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Abstract. Detection of transitions between broad phonetic classes in a speech signal has applications such as

landmark detection and segmentation. The proposed hierarchical method detects silence to non-silence transi-

tions, sonorant to non-sonorant transitions and vice-versa. The subset of the extrema (minimum or maximum

amplitude samples) above a threshold, occurring between every pair of successive zero-crossings, is selected

from each frame of the bandpass-filtered speech signal. Locations of the first and the last extrema lie on either

side far away from the mid-point (reference) of a frame, if the speech signal belongs to a non-transition segment;

else, one of these locations lies within a few samples from the reference, indicating a transition frame. The

transitions are detected from the entire TIMIT database for clean speech and 93.6% of them are within a

tolerance of 20 ms from the phone boundaries. Sonorant, unvoiced non-sonorant and silence classes and their

respective onsets are detected with an accuracy of about 83.5% for the same tolerance with respect to the

labelled TIMIT database as reference. The results are as good as, and in some aspects better than, the state-of-

the-art methods for similar tasks. The proposed method is also tested on the test set of the TIMIT database for

robustness with respect to white, babble and Schroeder noise, and about 90% of the transitions are detected

within a tolerance of 20 ms at the signal to noise ratio of 5 dB. On NTIMIT database, 62.7% of the transitions are

detected, and 63.5% of the sonorant onsets, within 20 ms tolerance.
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1. Introduction

1.1 Segmentation problem

During speech production, the articulators continually

move, resulting in a speech signal with almost continuous

formant tracks. Also, the source process is influenced by the

preceding or the succeeding phone, as for example the

glottal abduction during a vowel–consonant transition, the

presence of frication noise following a burst or the presence

of noise components at the onset of a vowel following a

strong fricative. Thus, the adjacent phones have a consid-

erable influence on the temporal and spectral properties of a

short segment of speech corresponding to the so called

current phone [1]. However, we perceive clean speech as if

it is made up of a sequence of distinct sounds, thus evoking

an expectation that the signal can be segmented into non-

overlapping intervals corresponding to phones. Hence,

speech segmentation is a challenging problem. Despite the

lack of phone-wise segmentation property in a speech sig-

nal, there are clearly marked events or transitions or

landmarks arising due to an abrupt change of source pro-

cess (voiced/unvoiced) and/or an abrupt movement of an

articulator (sudden release as in stops, switch over from

oral to nasal output as for nasals). Detection of such events

serves to guide semi-automatic segmentation, variable

frame-rate analysis or analysis around landmarks to extract

distinctive features (DFs) or manner classes [2] or phonetic

features (PFs).

1.2 Literature review

There are three broad approaches to segmentation: (i) se-

quential, non-overlapping segmentation based on phones,

(ii) parallel, multiple segmentations based on DFs and (iii)

hierarchical segmentation based on PFs. Classification of a

speech signal, phone-wise or feature-wise, can also be

interpreted as performing segmentation, since it automati-

cally divides the speech signal into distinct segments.

The first view, namely, the phone-based segmentation, is

motivated by the perception of speech as a series of distinct

units. As per this view, any speech signal is a sequence of

non-overlapping intervals, each representing a phone. This*For correspondence
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assumption is widely used in manual labelling of the speech

databases. Such a labelling scheme contradicts the acoustic-

phonetics knowledge that a given frame of speech signal is

strongly influenced by the neighboring phones. However, it

is understood that the manual labelling of phones must be

considered along with the surrounding context of phones. In

phone level segmentation, abrupt changes in the short-time

spectra are marked as transition events [3–9]. Various

short-time spectral representations have been used: linear

prediction smoothed spectral envelope, ensemble interval

histogram, auditory sub-band filter outputs, mel frequency

cepstral coefficients (MFCCs), weighted MFCCs, etc. In

addition to the standard Euclidean and Mahalanobis dis-

tance measures [3], cross-correlation of short-time spectra

[4], model fitting [6], maximum likelihood estimates and

template matching [7] have also been used to detect seg-

ment boundaries.

The second approach to segmentation is based on DFs, a

view based on phonology. It is postulated that each speech

sound is a bundle of (about 16) binary DFs [10, 11]. In this

model, speech signal consists of a parallel stream of DFs.

The presence of each of the DFs extends over different,

overlapping intervals with their own boundaries. Acoustic

description of DFs given by Jakobson et al [10] has

remained qualitative in nature since there is no robust

automatic method to extract these descriptors. Chomksy

and Halle [11] have proposed articulation-based DFs. In

order to extract these DFs, King and Taylor [12] used

frame-wise analysis with MFCCs and their derivatives (39

features) as the acoustic feature vector input to a neural

network classifier trained for each DF separately, and

obtained a high ([90%) frame-wise accuracy for the indi-

vidual DF. However, the accuracy for the joint or simul-

taneous occurrence (all correct) of the DFs for a given

phone is low (around 50%).

The third approach, based on the PFs, has two models.

One of the models is based on the manner and place

classification of speech sounds, a view inspired by the

process of speech production. This is similar to the

approach of DF but with multi-valued features and only

two parallel streams (manner and place). In their work on

DFs, King and Taylor [12] also reported on the identifi-

cation of manner and place features. The reported frame-

wise accuracy is about 90% for the individual features. A

later extension of this study attempted to incorporate

mutual dependences amongst DFs [13] and found a

marginal improvement in the accuracy. Juneja and Wil-

son [14, 15] report manner class (silence, vowel, sono-

rant consonant, fricative and stop) segmentation

accuracy of about 79% [15] on a part of the test set of the

TIMIT database, using MFCCs as well as acoustic

parameters and support vector machine classifier.

An issue related to the extraction of PFs is the landmark

detection, landmark being an important transition dividing

a speech signal into certain broad segments [16–18]. Con-

ventionally, speech analysis for the extraction of acoustic

features is carried out frame-wise. However, in this alter-

native approach, speech signal around the landmarks is

analysed to extract the acoustic features, which are subse-

quently given as an input to a classifier to determine either

the phones or PFs. Liu [18] has used the change of energy,

over six sub-band signals, between two frames spaced 50

ms apart, for detecting four broadly defined landmarks.

