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ABSTRACT

We build a single automatic speech recognition
(ASR) model for several south Indian languages us-
ing a common set of intermediary labels, which can
be easily mapped to the desired native script through
simple lookup tables and a few rules. We use Sanskrit
Library Phonetic encoding as the labeling scheme, which
exploits the similarity in pronunciation across character
sets of multiple Indian languages. Unlike the general
approaches, which leverage common label sets only for
multilingual acoustic modeling, we also explore multi-
lingual language modeling. Our unified model improves
the ASR performance in languages with limited amounts
of speech data and also in out-of-domain test conditions.
Also, the model performs reasonably well in languages
with good representation in the training data.

Index Terms— ASR, multilingual acoustic model,
multilingual language model, low resourced language,
transformer, conformer, Kannada, Telugu, Sanskrit.

1. INTRODUCTION

India has a vast number of living languages, most of
which are low-resourced since they do not have enough
transcribed speech data to build an automatic speech
recognition (ASR) system with good performance. In
addition, it is tough to find enough text data to build
language models in some of these languages. Some lan-
guages are only spoken, with no script. Building acoustic
and language models are extremely challenging in such
cases due to the scarcity of data. However, there are
some opportunities as well. Many of these languages
share a common phoneme space and there is one-to-one
correspondence between their character sets and pronun-
ciation. Recent work on multilingual speech recognition
[1, 2, 3, 4, 5, 6] try to exploit these aspects by combin-
ing the small amounts of speech data from multiple lan-
guages, thereby minimizing the negative impacts of data
scarcity. Another direction of research is to utilize large
volumes of unlabelled speech from various languages for
unsupervised pretraining followed by the finetuning for
the downstream task using labeled data [7, 8, 9]. Gener-

ally, these approaches exploit the similarity between lan-
guages only in the acoustic models (AM) and use mono-
lingual language models (LM) during decoding. The use
of multilingual LM in ASR [10] is not explored much.

We employ multilingual training to build a unified
ASR model by pooling speech and text data from sev-
eral south Indian languages. We convert the text of these
languages to a common transcription format using the
Sanskrit library phonetic (SLP1) encoding [11] scheme.
We show that the unified model with a multilingual LM
improves the ASR performance in languages with lim-
ited speech or out-of-domain test settings. A language-
specific LM can further enhance the results, though.

SLP1 scheme has already been used for speech recog-
nition in Sanskrit [12, 18]. We extend the scheme to
multiple south Indian languages utilizing the similarities
in pronunciation across their character sets. The idea
of using a common set of tokens for multilingual train-
ing has already been attempted in [19, 20, 21, 22, 23].
[19] and [20] employ transliteration transducer to trans-
form all languages to Latin script. But training such a
transducer requires a lexicon to map the words in the
native script to possible Lain script romanizations, ne-
cessitating the help of an expert. Some of the languages
used in [21] have schwa deletion property, which ne-
cessitates language-specific machine translation models
for conversion from the common label set to the native
script. However, the languages used in our study are free
from schwa deletion and allow lookup table-based con-
version to the native script. Also, with SLP1, the net-
work’s output can be transliterated to any desired script.
Such benefits come in handy for spoken languages like
Tulu, which uses Kannada or Malayalam script based on
the geographical location of the speakers. Audio-to-Byte
(A2B) scheme proposed in [22] represents text as a se-
quence of Unicode bytes. This scheme restricts the out-
put vocabulary size to 256 and shows improvements in
multilingual training on languages with single and multi-
byte graphemes. The output vocabulary size with SLP1
is 58, much smaller than the A2B scheme. Also, we hope
SLP1 can provide better data pooling than the schemes
employing a union of graphemes from the constituent
languages at the output layer. The use of common to-
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Duration (hours) # Utterances
Language Source train dev test OOD train dev test OOD
Sanskrit (sa) Vāksañcayaḥ [12] 56 7 11 5 34309 3337 5529 2778
Telugu (te) MUCS 2021 [1] 40 5 4 44882 3040 2549
Kannada (kn) SLR 126∗ 49 6 6 14731 1856 1838

Malayalam (ml) IITM [13], IIITH [14], SMC [15],
SLR 63 [16], CV [17] 23 1 1 15266 1150 1155

Total 168 19 22 5 109188 9383 11071 2778
∗ Only a 49-hour subset of SLR 126 is used.

