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ABSTRACT 
Pitch extraction from singing voice has been viewed from 
the absolute pitch of the voice. However, for the query by 
humming applications, the absolute pitch is not of as 
much importance as that of relative pitch. This paper 
addresses the issue of relative pitch tracking for singing 
voice and attempts to improve the transcription accuracy. 
It also tries to bring robustness to transcription, in the 
several forms of querying by a user. The algorithm makes 
use of specially designed Bach filters which automatically 
associate a relative frequency with a corresponding 
musical semitone. This makes conversion of the 
transcribed pitch values to the MIDI format relatively 
easy. Preliminary results show up to 85% accuracy in the 
automated transcription when compared to manually 
transcription. 
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1. Introduction 
 
‘Musical transcription’ is referred to the process of 
converting a musical rendering or performance into a set 
of symbols or notations. The notations may contain 
information about the pitch, duration, stress and timbre of 
the musical rendering. But for the context of query by 
humming only pitch and duration information are 
considered. So the term musical transcription has been 
interchangeably used with pitch tracking. 

There are several approaches to pitch estimation. [1], 
[2] and [3] have reviewed the methods in detail. However 
for singing voices, a reliable conversion of pitch estimates 
to a symbolic notation has proven to be a challenging 
problem. This is because a typical vocal rendition 
contains both in accuracies in pitch and timing. Besides, 
pitch estimates of voiced regions are only possible and to 
convert to a symbolic notation, it is necessary to assign 
suitable pitch values to even the unvoiced regions. 

Another important factor to be considered while 
transcribing hummed queries is that the vocal rendition of 
a query may have a different absolute pitch as compared 

to the musical rendition of the original sound track. The 
query may or may not contain words, may be a whistle.  

This paper tries to provide a pitch tracking algorithm, 
which obtains relative frequencies, and works reasonably 
well under all the conditions specified. It must be noted 
that the output of the automated transcription method is 
compared with manually transcribed MIDI files. i.e. 
Transcription is done for the actual sample of singing 
voice (or whistle). So the manually transcribed MIDI files 
contain many notations of ‘glide’ or ‘pitch-bends’ where 
the pitch changes from one semi-tone to the other, without 
it being referred to as a new note. This is a different 
approach to the usual trend of comparing the automated 
transcription result with any MIDI file of the same track. 
Thus the paper tries to mimic the human transcription 
process to some extent. 

 
2. Theory 
 
2.1 Bach filter-bank 
 
The inspiration for the ‘Bach’ scale is obtained from 
music. In music, every octave contains 12 semi-tones. 
Each of the semitones is related to the next one by 
roughly a ratio of 2(1/12). This ratio was discovered by the 
great musician of the 18th century, J.S. Bach [4, 5]. This 
number of 2(1/12) holds true for almost all genres of music 
and relates to some natural perceptual phenomenon. 

 
Fig 1: - The Bach scale 



 
For ‘Bach’ scale 
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The Bach scale is only a relative scale and depends on the 
‘base’ frequency. 
     Assuming 12 filters per octave corresponding to 12 
semitones in the Bach scale, the maximum number of 
filters ‘M’ is calculated by.  
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where ‘Fs’ is the sampling frequency. The band-width 
formulation is given by using equation (1) for b(f). 

( )( ( ) 1) /12 ( ( )-1) /12( )  * 2 -  2b f b f
bach f baseB +=          (3) 

The number of filter coefficients used to generate the ‘nth’ 
filter is determined by 

( ) 2 * (1/ ( ))bN n ceil f n=                             (4) 
We thus see that the time resolution is poor for lower 
frequencies but better for higher frequencies. So we get 
the paradoxical ability to get better time resolution for 
higher frequencies and better frequency resolution for 
lower frequencies. 
     The filters designed are lag-windows obtained by the 
standard Blackman-Tukey spectral estimation method [6]. 
The set of filter coefficients obtained, is the eigenvector 
associated with the maximum Eigen value of the matrix 
with elements  

, * (( ) * * )m n signum m nβ β− Π=γ               (5) 

 where 2*β is the band-width in radians/sec and 
( ) sin( ) / { ! 0}signum x x x x= =              (6) 

1 { 0}x= =  
   The filter coefficients are real, symmetric and finite, so 
the phase responses are linear. 