Salomon et al [17] have used a set of 12 temporal param-

eters to detect three landmarks as well as for manner

classification.

The work reported in this paper can be considered as an

approach to segmentation of speech into broad classes,

when the phone sequence is unknown. The superior speech

perception performance of humans in degenerate conditions

[19] suggests that humans employ a representation of

speech, which has more mutual information with phonetic

classes. In a recent study, Mesgarani et al [20] used high-

density direct cortical surface recordings in humans and

found response selectivity to distinct PFs in the superior

temporal gyrus (STG), which shows acoustic-phonetic

representation of speech in human STG.

1.3 About this work

Reddy [21] proposed the use of intensity differences (peaks

and valleys) to detect certain broad classes of sounds for a

limited vocabulary, speaker-dependent task. Stevens [16]

has observed that certain landmarks may be located based

only on abrupt amplitude changes in a speech signal. This

paper proposes four different measures for detecting tran-

sitions between broad phonetic classes in a speech signal

based on abrupt amplitude changes.

A measure is defined on the quantized speech signal to

detect transitions between very low amplitude or silence

(S) and non-silence (N) segments. These S-segments could

be stop closures, pauses or silence regions at the beginning

and/or ending of an utterance.

We propose two other measures to detect the transitions

between sonorant and non-sonorant segments and vice-

versa. We make use of the fact that most sonorants have

higher energy in the low frequencies, than other phone

classes such as unvoiced fricatives, affricates and unvoiced

stops. For this reason, we use a bandpass speech signal

(60–340 Hz) for extracting temporal features. For a tran-

sition within a sonorant (vowel to voiced consonant or vice-

versa), the amplitude of the bandpass-filtered speech signal

does not change appreciably. However, for a transition

from a sonorant to any of the unvoiced consonants, the

amplitude changes suddenly from a relatively high to a low

value across the transition. The converse is also true. Thus,

by tracking the relative locations of extrema in successive

closely spaced analysis frames, we can detect the transi-

tions between relatively high (H) and low (L) amplitude

segments and hence the broad phonetic classes in a speech

signal.
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When the amplitude of the bandpass-filtered signal in a

frame is very low, any change in the relative amplitude

level is not reliable. Thus, when the mean difference

between extrema amplitudes in a frame is very low, any

transition is ignored.

The afore-mentioned rationale for the selection of fea-

tures and the proposed algorithm for detecting transitions

are based on the acoustic-phonetic knowledge of the dif-

ferent classes of speech sounds.

Combining the afore-mentioned types of transitions, the

speech signal is divided into five broad homogeneous

classes: silence (S), high (H), low (L), high-low (HL) and

low-high (LH). Based on the homogeneous classes, the

speech signal is classified into the broad phonetic classes of

sonorants, non-sonorants and silence. The proposed method

is validated using the TIMIT database under clean and

noisy conditions. The accuracy of detection and the tem-

poral accuracy of the onset of these classes are computed.

The results are noted to be comparable to those of state-of-

the-art methods.

The proposed method is clearly distinct from the ‘old’

approaches of 1960s as well as the later ‘Rate-of-Rise’

(ROR) approaches. These earlier approaches are based on

‘short-time energy contour’, where, if the duration of the

analysis frame is too short, there will be rapid fluctuations

in the energy contour and if the frame duration is large,

energy contour smears the transitions. Such disadvantages

are not present in the proposed method, where the positive

and negative thresholds adapt to the statistics of the peaks

and valleys in the analysis frame. The proposed method is

based on a novel method of computing ‘temporal envelope’

properties based on the amplitudes of successive peaks and

valley-to-peak amplitude, rather than the short-time energy.

2. Proposed temporal features

From the normalized speech signal, we derive temporal

features that are independent of the amplitude level (gain)

of the signal. The parameters used are derived from a

development set.

2.1 Pre-processing

The speech utterance s[n] is normalized after removing the

mean value. Frames extracted from the normalized utter-

ance sN ½n�, using a uniform frame shift of 5 ms, are used for

deriving the temporal features.

2.2 Silence index

Usually a threshold on energy is used to detect a silent

segment. Here, we propose an alternate method, by defining

a new measure called silence index (SI).

The silence segments within an utterance have a much

lower spectral dynamic range (6–12 dB) compared with a

speech segment (20–40 dB or more). The low spectral

dynamic range results in a time domain signal without

heavy, sudden fluctuations. Hence, we gross quantize the

signal by removing the seven least significant bits, after

which samples in most silent segments have the same

value. The normalized speech signal of 16-bit resolution is

quantized to 9 bits by shifting right by 7 bits and a staircase

signal is obtained. The size of the analysis frame is 10 ms.

Whenever there are a minimum of three successive samples

having the same value and whose absolute values are up to

a threshold (two times the quantization level, 27), these

samples are counted for the calculation of SI.

SI is a dimensionless ratio (between 0 and 1), defined as

follows:

SI ¼ count of samples below threshold

number of samples in the frame
: ð1Þ

Since a frame shift of 5 ms is used, there is a new value of

SI for every 5 ms segment.

Figure 1 shows the signal and its quantized counterpart,

together with the SI values for three types of speech seg-

ments, each containing three overlapping frames: (a) si-

lence containing a noisy impulse, (b) unvoiced and (c) a

closure–burst transition segment. It may be noted that SI

has a very high value, as desired for the silence segment,

even in the presence of a large amplitude impulse. The SI is

low for the unvoiced segment. During a closure–burst

transition, there is a sharp decrease in the value of SI for

two successive frames. We make use of such abrupt

changes in the value of SI for detecting the transitions from/

to silence segments.