Table 1. Details of the speech corpora used for building and evaluating the multilingual ASR.

Language # Sentences # Tokens (native)
Sanskrit (sa) 0.05 M 80
Telugu (te) 0.94 M 82
Kannada (kn) 0.63 M 78
Malayalam (ml) 0.86 M 86

Table 2. Details of the text corpora taken from wiki-
pedia for training the monolingual language models.

kens across languages for acoustic modeling in our work
is closer to the scheme in [23]. But we extend the use of
tokens to multilingual LM also.

A limitation of the proposed approach is that it can-
not cope with code-switching between the languages un-
der study, as there is no way to detect the switching and
hence no way to map back to the correct script.

2. DATASETS USED FOR THE STUDY

We use publicly available speech data from four south
Indian languages - Telugu, Kannada, Malayalam, and
Sanskrit. Each dataset has three subsets generally -
train, dev, and test. Sanskrit has an additional split
called out of domain (OOD), which contains speech data
from speakers with distinguishable influence of their na-
tive language and from domains that are not part of the
training set [12]. For Malayalam, we combine speech
data from four publicly available datasets, namely IITM
[13], IIITH [14], SMC [15] and SLR63 [16] to form the
training set. Common voice (CV) [17] corpus is split to
form dev and test subsets. The details of the datasets
are shown in Table 1. Note that Malayalam has only
around 23 hours of speech data for training. The unified
multilingual acoustic model employs around 168 hours
of annotated speech data for training.

We use wiki data dumps in each language as the text
corpus for building LMs. The details of the text corpora
are shown in Table 2. The number of native script to-
kens used to train monolingual LMs in each language are
shown in the last column. These include the additional
tokens like blank, unk and sos/eos. The Sanskrit text
corpus is quite small in size.

3. EXPERIMENTAL SETUP

3.1. Conversion to SLP1 labels

In contrast with English, most Indian languages possess
a one-to-one correspondence between the literals in the
native script and their pronunciation, with a few excep-
tions like the anusvara and visarga characters, which can
be handled easily with simple rules. The Unicode tables
for Indian languages are organized such that the letters
with similar pronunciation occur at the same offset from
the beginning of the assigned range for every language.
Hence, mapping the characters from different scripts to a
common label set is simple for Indian languages. We use
the SLP1 scheme [11] for this. It maps both a vowel and
its modifier to the same ASCII character. We modify
these mappings slightly to incorporate the general rules
of pronunciation for anusvara and visarga as described in
[24]. These modifications have been shown to be useful
in improving the speech recognition performance in [18].
Figure 1 shows the SLP1 mappings for the languages
under our study, which are all free from schwa deletion.
Hence, the mapping of SLP1 literals back to the native
script is easily achieved using lookup tables. There are a
few exceptions for characters like vowel modifiers, anus-
vara, and visarga. However, we handle them easily with
simple rules.

3.2. Model architecture of the unified ASR

The architecture of the unified ASR model employed in
this work is shown in Fig. 2. We use the upstream-
downstream setup as in [25]. Wav2vec 2.0 [7] based
pre-trained model is used as the front-end feature ex-
tractor in the upstream. Authors of [26] show that us-
ing target domain data during pretraining leads to large
performance improvements in ASR. So we use models
pretrained on Indian languages to provide crosslingual
speech representations from raw audio. Specifically, we
use Indic wav2vec [9] large model pre-trained on 17,000
hours of raw speech data from 40 Indian languages. Also,
the pretraining includes data from diverse domains such
as education, news, technology, and finance. Parameters



Fig. 1. SLP1 mapping scheme for the languages used in this work.
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Fig. 2. The architecture of the proposed end-to-end
ASR system, with multilingual acoustic and language
models.

of the upstream model are frozen during the training
of ASR. The Indic wav2vec-large model outputs 1024-
dimensional vectors at the output, which are converted
into 80-dimensional features by a linear layer. These fea-
tures are fed to the downstream ASR model.