 
Fig. 2 – Bandwidth of the windows as against the centre frequency in 

Bach  

 
Fig. 3 – The Bach scale Filter-bank 

 
2.2. Time varying representation 
 
The most common method of analyzing the time-varying 
voice signal has been by treating it as short-time 
stationary. However, this correspondence considers the 
signal as time varying. The voice signal is filtered by a 
bank of ‘M’ band-pass filters each shifted in frequency by 
a fixed factor. So we have ‘M’ filtered versions of the 
same voice signal. Consider the ‘nth’ such version of the 
signal. The energy around the ‘nth’ frequency component 
of the signal around a time instant ‘k’ will be equal to the 
‘kth’ output energy of the ‘nth’ filter-bank.  

( )10( ) ( ) 20 * log ( ) ( )( )k n nF n F k abs h k s k= = ⊗  
      (db SPL)  (7) 

where s(k) is the input voice signal, hn(k) is the band-pass 
filter designed around centre frequency ‘n’. The 
⊗ symbol represents linear filtering.  The feature vectors 
|Fk(n)|k=1:T or |Fn(k)|n=1:M are the two ways of the 2-D 
representation of the signal s(k). ‘T’ is the total number of 
samples in the signal. 

The first filter is centered around a ‘base’ frequency 
(any base freq between 50 to 80 Hz results in a good 
performance). The filter-bank is only an analysis filter-
bank and not a perfect reconstruction one. 
 
2.3. Frequency masking 
 
The Frequency energy vector at every time instant 
contains the relative energies around the particular time 
instant. However in the presence of a dominant frequency, 
the other frequencies at that time instant are masked. This 
masking is associated with critical bandwidth, so the 
‘Bach’ frequencies need to be converted to the Equivalent 
Critical Bandwidth frequencies (‘Bark’ scale) 
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      (8)  
The approximation for conversion from linear frequency 
to Critical Bandwidth is obtained from [7]. 



The presence of a tone is detected by the following 
criteria. 
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The spreading function (SF) [8] depends on the maskee 
location i, the masker location j, the power spectrum Fn at 
j, and the difference between the masker and maskee 
locations in Barks (dz=fCB(i)-fCB(j)) is given by (11) 
 
SF(i,j) = 17dz - 0.4*Fn(j)+11  For  -3 <= dz < -1  
   (0.4*Fn (j)+6)dz  For  -1 <= dz <  0  
   -17dz  For   0 <= dz <  1  

   (0.15*Fn (j)-17)*dz 
 - 0.15*Fn (j)  

For   1 <= dz <  8  

      (11) 
The tone masking noise [8] 
TMN(i,j) = Fn(j) - 0.175*fCB(j) + SF(i,j) - 2.025 (dB SPL) 
For tone masking tone [8] 
TMT(i,j) = Fn(j) - 0.275*fCB(j) + SF(i,j) - 6.025 (dB SPL)  
      (12) 
 

 

 
Fig 4: - (a) Tone masking Tone, (b)Tone masking noise 

 
 

3. Algorithm 
 
The algorithm contains the basic blocks as shown in 
figure 5. 

 
Fig 5- Block diagram of the algorithm 

 
As seen from section 2, the filter-bank designed has a 
higher frequency resolution for lower frequencies and 
higher time resolution for higher frequencies. The 
fundamental frequency is usually in the range of 100 to 
300 Hz, especially for males. A band-pass filter designed 
to track the fundamental frequency needs a high number 
of filter coefficients and is sluggish in nature (poor time 
resolution). A filter designed in the range of the 3rd 
harmonic usually has the optimum compromise between 
time and frequency resolution. 

The 3rd harmonic, though not always, is usually 
one of the significant, harmonic peaks, which makes it 
another good reason to track the same. 
 
3.1. Silence detection 
 
It is assumed that the background noise is of non-
sinusoidal nature. So the power spectrum will not be 
spiky and thus will have a low variance. This aspect is 
used to roughly determine the difference between voiced 
and unvoiced regions. So if the variance is below a certain 
threshold, then it is considered as silence. This threshold 
is related to the Signal to noise ration (SNR) of the signal.  
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If 2 2
10 1020log (max( )) 20 log ( ( ))k SNRσ σ− > − , then 

s(k) is considered a region of silence. The voiced part of 
the sample may be interspersed with several unvoiced 
parts. But due to the sluggish nature of the lower 
frequency filters, the variance does not drop below the 
threshold. So this method is fairly successful. 
 