2.3 Features based on the extrema in a frame

Features based on extrema are used to detect transitions

from/to a sonorant segment. As sonorants have significant

energy in the low frequencies below 500 Hz as compared

with other segments, the normalized speech signal is

bandpass filtered (BPF) using the following bell cosine

shaped filter in the frequency domain:

hB½f � ¼

0:5� 0:5 cos p
f � f1=2

f1=2

� �� �
f1=2� f\f1

1 f1 � f � f2

0:5þ 0:5 cos p
f � f2

f2

� �� �
f2\f � 2f2

0 elsewhere

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

f1 ¼ 70 Hz, f2 ¼ 250 Hz and hB½f � is the frequency

response of the filter. This filter has a cosine rising function

from 35 to 70 Hz, unit gain from 70 to 250 Hz and cosine

falling function from 250 to 500 Hz. The 3 dB frequencies
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of the bandpass filter are 60 and 340 Hz. This is close to

‘Band 1’ used by Liu [18] for landmark detection. The

corresponding BPF signal sB½n� is given as

sB½n� ¼ sN ½n� � hB½n� ð2Þ

where hB½n� is the impulse response corresponding to hB½f �.
The BPF signal sB½n� is analysed with a frame size of 40 ms,

twice the pitch period corresponding to the assured mini-

mum value of fundamental frequency of 50 Hz.

2.3a Selection of extrema based on a dynamic two-pass

threshold: Let s
j
B denote the BPF signal between the first

and the last zero crossings in the jth frame. We define

features based only on those extrema in s
j
B remaining after a

2-pass, frame-adaptive threshold.

The first-pass positive threshold T
j
P1 is defined as

T
j
P1 ¼ 0:5� meanðfsjB½n�gÞ 8s

j
B½n�[ 0: ð3Þ

From s
j
B, all the positive peaks p

j
B between successive zero

crossings are obtained. A subset of these peaks is selected

as

p
j
B1 ¼ fpjB; 8 p

j
B [ T

j
P1g: ð4Þ

The second-pass positive threshold T
j
P2 is defined as

T
j
P2 ¼ 0:5� meanfpjB1g: ð5Þ

The set of peaks after the second pass is obtained as

p
j
B2 ¼ fpjB1; 8 p

j
B1 � T

j
B2g: ð6Þ

The factor of 0.5 is applied to compute the threshold based

on the intuition that in the case of a midframe transition,

half of the peaks p
j
B1 in the frame might lie below and the

rest above T
j
B2. Similarly, from the valleys (negative peaks)

between successive zero crossings, the set of valleys v
j
B2 is

obtained. Figure 2a shows a segment of voiced frame /ae/,

its corresponding BPF output and the first zero crossing, the

first and second-pass positive thresholds. It is to be noted

that the peaks obtained after the first and second-pass are

the same for this non-transition frame.

2.3b Relative occurrences of first and last extrema in a

frame: The times of occurrence of the first extremum

(OFE) and the last extremum (OLE) in p
j
B2 or v

j
B2 are

measured with respect to the mid-sample of the frame as

the relative time reference. Thus, occurrences ahead of the

reference have a negative value. The values of OFE and

OLE are treated as the features of the mid-5-ms segment of

the frame.

For both the voiced and unvoiced speech segments

shown in figure 2a and b, OFE and OLE occur long

before and after the reference instant, i.e., OFE � 0 and

OLE 	 0. We notice that the extrema corresponding to

OFE and OLE lie on either side, far away from the

reference instant of the frame, i.e., OFE � 0 and

OLE 	 0. Thus, this property of OFE � 0 and OLE 	
0 is satisfied whenever the speech signal within a frame

corresponds to a homogeneous class. For a transition

from a voiced to unvoiced signal and vice-versa, it is

intuitive to observe an OLE or OFE close to zero, i.e.,

mid-sample of the frame. Figure 2c shows a transition

from a voiced to an unvoiced segment. Here, OFE is

highly negative and OLE has a low negative value. The

converse is true for an unvoiced to voiced transition as

shown in figure 2d. Thus, the algorithm works because

there are abrupt changes between the segments before

and after the transitions.

From these illustrations, we can deduce the following:

(a) when OFE � 0 and OLE 	 0, the frame corresponds
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Figure 1. Variation of SI values with the variation in the nature of the signal across consecutive frames. Speech signal and the

corresponding quantized signals for (a) presence of a high amplitude pulse in a silence segment. (b) An unvoiced segment. (c) A stop

closure–burst transition. (Note that the y-scales are different for the three plots.).
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to a homogeneous class, (b) OFE � 0 and OLE 
 0 for a

frame with a transition from a relatively high to a low

amplitude (H-L) and (c ) OFE 
 0 and OLE 	 0 for a

frame with a transition from a relatively low to high

amplitude (L–H). Thus, we can divide the speech signal

into a homogeneous class (H-class or L-class) and the two

types of transitions H–L and L–H.

2.3c Mean absolute difference between extrema (MADE)

within a frame: The peak values of the BPF signal in

figure 2b are very low (
0.005). The transitions in such

frames are ignored, since the whole frame corresponds to a

non-sonorant segment. For this purpose, another measure

named mean absolute difference between extrema (MADE)

is introduced, which is the mean of the absolute differences

between successive peaks and valleys after the second

thresholds. The caption for figure 2 also gives the values of

MADE for each of the sample signals shown. Figure 3

shows the histogram of MADE for sonorant and non-

sonorant frames for 20 randomly selected files from the

TIMIT database, used as a development set. The histogram

suggests an optimal threshold of 0.024 for sonorant/non-

sonorant classification. Transitions corresponding to OFE

and OLE are ignored when MADE is below this threshold.

Spurious detections of transitions in unvoiced segments and

due to frication noise following bursts are avoided and we

detect only transitions from/to sonorant segments.

3. Algorithm for the detection of transitions

We refer to the proposed algorithm shown in figure 4 as

AGR algorithm. We discuss the strategy used in the algo-

rithm with an example. The first step divides the speech

signal into silence and non-silence segments.