We use conformers [27] for acoustic modeling in the
downstream ASR. The hyperparameters for the con-
former model are listed in Table 3. We use the joint
CTC-attention scheme [28] for training the model with
a CTC weight of 0.3 and an attention weight of 0.7. We
use Adam optimizer [29] with a peak learning rate of
0.005 and warmup steps of 30000. We train the model
for 50 epochs. Ten best models based on validation
accuracy are averaged and used for decoding.

We use transformer [30] encoder structure for build-
ing LMs. The hyperparameters for the LMs are listed
in Table 3. We train the model for a maximum of 50
epochs with a patience value of 10. The best six models
based on validation loss are averaged to form the final
model. The optimizer is Adam, with a peak learning rate
of 0.001 and warmup-steps of 25000. During decoding,
the most probable token sequence Ŷ is computed as:

Ŷ = arg max
Y ∈V ∗

[
λ log pctc(Y |X) + (1− λ)log patt(Y |X)

+γ log plm(Y )

]
(1)

where pctc, patt, and plm are the CTC, attention, and

Parameters Acoustic model
(Conformer)

Language Model
(Transformer)

Embedding dim. - 128
Kernel size 15 -
Encoder layers 12 16
Decoder layers 6 -
Attention heads 4 8
Attention dim. 256 512
Feed-forward dim. 2048 2048

Table 3. Hyperparameter values used for acoustic and
language models.

language model scores, respectively. λ and γ are the
CTC and language model weights and V ∗ is the set of
all target hypotheses. We use beam size of 20, λ = 0.3,
and γ = 1.2. All the experiments are conducted using
ESPNet toolkit [31].

3.3. Details of baseline and multilingual models

In the baseline setup, we create acoustic and language
models using only the data from the corresponding lan-
guage. We refer to these models as mono. Here we use
the text in the native script. The number of tokens in
the native script for each language is shown in Table 2.
The baselines use different acoustic and language models
for each language.

For building the multilingual AM, we combine the
speech data from the train sets of all four languages. The
corresponding text transcriptions in the native script are
converted to SLP1. SLP1 uses 58 tokens for the multi-
lingual text representation. Similarly, the text corpora
from multiple languages are converted to SLP1 format to
build the multilingual LM. The SLP1 outputs of these
models are converted to the native script using lookup
tables and some rule-based modifications. We evaluate
the performance of these multilingual AM and LM on
test/OOD sets for all the languages used in training. We
compare these results to the baseline results with mono-
lingual models.



4. RESULTS AND DISCUSSION

The performances of both mono and multilingual models
are evaluated based on character error rate (CER) and
word error rate (WER).

4.1. Performance of baseline monolingual models

The baseline results obtained with monolingual models
trained on the native script are shown in Table 5. We de-
lineate the results on Malayalam and Sanskrit with a line
since limited audio resources (≈ 23 hours) were used in
training the Malayalam AM, and limited text resources
(≈ 0.05 M sentences) were used in building the Sanskrit
LM. The Sanskrit OOD set has data from domains com-
pletely different from those used in training. Speakers
forming the OOD set have a noticeable influence of their
native language on their speech.

The agglutinative nature of the languages under
study often results in long compound words. However,
while uttering these words, the speakers usually pause at
arbitrary points. The splitting of these words may not be
driven by sandhi rules depending on the speaker’s exper-
tise in the language. So the short pauses in utterances
may not indicate word endings. This fact exaggerates
the CER and WER while estimating the performance
of ASR on these languages. Table 4 shows an example.
Due to the arbitrary pause by the speaker, the long
word सस्यश्यामलाम् is decoded as two words. Though the
ASR output is perfect in this case, the WER measure
penalizes it with two errors. CER is also penalized by
an insertion error due to the extra space. We ignore
such errors and recompute the CER and WER in the
column Ignore space errors. However, we do not handle
merges and splits according to the sandhi rules, where
the graphemes at the boundary morph into different
ones.

Type Sentence
Reference : सस्यश्यामलाम्

Decoded by ASR : सस्य श्यामलाम्

WER Evaluation : 1 substitution + 1 insertion
Table 4. An example showing the degradation in WER
due to the arbitrary pauses introduced by the speaker.