3.2. Sinusoidal component detection 
 
The threshold for hearing a sinusoid is defined from (12). 
The thresholds are calculated using (11) and (12) for 
frequencies in the surrounding. Sinusoidal component is 
searched for, using (9). If a particular frequency is 
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Note
Cancelled set by Sita



sinusoidal, then masking threshold is recalculated. If 
greater than the previous threshold, then is taken as the 
new threshold. For time instant ‘k’ the initial masker Ι(k) 
is taken as the frequency with the highest amplitude FI(k).  
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Where Sk is the list of significant sinusoids at time instant 
‘k’ and FSk are their corresponding amplitudes. 
 
3.3. Harmonically related sinusoidal set 
 
The significant sinusoids detected have to be grouped 
according to their possible harmonics. We are taking into 
consideration 7 significant harmonics, which are usually 
the significant ones in case of human voice. Due to the 
non-linear nature of the Bach frequency scale, the 
harmonic values are related to the fundamental frequency 
‘f0’in the following manner. 

  
 
 
 
 
 
 

Thus H={0,12,19,24,27,29,31} is the set of harmonic 
differences. For a group of significant sinusoids, all 
potential harmonically related groups are identified. 
e.g. For a group of Sk = {7, 12, 19, 22, 26, 31, 34, 38, 41} 
and corresponding FSk = {0.02, 0.03, 0.05, 0.02, 0.07, 
0.06, 0.04, 0.02, 0.03}, the ordering would be 

 

7 19 26 31 34 0 0
12 0 31 0 0 41 0
19 31 38 0 0 0 0
22 0 41 0 0 0 0
0 0 0 38 41 0 0
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‘L’ is the total number of harmonically related groups. In 
this case it is 5. Here µ(k) = 26 and Fµ(k) = 0.07. There 
are two ways to find the most likely 3rd harmonic  
• Most significant peak: 

if  ( , ) ( ) for 1 to ,  1 to 7
then ( ) ( , ) ( ) 19

k
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 In this case λauto(k) = 26 
• The harmonically richest set: 
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 In this case, too λauto(k) = 26 
Thus λauto(k) is the pitch contour estimate found by both 
methods and usually the two estimates turn out to the 
same. In case they are different, the estimate closest to 
λauto(k-1) is taken as λauto(k). 

 The λauto(k) function is then median filtered in 
order to avoid some spikes created during the transitions 
of the pitch. 
 
3.4 Note onset detection 
 
This is a non-trivial problem, and is usually the source of 
errors. There are three possible types of note onsets. The 
first one, associated with a change in frequency and the 
second associated with a change in energy and the third 
associated with a change in syllable being pronounced. A 
change in note may not however always be associated 
with a note onset, because of the presence of glides in 
singing voice. A three step approach is used to detect the 
note onsets. 
• Change in frequency: 

ϑ(k) = 1 if λ(k) !=λ(k-1)  Else ϑ(k) = 0 
Thus ϑ(k) =1 denotes the estimate for note onsets based 
on change in frequency. 
• Change in spectral variance:  

σ2(k) is obtained from (13) 
2 2
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Thus ξ(k) =1 denotes the estimate for note onsets based 
on variations in spectral energy. ‘R’ is the number of 
samples equivalent to the fastest note transition. ‘R’ can 
be roughly taken as 0.05*Fs 
• Change in normalized spectral variance  

Normalized Spectral variance (NSV) is defined as 
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NSV, normalizes the spectral variation with respect to 
variations in amplitude with respect to time. Thus the plot 
of NSV as shown in fig 7 is independent of the energy 
associated with the spectrum, and just depends on the 
spread of the spectrum. The NSV changes wherever there 
is a change in spectral content. The first derivative (or 
difference) is called the DNSV(k) = NSV(k)-NSV(k-1). 

2nd harmonic   1st overtone   f0+12 
3rd harmonic   2nd overtone   f0+19 
4th harmonic   3rd overtone   f0+24 
5th harmonic   4th overtone   f0+27 
6th harmonic   5th overtone  f0+29 
7th harmonic 6th overtone  f0+31 



The note onset estimate ζ(k) is obtained from the DNSV 
as follows 

:
if    ( ) = min ( ( ))
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         if  ( )   then ( ) 1
                                    else ( ) 0

p k R k R
DNVR k DNVR p

DNVR k k
k
ζ

ζ

= − +

< Θ =
=

  (19) 

The threshold ‘Θ’ must be calculated empirically and is 
related to the SNR of the signal. A good approximation 

would be. 1:

20
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The final decision whether a region ‘Ψ’ around sample 
‘k’ contains a note onset is decided by the Boolean logic.  

