pitch as in the case
of emotional speech or music.
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APPENDIX

ALGORITHM FOR ASCERTAINING THE CHOICE OF
APPROPRIATE SIGNAL

• A given utterance is divided into non-overlapping frames
of 20 ms for LP analysis.

• ILPR and its Hilbert transform (HTILPR) are estimated
for each frame.

• The ratio of the absolute value of the maximum negative
peak in ILPR to that in HTILPR is calculated for each
cycle.

• The median of such ratios is calculated.
• If the median is greater than one then ILPR is taken to

be the appropriate signal else HTILPR is used.
The same algorithm is used with noisy speech as well.
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