3.1 Detection of transitions between silence

and non-silence classes

To arrive at a threshold, the histogram of SI values for

silence (S) and non-silence (N) frames for the development
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Figure 2. Speech signal (top) of some sample frames and their corresponding BPF versions (bottom). The first-pass threshold T
j
P1 ðT

j
N1Þ

is half the mean of all the positive (negative) valued samples in the analysis frame. The second-pass threshold T
j
P2 ðT

j
N2Þ is half the mean

of all peaks (valleys) above (below) the first-pass threshold. The extrema above the second-pass thresholds (horizontal lines above and

below zero) as well as the occurrences of the first (OFE) and last extrema (OLE) are shown. (a) A homogeneous voiced segment

(MADE = 0.32). (b) A homogeneous unvoiced fricative segment. Notice the very low amplitude of the bandpass signal in this case, and

MADE = 0.01. (c) A voiced–unvoiced transition (MADE = 0.31). (d) An unvoiced–voiced transition (MADE = 0.15).
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set is computed and is plotted in figure 5. A threshold value

of SI ¼ 0:5 is chosen to distinguish between silence and

non-silence frames. The temporal accuracy for the transi-

tion is improved by recomputing SI in the mid-5-ms region

for non-overlapping sub-segments of 1 ms duration. The

instant of transition is defined as the point when SI crosses

the value of 0.5 in any direction. The samples between an

N–S and a following S–N transitions are labelled as S-class

and vice-versa.

SI values obtained for a speech segment containing

several phones and the detected transitions are shown in

figure 8a. The S–N transitions around 200 ms

corresponding to the boundary between ‘h#’ and /sh/ and

around 770 ms corresponding to the boundary between /dcl/

and burst /d/ are detected successfully. However, the /dcl/

segment (550–580 ms) between /eh/ and /jh/ is missed,

since considerable energy is present in the corresponding

segment. The phone /jh/, normally a voiced affricate, is

realized as unvoiced in this utterance. It is not clear if a

closure needs to be necessarily marked for an affricate

realized as a fricative. Despite the presence of a noticeable

impulse, /kcl/ segment from 920 to 980 ms is correctly

identified as S-class.

3.2 Detection of transitions between sonorant

and non-sonorant classes

A transition from a non-sonorant to a sonorant class is

mostly detected as L–H and vice-versa.

Suppose there is a vowel, followed by an unvoiced or

voiced closure. Figure 6 shows three consecutive frames of

a speech segment where a strong H–L transition occurs

from a vowel /ah/ to a unvoiced closure /kcl/. It is seen that

OLE decreases from a positive value (figure 6a), crosses

zero (figure 6b) and then further decreases to a negative

value (figure 6c). Figure 7 shows three consecutive frames

of a speech segment where a weak H–L transition occurs

from a vowel /ih/ to a voiced closure /dcl/. It is seen that

OLE decreases from a positive value (figure 7a) to a min-

imum near zero (figure 7b), and then without any zero

crossing again increases (figure7c).
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Figure 3. Histogram showing the distribution of computed

values of framewise mean absolute difference between extrema

(MADE) for 20 randomly selected files from TIMIT database.

Figure 4. Flowchart for the detection and class assignment of transitions (T is the threshold for MADE).
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As long as the analysis window contains only the vowel

part, most peaks and valleys in the BPF signal have com-

parable, high amplitudes. Hence, the first and the last

extrema occur at the beginning and end of the analysis

frame; this makes the values of OFE and OLE highly

negative and positive, respectively, with respect to the

centre of the frame. Once the closure region enters the

analysis window, the occurrence of the last extremum (still

from the vowel region only) slowly moves towards the

centre, reducing the OLE value from a high positive value

towards zero (see figures 6 and 7a and b). However, OFE

remains highly negative, since there is a part of the vowel

still at the beginning of the analysis window. Now, since

nearly half the analysis window contains the closure signal,

the first-pass threshold reduces.

In the case of unvoiced stop, there are no peaks in the

closure interval and hence the second-pass threshold

remains almost the same, being decided only by the

extrema of the vowel. Thus, after the next frame shift, OLE

moves further to the left, beyond the centre (see figure 6c).

Thus, OLE reduces from a high positive value, becomes

zero and then goes negative. Thus, OFE having a consis-

tently high negative value and OLE having a zero crossing

from positive to negative value denote a high (low-fre-

quency) amplitude phone (say, a vowel) to a low amplitude

phone (say, unvoiced stop or fricative) transition or a strong

H–L transition. Similarly, OLE having a high positive value

and OFE having a zero crossing from positive to negative

value denote a low to high amplitude transition.

In the case of voiced stop (following a vowel), there are

small but definite peaks in the closure interval, which bring

down the second-pass threshold also. After the next frame

shift, the voiced closure region enters the first half of the

analysis window, further bringing down the second-pass

threshold (see figure 7c). Now, most of the peaks and

valleys in the closure region survive the low second-pass

threshold. Thus, OLE again becomes highly positive, rather

than becoming negative. Thus, OFE having a consistently

negative value and OLE going through a minimum within 5

ms (the duration of a frame shift) from the centre also

denotes a H–L transition. However, to distinguish it from

the afore-mentioned scenario, we call this as a weak H–L

transition. Thus, in a weak H–L transition, the OLE, rather

than going through a PZC to NZC, actually goes through a

minimum and again increases. Similarly, OLE having a

high positive value and OFE going through a maximum

near zero and again decreasing denotes a weak L–H

transition.
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Figure 5. Histogram of framewise silence index of 20 randomly

selected files from TIMIT database.
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Figure 6. The signals and their bandpass-filtered versions of three consecutive frames of speech containing a strong H–L transition

from the vowel (/ah/) to an unvoiced closure (/kcl/). The occurrences of the first (OFE) and last extrema (OLE), and the first and second-

pass thresholds are shown, in each case. Plots of OFE and OLE show that OLE goes through a positive to negative zero crossing.
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An L–H transition is detected near the PZC to NZC of

OFE as seen in figure 2d. Appropriate class labels are

assigned to the segments between successive transitions.