Setup S1 of Table 5 reports the results of monolingual
acoustic models without any language models. Setup
S2 uses monolingual LMs trained on the resepective na-
tive scripts for decoding. The best result among the se-
tups for each dataset is highlighted in bold. We can see
that incorporating monolingual LM trained on the na-
tive script improves the performance of ASR across all
the test sets except Sanskrit-test. The Sanskrit-test set
contains data from domains similar to the ones used to

Setup Test
set LM Native script Ignore space

errors
CER WER CER WER

S1 te - test - 9.4 36.8 9.1 33.4
kn - test - 4.7 25.8 4.3 21.0
sa - test - 2.4 16.3 2.0 11.7
sa - OOD - 5.6 36.0 4.9 26.4
ml - test - 10.3 49.1 9.8 44.7

S2 te - test mono 6.5 23.6 6.2 19.7
kn - test mono 3.9 20.2 3.5 15.8
sa - test mono 2.6 16.3 2.3 12.8
sa - OOD mono 5.2 31.1 4.5 22.5
ml - test mono 9.9 47.2 9.3 42.3

Table 5. Results of the baseline monolingual acous-
tic models trained using native script on the test/OOD
datasets of languages used in training. The best results
in each evaluation set are shown in bold.

train the AMs. However, the text corpus for building the
Sanskrit LM includes data from more generic domains
than the training data and has a limited size. This could
be the reason for the performance dip on Sanskrit. How-
ever, the OOD set in Sanskrit benefits from the incorpo-
ration of LM. After ignoring the space errors explained
in Table 4, CER and WER improvements in Sanskrit-
OOD set are 0.4% and 3.9%, respectively. Malayalam-
test set shows improvements of 0.5% and 2.4% in CER
and WER, respectively, in setup S2.

In Indian languages, the word boundaries can vary,
and speakers can split compound words at arbitrary posi-
tions and merge simple words to form compound words.
By ignoring these space errors, the WER improves by
an average of 5.4% in the S1 setup and 5.1% in the S2
setup. CER also improves by an average of 0.5% in both
setups. These improvements indicate the extent of over-
estimation of WER and CER in Indian languages. The
speakers may also split/merge words according to the
sandhi rules causing sound changes at the morpheme or
word boundaries, which is not captured in the reference
transcription. We can further reduce the exaggeration
in CER/WER by treating the sandhi-based merges and
splits as valid. However, we do not handle it here since
it requires inputs from expert linguists.

4.2. Results of unified multilingual model

Table 6 lists the results with the unified multilingual
model trained on SLP1 text. There are 3 setups: i) S3:
no LM, ii) S4: monolingual LM trained on SLP1 text
data of respective languages, and iii) S5: multilingual
LM trained on SLP1 text data from all the languages.
The acoustic model is the same for all languages in all
the setups. Comparing setup S3 with S1, the equivalent
setup in the baseline, we see that the performance of the



common multilingual AM matches reasonably well with
that of language-specific AMs. On Malayalam-test and
Sanskrit-OOD sets, CER matches with the S1 results.
CER (WER) decreases by 0.5% (2.7%) on Telugu. CER
increases by 0.5% on Sanskrit, and 0.3% on Kannada
test sets. On Sanskrit OOD set, WER reduces by 1.4%.
There is a slight increase of 0.7% in WER on Malayalam-
test set, where only limited speech data is available for
AM training. On Sanskrit and Kannada test sets, WER
increases by 1.3% and 4.8%, respectively.

Joint decoding with the unified multilingual AM
and monolingual LM trained from SLP1 transcriptions
(setup S4) decisively improves the performance over the
S3 setup on all sets except Sanskrit-test. This trend is
similar to the performance improvements in the setup
S2 over S1. Specifically, CER (WER) improves by
2.6% (10.6%) for Telugu, 0.4% (3.2%) for Kannada,
0.5% (4.6%) for Sanskrit-OOD and by 6.4% (28.2%) for
Malayalam. The improvements are huge for Malayalam,
which has limited representation in the multilingual AM
training but reasonably good amount of text data for
LM training. However, the results degrade marginally
for Sanskrit-test. Decoding with an LM trained on a
text corpus from rather generic domains seems to be the
cause of this degradation, since Sanskrit-test contains
data from domains similar to the oness in the train set.