:
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p k k
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Where for vector |A|1:p 

1
 1,          if ( ) 1    else 0

p

i
A A i A

=
= > =∑  

The region ‘Ψ’ is selected to be the allowed tolerance for 
note onset timing. In this case we take it to be 30 ms.Thus 
Ψ can be calculated to be 0.03 *Fs 

 
Fig 6- The plot of (a) NSV, (b) DNSV and (c) The spectrogram of an 

artificial sample, having two sinusoids  
(Fs=11000Hz) 

 
Fig 7 - The plot of (a) NSV, (b) DNSV and (c) Annotated frequencies. 

The vertical lines indicate the segmentation of the samples 
(Fs=11000Hz) 

Between two consecutive note onsets, No(k1) and NO(k2) if 
for at least one k1 < k < k2 ,   ϑ (k) =1, then, the region is 
considered to be a glide or a pitch-bend.  

Thus the Pitch contour is converted into a set of 3 
variables: ( ) { ,  ,  }auto start start endi τ λ λΓ = where 

startτ represents the note onset time (sec) startλ represents 
the starting relative frequency of a note, and 

endλ represents the ending relative frequency of the note. 
In case of glides  and start endλ λ will be different, and in 
case of regular notes,  and start endλ λ will be the same. 

The comparison between two relative pitch 
contours can only be done by shifting the transcription by 
‘S’ number of semitones before comparing it. The 
automated transcription is referred to as Γauto and the 
original manual transcription to MIDI format is 
represented as Γmidi 
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auto auto
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auto

where  is the total number of notes in the sample.
Then for i = 1 to I

( , 2) ( , 2)
( ,3) ( ,3)

auto auto midi auto

auto auto midi auto

I

i i
i i

µ µ
µ µ

Γ = Γ + −

Γ = Γ + −

 (23) 

Thus  midi autoS µ µ= −  
 
4. Results and Analysis 
 
The algorithm was tested for 20 samples of both males 
and female voices. The samples included singing with 
words, humming with /m/ and /n/ (nasal) phones, and 
whistling. The recording was done with a SNR of -25 dB 
and sampling rate (Fs) of 11 KHz. The transcription into 
MIDI was done by trained musicians for the samples. 

 
Fig 8 - (a) The pitch contour generated by the algorithm 

(b) The pitch contour generated by converting MIDI transcription to 
relative ‘bach’ frequencies  

(Fs=11000Hz) 
 



There are two ways of analyzing the error of the 
algorithm. The first method does not bother about the 
onset timings, and finds the fidelity with which the pitch 
is tracked. 
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Where λmidi represents the relative ‘bach’ frequency 
contour extracted from the MIDI transcription 
 
The second method employs the use of the onset timings.  
If a unique automated note onset is detected within 30ms 
(Ψ) of a manual note onset, then it is considered as a 
correct detection of onset (%O). If there is no automated 
onset within 100ms of a manual note onset, it is 
considered as a Deleted onset(%D). If there is no manual 
note onset within 100 ms of an automated note onset, then 
it is considered as an insertion (%I). If the value of the 
automated relative ‘bach’ frequency for a correctly onset 
is equal to that of the manually transcribed one, then it is 
considered as correct transcription (%T). The results of 
the 20 files tested are shown in table 1. 
 

Table 1 – Error rates for Normal singing voice (male and female)  
(10 files) 

%E %O %D %I %T 

10% 89% 5% 21% 81% 

 
Table 2 – Error rates for Normal singing voice (male and female)  

(5files) 
%E %O %D %I %T 

12% 84% 9% 12% 79% 

 
Table 3 – Error rates whistling (5 files) 

%E %O %D %I %T 

16% 83% 17% 5% 78% 

 
Though extensive testing hasn’t been done for the 
algorithm at this stage, the results are encouraging. Audio 
reconstruction of the transcribed data was played back to 
the singers, who approved the transcription quality. It also 
shows that the algorithm is quite robust for the various 
forms of queries likely to be made by the users of a query-
by-humming system. 
 
5. Conclusions and future work 
 
Thus an algorithm for transcribing human singing voice, 
into relative pitch contours has been suggested. It is 
shown to be robust for most forms of human voice 
queries. However, in order to establish beyond doubt the 
robustness of the algorithm, further testing has to be done 
on a larger data set. It may be worthwhile to extend this 

algorithm to include polyphonic samples predominantly 
containing the human singing voice. 
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