For example, in the simplest case, a segment that lies

between H–L and L–H transitions would naturally be

labelled as L-class.

Figure 8b shows the bandpass version of the segment of

speech signal shown in figure 8a. The values of OFE and

OLE obtained for successive frames are scaled and plotted

as a function of time in figure 8b. Towards the end of /sh/,

just before 300 ms, OFE rapidly increases from a negative

to a positive value and returns to a negative value for the

next phone. The PZC to NZC in OFE marks a strong L–H

transition. We choose the zero-crossing in the BPF signal

closest to this NZC as the transition instant.

During the H–L transition from /ih/ to /dcl/ around 720ms,

there is an abrupt decrease in amplitude (unlike /eh/ to /dcl/).

OLE decreases rapidly to a minimum, close to the base line,

without a sign change. If this minimum value of OLE is

within 5 ms, then it is considered a weak H–L transition. The

value of 5 ms arises because of the frame shift. In the next

analysis frame, the voiced closure enters the first half of the

window, thus reducing the second-pass threshold. This ren-

ders the extrema of the voiced closure region to go above the

threshold, thus taking the value of OLE back to a high posi-

tive value. A similar weak L–H transition due to OFE is seen

between /dcl d/ and /ah/ around 800 ms. Thus the so called

weak transitions are also genuine transitions. The distinction

between a strong and weak transition is noted only for the

sake of further analysis, if required.

It is not necessary that L- andH-classes always alternate. It

may be noted that across /kcl-k/ and /s-ux/, there are two

consecutive L–H transitions due to OFE. In order to distin-

guish such transitions, the segment between two consecutive

L–H transitions is denoted as HL-class. Similarly the signal

between two consecutive H–L transitions is labelled as LH-

class. Occurrences of LH- andHL-classes are rare. However,

this specific example of HL-class is an exception. Though the

segment /k s/ should have been labelled as HL-class, the first

transition across /kcl-k/ due toOFE is ignored sinceMADE is

below threshold and hence the label happens to be L. The

transition /kcl k/ is still captured as S–N transition based onSI

as shown in figure 8a. Thus, the class label of a speech seg-

ment needs to be decided by combining the information

provided by SI and OFE/OLE.

3.3 Class assignment based on combined evidence

Since the transitions between H and L are detected inde-

pendent of the transitions between N and S, these two

evidences are combined to get a single stream of transi-

tions. For example, a silence followed by a sonorant gives

rise to both L–H and S–N transitions. Such simultaneous

transitions are merged into a single transition. Hence,

decisions need to be made on the temporal spacing allowed

between the two types of transitions to merge them into one

and the same transition and on the location of the new,

merged transition. Further, the segment before an N–S

transition is labelled as H- or L-class if the preceding

transition is an L–H or H–L transition, respectively. Thus,

the following five classes result after combining the evi-

dences from the two types of transitions: (a) H, (b) L, (c) S,

(d) HL and (e) LH.

Figure 8c shows the class labels assigned after the evi-

dence combination. An S–N transition around 200 ms is

followed by an L–H transition around 280 ms. Since the

two transitions are spaced beyond 10 ms, both are retained.

The N-class segment between S–N and L–H is assigned to

the L-class.

0 5 10 15 20 25 30 35 40
Time(ms)

-0.5

0

0.5

A
m

p
lit

u
d

e

/dcl//ih/

0 5 10 15 20 25 30 35 40
Time(ms)

-0.2

-0.1

0

0.1

0.2

A
m

p
lit

u
d

e

OFE OLE 2nd threshold
1st threshold

(A)

0 5 10 15 20 25 30 35 40
Time(ms)

-0.5

0

0.5

A
m

p
lit

u
d

e

/ih/ /dcl/

0 5 10 15 20 25 30 35 40
Time(ms)

-0.2

-0.1

0

0.1

0.2

A
m

p
lit

u
d

e

2nd threshold
1st threshold

OFE OLE

(B)

0 5 10 15 20 25 30 35 40
Time(ms)

-0.5

0

0.5

A
m

p
lit

u
d

e

/ih/ /dcl/

0 5 10 15 20 25 30 35 40
Time(ms)

-0.2

-0.1

0

0.1

0.2

A
m

p
lit

u
d

e

2nd threshold
1st threshold

OFE
OLE

(C)

Figure 7. The signals and their bandpass-filtered versions of three consecutive frames of speech containing a weak H–L transition from

the vowel (/ih/) to the voiced closure (/dcl/). The occurrences of the first (OFE) and last extrema (OLE), and the first- and second-pass

thresholds are shown, in each case. Plots of OFE and OLE show that OLE goes through a minimum near zero.
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(A)

(B)

(C)

Figure 8. (a) S–N and N–S transitions (starred markers) detected using SI values derived from the original signal. (b) L–H and H–L

transitions detected using the OFE/OLE values derived from the BPF signal. (c) The merged transitions.
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4. Experimental details and evaluation

The proposed AGR algorithm has been validated on the

entire TIMIT database [23], i.e., both training and test

databases for clean speech. It consists of several dialects of

North American English, totaling 6300 utterances spoken

by 630 speakers. For evaluation on noisy speech, only the

test database is used, as listed in table 1. We have also

evaluated on telephone bandwidth speech from NTIMIT

database. The TIMIT database has hand labels at the phone

level and the closure durations of stops have been explicitly

marked. Accordingly, the class ‘stops’ denotes ‘stop

bursts’.

Every detected transition is uniquely assigned to the

nearest TIMIT boundary. The statistics of the temporal

differences between the labelled boundaries and the

assigned transition instants are computed. The boundary

detection accuracy is measured for different values of

temporal tolerance.