The S5 setting uses joint decoding with the unified
multilingual AM and the multilingual LM trained on
SLP1 text from all the languages. The benefit of this
scheme is that there are only single AM and LM mod-
els for all the languages in the study. The ASR perfor-
mance improves over S3 on all sets except Sanskrit-test.
CER (WER) improves by 2.2% (9.4%), 0.5% (3.7%),
2.1% (12.1%) and 0.4% (3.8%), respectively, for Telugu,
Kannada, Malayalam test and Sanskrit-OOD sets. CER
(WER) degrades by 0.4% (1.4%) for Sanskrit-test. WER
improves over the baseline setup S2 for Malayalam-test
(9%) and Sanskrit-OOD (1.3%). However, WER de-
grades over S2 for reasonably rich resourced languages
(1.6% in Telugu and Sanskrit, and 6.3% in Kannada test
sets) as the AM and LM are made more generic through
multilingual training. The results are more consistent
across languages in S5 than in S2. Joint decoding with
multilingual AM and LM seems to help in cases where:

(i) the amount of transcribed speech data available for
multilingual training is lower than that from other
languages (as seen on the Malayalam-test set).

(ii) the text data for building language models are lim-
ited, and the test set is from unseen domains (as
seen on the Sanskrit-OOD set).

WER performance of S5 degrades slightly in most
languages (1.2% in Telugu-test, 0.5% in Sanskrit-test,
and 0.8% in Sanskrit-OOD) compared to the language-

Setup Test
set LM SLP1 script Native script Ignore space

errors
CER WER CER WER CER WER

S3 te - test - 8.0 32.3 8.9 34.3 8.6 30.7
kn - test - 3.2 24.5 5.0 30.7 4.6 25.8
sa - test - 2.0 15.3 2.8 17.2 2.5 13.0
sa - OOD - 4.5 32.8 5.5 34.6 4.9 25.0
ml - test - 8.8 48.6 10.1 49.8 9.8 45.4

S4 te - test mono 5.5 21.7 6.3 23.9 6.0 20.1
kn - test mono 2.8 20.9 4.5 26.5 4.2 22.6
sa - test mono 2.1 14.4 3.0 16.4 2.9 13.9
sa - OOD mono 4.0 27.2 5.0 29.1 4.4 20.4
ml - test mono 2.6 18.1 3.6 19.6 3.4 17.2

S5 te - test multi 5.8 22.9 6.6 25.0 6.4 21.3
kn - test multi 2.8 20.9 4.4 25.8 4.1 22.1
sa - test multi 2.1 15.2 3.1 17.2 2.9 14.4
sa - OOD multi 4.0 28.1 5.1 30.1 4.5 21.2
ml - test multi 6.8 36.4 8.0 37.9 7.7 33.3

Table 6. Results of multilingual models trained using
SLP1 tokens on test/OOD datasets of languages used
in training. The best results for each dataset are high-
lighted in bold.

specific LMs in S4. In Malayalam, degradations are much
higher (16.1%). Recognition is largely dependent on the
performance of LM in Malayalam since its data represen-
tation in AM training is much less than the other lan-
guages. As the language models become more generic in
S5, performance degrades heavily in Malayalam. How-
ever, S5 improves over S4 by 0.5% on Kannada-test.

Among the unified multilingual AMs, the setup S4
seems to be the best. However, it requires a reason-
able amount of text data to build language-specific LMs,
which is not readily available in many spoken languages.

4.3. Results of retraining the models

We further retrain the unified multilingual model with
monolingual speech to create language-specific AMs. We
expect the pretraining to provide better initialization for
the language-specific models. The training is performed
using the SLP1 script. We evaluate the performance of
all the models in 3 settings: i) S6: no LM, ii) S7: with
a monolingual LM trained on SLP1 text data from the
individual languages, and iii) S8: with a monolingual LM
obtained by retraining the multilingual LM of S5 with
the SLP1 text data from individual languages (referred
to as retrain). Table 7 lists the results on the evaluation
sets using retrained AMs. Comparing the setup S6 with
its counterpart S3 in the unified multilingual model, we
see that retraining does not change the ASR performance
much. The improvements/degradations are limited to
0.2% in CER and 1.1% in WER.