In order to study the relationship between the manner of

articulation and the homogeneous segments, the distribu-

tion of each class of phones among the five classes is

computed. Phonetic grouping given in TIMIT database is

used as the reference for assigning the class of phones.

For every sonorant and non-sonorant onset in the labelled

database, we verify if there is a detected transition within a

specified temporal tolerance. If no transition has been

detected within the tolerance for an onset, then it is a case

of miss or deletion. This measures the accuracy of detection

of onsets relative to the type of transition. A detected

transition for which there is no associated labelled bound-

ary is counted as an insertion. The ratio of the number of

insertions to the total number of transitions detected is

another performance measure.

5. Results and discussion

We first present results on clean speech. The results pre-

sented correspond to the total number of frames of

3,818,197 and the total number of detected transitions of

144,715.

5.1 Temporal accuracy of detection

Figure 9a shows the histogram of the temporal deviations of

the detected transitions from the hand-labelled boundaries,

using a bin size of 5 ms. The mean and standard deviation

are –1.62 and 17.05 ms, respectively. We observe that

36.4% of the detections are within þ2.5 ms.

The detection accuracy is computed for different values

of the temporal tolerance, namely, 5–40 ms in steps of 5

ms. The ratio of successful detections to the total number of

transitions, excluding insertions, is computed as the

detection accuracy of transitions and is shown in figure 9b

as a function of temporal tolerance; 57.8% of the transitions

lie within þ5 ms and 98% of the transitions lie within þ40

ms. Thus, the temporal resolution of detection is higher

than those of related previous works to be presented in

section 5.5.

5.2 Classes of phones detected across each type

of transition

It is of interest to know the distribution of various classes of

phones (vowels, semivowels, etc.) that belong to the five

broad classes obtained: H, L, S, HL and LH. This distri-

bution is listed in table 2, for a temporal tolerance of 20 ms.

More than 91% of vowels belong to H-class. But we note

that there are about 4.8% of vowels in L-class and 0.5% in

S-class. About 41% of the ‘ax-h’ phones lie in L-class,

since it has the characteristics of unvoiced speech, with a

very low amplitude in the BPF signal. Amongst the semi-

vowels, 74.0% of ‘hh’ lie in the L-class, since this phone

also has characteristics similar to those of unvoiced speech.

It is seen that in any nasal-fricative segment, there is a short

interval of silence at the end of the nasal, which is however

not hand labelled as silence. This explains the occurrence of

about 6.8% of nasals in S-class. A short silence segment is

not unexpected since there is a change of source process as

well as a drastic shift in the articulatory positions.

About 91% of affricates and unvoiced fricatives lie in

L-class. Affricates include the voiced affricate /jh/, which

also lies in L-class. Amongst the fricatives, 20% of ‘th’ lies

in S-class, since it sometimes manifests as a burst with a

closure interval.

In all, 56.9% of voiced fricatives also lie in L-class,

whereas 28.6% lie in H-class and 8.3% go to S-class. The

presence of voicing in voiced stops gives rise to a large

amplitude BPF signal and when these classes follow a

silence or an L-class phone, they go to H-class; 72% of /z/

lies in L-class despite being a voiced fricative. The phone

‘dh’ sometimes behaves like a stop with a closure and /v/ is

realized both as voiced and unvoiced.

The phone labels of the TIMIT database are mapped to

the phonetic classes, sonorants and non-sonorants. All

vowels, semi-vowels and nasals are assigned to the sono-

rant class. Others (‘h#’, ‘epi’, ‘pau’) and the closures of

Table 1. Databases used for evaluation of performance on clean,

noisy and telephone bandwidth speech.

Clean speech Noisy speech

Telephone

bandwidth

speech

Database

used

TIMIT

training

and test

set

TIMIT test set: 168

speakers, 1344

sentences

NTIMIT

training

and test set
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stops are assigned to the silence class. Non-sonorants

include all the phones except the sonorants and silence. The

relative distribution as per the phonetic classes, ‘sonorant’,

‘non-sonorant’ and ‘silence’, is shown in table 3. About

89.8% of sonorants lie in H-class. About 75.5% of non-

sonorants are in L-class. If we remove voiced fricatives and

voiced stops from non-sonorants, then the unvoiced non-

sonorants in L-class increase to 84%. This suggests that we

need two groups of non-sonorants: 84.2% of ‘silence’

segments lie in S-class with 10.5% in L-class. Once again,

this may arise due to some so called silence phones like

‘h#’ and ‘epi’ having a high amplitude.

Based on these results, we can broadly state that H-class

represents the sonorant class and L-class represents

unvoiced non-sonorants, whereas voiced non-sononrants

may be found either in H- or L-class.

5.3 Onset of sonorants and non-sonorants vis-a-vis

the type of transition

The onsets of sonorants and non-sonorants are considered

as landmarks [16–18]. It would be of interest to relate the

onsets of sonorants and non-sonorants to the detected types

of transition. We have excluded /q/ from non-sonorants as

in several previous works [17, 22]. Further, within the non-
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Figure 9. (a) Histogram of the temporal deviations of the detected transitions from the TIMIT hand-labelled boundaries and

(b) detection accuracy in percentage (%) of transitions as a function of temporal tolerance.

Table 2. Relative distribution of each class of phones among the

broad five classes. Results on the entire TIMIT data, containing

both training and test data.

Segment type H L S HL LH

Vowels 91.8 4.8 0.5 2.2 0.7

Semivowels 86.2 9.2 1.3 2.5 0.9

Nasals 82.0 7.2 6.8 3.3 0.8

Unvoiced fricatives 4.2 91.1 2.0 2.2 0.4

Voiced fricatives 28.6 56.9 8.3 5.0 1.2

Voiced stops 48.0 37.3 12.1 1.6 1.1

Unvoiced stops 16.3 70.5 11.3 1.3 0.5

Affricates 6.3 91.0 0.1 1.8 0.7

Others 4.5 13.3 82.1 0.1 0.0

Voiced closures 10.6 8.7 78.4 1.7 0.7

Unvoiced closures 2.1 5.6 92.0 0.2 0.1

Table 3. Distribution of each broad class of phones in the TIMIT

database among the five classes.