Joint decoding with retrained AM and SLP1-trained
monolingual LM (S7) greatly improves over S6 on all the
datasets. WER improvements are 10.1%, 3.1%, 0.5%,
5.7%, and 12%, respectively, for Telugu-test, Kannada-



Setup Test
set LM SLP1 script Native script Ignore space

errors
CER WER CER WER CER WER

S6 te - test - 7.8 31.9 8.6 33.8 8.4 30.1
kn - test - 3.1 24.1 4.9 29.8 4.6 25.3
sa - test - 2.1 16.9 3.0 18.7 2.7 14.1
sa - OOD - 4.6 33.5 5.7 35.2 5.0 25.7
ml - test - 8.7 48.6 10.1 49.8 9.8 45.3

S7 te - test mono 5.6 21.6 6.4 23.8 6.1 20.0
kn - test mono 2.7 20.7 4.4 26.2 4.1 22.2
sa - test mono 2.0 14.5 3.0 16.4 2.8 13.6
sa - OOD mono 3.9 27.1 4.9 29.0 4.3 20.0
ml - test mono 6.8 37.0 8.0 38.3 7.7 33.3

S8 te - test retrain 5.4 21.1 6.2 23.3 6.0 19.7
kn - test retrain 2.7 20.5 4.4 26.0 4.2 22.2
sa - test retrain 2.0 14.5 3.0 16.4 2.8 13.6
sa - OOD retrain 3.9 27.1 4.9 29.0 4.3 20.0
ml - test retrain 6.3 34.3 7.3 35.5 7.1 30.8

Table 7. Results of retraining the multilingual acoustic
model with SLP1 transcriptions from each language. We
have a separate AM for each language here. The numbers
in bold indicate the improvements over the best results
with the unified multilingual model.

test, Sanskrit-test, Sanskrit-OOD and Malayalam-test
sets. However, the improvements over S4 are meager,
if any. Retraining the LMs helps only Malayalam, where
the CER (WER) improves by 0.6% (2.5%). The results
of retrained LMs (S8) on other languages are almost
identical to those of monolingual LMs (S7). The results
of all the setups are summarized in Figs. 3 and 4.
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Fig. 3. Comparison of CER in different setups.

4.4. Performance on unseen languages

We test our unified multilingual model on two languages
unseen during training, namely Tulu and Tamil. We use
826 Tulu utterances (≈ 35 min.) from youtube and 2609
Tamil utterances (≈ 4 hrs) from the MUCS 2021 [1] test
set. The results are listed in Table 8. Though Tulu is an
independent language, it has a few similarities with Kan-
nada, which is used in training acoustic models. Tamil is
entirely different from the languages used in training. It
does not have separate letters for aspirated and voiced
stops. For eg. /ka/, /kha/, /ga/, and /gha/ are all
mapped to /ka/ (க) and context-based phonetic rules
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Fig. 4. Comparison of WER in different setups.

Test
set LM SLP1 script Native script Ignore space

errors
CER WER CER WER CER WER

Tulu - 15.9 51.2 16.1 51.5 16.0 50.2
Tamil - 30.7 85.0 30.7 85.2 30.6 84.1
Tulu multi 38.8 105.1 36.8 101.4 36.7 100.8
Tamil multi 44.9 109.5 43.0 106.8 42.9 106.3

Table 8. Results of multilingual AM on languages un-
seen during training.

decide the pronunciation. The number of valid SLP1 to-
kens are just 40 in Tamil. Hence the unified multilingual
model has better results on Tulu than on Tamil. The
multilingual language model, which does not have any
representation from these languages, worsens the results
further.

5. CONCLUSIONS

We explore the use of unified acoustic and language mod-
els for ASR in several south Indian languages with the
help of a common intermediary labeling scheme called
SLP1. The advantage of such a system is its simplic-
ity, since no language ID component is needed during
training or inference. With the help of a lookup ta-
ble, we can easily convert the SLP1 output of the model
to any desired script. Languages like Tulu without a
script of their own (and use the scripts of one or more
other languages), can benefit from this scheme. The sys-
tem betters the baseline performance on Malayalam-test,
where only limited speech data is available for training
the acoustic models, and on Sanskrit-OOD, where the
speech data is from domains different from that used
in training. However, multilingual AM + LM does not
outperform monolingual AM + LM for rich resource lan-
guages. Multilingual AM gives similar results with mono
and multilingual LMs in all languages except Malayalam.
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