Phone class H L S HL LH

Sonorant 89.8 5.8 1.3 2.4 0.7

Non-sonorant 15.2 75.5 6.2 2.4 0.7

Silence 4.8 10.5 84.2 0.4 0.1

Voiced non-sonorant 34.8 50.6 9.5 3.9 1.2

Unvoiced non-sonorant 8.4 84.2 5.0 1.9 0.5

Table 4. Percentage of onsets of broad phonetic classes detected,

as a function of temporal tolerance in the TIMIT database.

Onset of Type 20 30 40

Sonorants? L–H, S–H 92.0 94.0 94.7

Unvoiced fricatives/affricates* H–L, S–L 83.0 85.4 86.5

Stop closures L–S, H–S 77.2 80.0 81.4

Bursts S–H, S–L 87.7 88.7 89.1

?Following an unvoiced fricative, unvoiced stop or an affricate.

*Following a sonorant or a silence.
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sonorants, we consider the fricatives and stop bursts sepa-

rately to detect the onsets. The results are shown in table 4.

For a tolerance of 30 ms, 94% of onsets of sonorants occur

at L–H or S–H transitions. We have considered sonorants

following unvoiced fricatives, unvoiced stops and affri-

cates, since voiced fricatives and voiced stops may lie in

H-class (see table 2). The onsets of unvoiced fricatives and

affricates occur at H–L and S–L transitions 85.4% of the

time within 30 ms. Stop closures are detected as onsets 80%

of the time across L–S and H–S transitions. Onsets of stop

bursts invariably (88.7%) follow a detected silence segment

(S–H, S–L). The results are comparable even for a tolerance

of 20 ms. Hence the proposed method also serves the

purpose of landmark detection with a good accuracy and

temporal resolution.

5.4 Insertions

The insertions on the whole TIMIT database are 8.7%.

About a third of these insertions occur during the silence,

i.e., ‘others’ and closures of stops. Segments like ‘h#’ and

‘epi’ occasionally contain impulse-like noise with signifi-

cant amplitude resulting in some spurious S–N and N–S

transitions. About 24% of the insertions occur during stops.

They arise partly due to multiple bursts. A transition is also

detected across a low level aspiration interval following a

strong burst. While this is a desirable feature of the algo-

rithm, since the aspiration interval is not explicitly marked,

such transitions get reported as insertions. During unvoiced

fricatives, especially, /f/, the amplitude of the signal varies

considerably with intermittent low frequency, large ampli-

tude pulses resulting in a high rate of insertions (about

11%).

5.5 Comparison with the previous work

In terms of detecting classes, this work is comparable to

manner classification [2, 14] and in terms of detecting

onsets, this work is closest to the landmark detection

reported in the literature [17, 18].

The present work differs from the previous related works

in four important aspects. (a) The temporal features used in

this study are different from those proposed in the earlier

studies. (b) The proposed algorithm has been tested on the

entire TIMIT database, whereas the previous studies have

reported results based on a limited test data (16 speakers

speaking a total of 80 utterances for the development set

and 16 new speakers speaking 48 utterances for the test set

taken from the TIMIT database in a study by Liu [18]; 504

utterances from the test set of the TIMIT database in the

study by Salomon et al [17]). (c) The transitions or land-

marks to be detected correspond to different events. Liu

[18] defined four landmarks and Salomon et al [17] defined

three landmarks. (d) The quoted results correspond to a

temporal tolerance of 30 ms [18] or 50 ms [17]. Due to

these disparities, we can make only a broad qualitative

comparison with the previous works. The comparison of

our results with the published results of Liu [18] and Sal-

omon et al [17] is summarized in table 5.

Salomon et al [17] tested their method on the manner

classes of sonorant, fricative, stop and silence. The average

accuracy using 39-dimension MFCCs or 12 parameters

derived from four temporal features was reported as 70%

for a tolerance of 50 ms, whereas with the combined fea-

tures, it increased to 74.8%. Compared to these results, the

accuracies of the proposed method are 89.8%, 84.2% and

84.2% for sonorants, unvoiced non-sonorants and silence

classes, respectively, within 20 ms tolerance, when tested

on the entire TIMIT database (see table 3).

In Liu’s [18] study, of the total number of landmarks,

83% and 88% were within 20 and 30 ms of the labelled

boundaries, respectively. The classes considered in that

study are sonorants, fricatives and bursts. These results may

be compared to the temporal accuracy of detection of the

present work (table 4). For a temporal tolerance of 20 and

30 ms, our temporal accuracy is 93.6% and 96.7%,

respectively.

6. Robustness in the presence of noise

We evaluate our algorithm on noisy speech generated by

adding different kinds of noise to the test set of TIMIT

database at various signal to noise ratios (SNRs). The fol-

lowing noises are used for evaluating our algorithm for

detection of transitions.

• Schroeder noise [24]: It is a localized white noise. As

the energy level in a speech utterance varies widely

with time, the clean speech is corrupted with Schroeder

noise so that samplewise SNR is constant in the noisy

speech. We use the model as devised in [24], where the

noisy speech signal is generated by the formula

y½n� ¼ s½n�ð1þ �g½n�Þ, where s[n] is the speech signal,

� is the factor determining the noise energy, which

Table 5. Performance comparison of various algorithms with

respect to temporal accuracy of detection.

Method Database Results

AGR (our

method)

Whole TIMIT training and

test set

93.6% and 96.7%

within 20 and 30

ms

Liu [18] 48 utterances from TIMIT

database

83% and 88%

within 20 and 30

ms

Salomon

et al [17]

504 utterances from test set

of TIMIT database

74.8% within 50 ms
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changes with the desired SNR, and g½n� is the randomly

chosen þ1 or �1 with equal probability.

• White noise: It is generated from a zero-mean normal

distribution, with the standard deviation being deter-

mined by the SNR desired.

• Babble noise: It is taken from the Noisex-92 database

[25] and scaled appropriately to generate noisy speech

with the desired SNR.

Figure 10 shows the percentage of the total number of

transitions (with respect to 38,198 transitions detected in

the case of clean speech) detected by our algorithm for the

three types of noisy speech with SNR varying from 0 to 30

dB. It is seen that at a low SNR of 10 dB, our algorithm

detects 8.6% for speech with babble noise, 39.6% in the

case of white noise and 96.4% in the case of Schroeder

noise.

Insertions at an SNR of 10 dB are 0.23% for white,

0.49% for babble and 9.36% for Schroeder noise. Since the

number of transitions detected is low for white and babble

noise, it is imperative that the % number of insertions is

less. It is observed that transitions between silence and non-

silence segments (S–N and N–S) are missed for white and

babble noises at low SNRs since the silence regions are

corrupted by noise. In the case of Schroeder noise, as the

samplewise SNR is constant, silence segments are not

corrupted with high noise and the corresponding transitions

are preserved, detecting 33,026 (86.46%) transitions even at

0-dB SNR.

Figure 11 shows the precision of detection within a

temporal tolerance of 20 ms for the three noises as a

function of SNR. It is seen that among the detected tran-

sitions, even at an SNR of 5 dB, precision above 91% is

achieved. It is seen that temporal accuracy does not change

much with variation in SNR for Schroeder noise, since the

low energy in the silence segments is preserved due to

uniform local SNR and hence the S–N and N–S transitions

remain intact. For white and babble noise, energy in the

silence segments increases with increase in noise energy (or

decrease in SNR) and hence the SI value is low even for

silence segments at low SNR, which leads to missing S–N,

N–S transitions.

Figure 12 shows the percentage of onsets of sonorants

and fricatives detected (recall) within a tolerance of 20 ms.

Since babble noise has significant low frequency energy,

accuracy of detection of onsets of sonorants and fricatives

suffers at low SNRs. For white and babble noises, even

though we miss S–N and N–S transitions, H–L and L–H

transitions are preserved at low SNRs, which result in rel-

atively high detection rate for onsets of sonorants and

fricatives.

6.1 Results on NTIMIT database

We also evaluate our algorithm on NTIMIT [29] database,

which was created by transmitting all the TIMIT recordings

through a telephone handset and over various channels of a

telephone network and redigitizing them. As compared

with TIMIT database, only 62.7% of the transitions are

detected on NTIMIT database. Table 6 shows the relative

distribution of each broad class of phones in the NTIMIT

database as per the phonetic classes ‘sonorant’, ‘non-

sonorant’ and ‘silence’. About 62.9% of sonorants lie in

H-class. About 50.5% of non-sonorants are in L-class. If we

remove voiced fricatives and voiced stops from non-sono-

rants, then the unvoiced non-sonorants in L-class increase

to 53%; 38.3% of ‘silence’ segments lie in S-class with

36.8% in L-class.

The relations of onsets of sonorants and non-sonorants to

the detected types of transition for NTIMIT database are

shown in table 7. For a tolerance of 30 ms, 66% of onsets of

sonorants occur at L–H or S–H transitions.
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Figure 10. Percentage of total number of transitions detected on

TIMIT test set as a function of input SNR.
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Figure 11. Precision of detected transitions (for a temporal

tolerance of 20 ms) as a function of SNR.
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It is observed that the results on NTIMIT database are

poorer than those for the TIMIT database due to the

bandpass filtering and channel noise in the NTIMIT

database.

7. Conclusion

For the DFs and PFs to be complementary to the statistical

approach, we believe that an acoustic-phonetics knowl-

edge-based approach needs to be pursued. In our

understanding, the highlight of such an approach is that it

does not require a huge amount of training data and a small

development set is considered sufficient. In this paper, we

have proposed a knowledge-based approach to the problem

of detecting transitions in both clean and noisy speech

signal. Further, several studies have pointed out the

robustness of temporal features in speech perception

[17, 26]. In the proposed method, using only four simple

measures, we have been able to demonstrate that landmarks

like the onsets of sonorants (L–H, S–H), unvoiced sono-

rants (H–L, S–L), closures of stops and stop bursts can be

detected with a high accuracy ([ 85%) and with a good

temporal resolution (20 ms). These results are as good or

better than those from state-of-the-art methods, which make

use of high-dimensional acoustic features and sophisticated

classifiers. Although a number of techniques exist for

segmentation, alternate approaches are to be explored, since

they may complement one another and offer robustness.

There are no specific, fixed thresholds in our method. The

thresholds dynamically adapt to the local statistics of the

peaks and valleys within each analysis frame and hence are

able to be generalized well and detect the transitions

between different classes of phones.

7.1 Future work

The algorithm is based on the knowledge of the relative

distribution of the amplitudes of the different broad classes

of phones in specific frequency bands, and thus can be

extended to other applications. During the course of this

investigation, we have made some observations, which are

noted here for future work. (a) We could inquire how OFE/

OLE measures perform instead of the abrupt energy change

measures used in the literature for the detection of land-

marks [18], manner classes [17], bursts [27] and vowel

10 15 20 25 30
SNR in dB

20

30

40

50

60

70

80

90

100

R
ec

al
l r

at
e 

o
f 

o
n

se
t 

o
f 

so
n

o
ra

n
ts

white
babble
schroeder

(A)

10 15 20 25 30
SNR in dB

0

10

20

30

40

50

60

70

80

90

R
ec

al
l r

at
e 

o
f 

o
n

se
t 

o
f 

fr
ic

at
iv

es

white
babble
schroeder

(B)

Figure 12. Percentage of onsets of (a) sonorants and (b) fricatives detected (recall) within a tolerance of 20 ms as a function of SNR in

dB for white, babble and Schroeder noises.

Table 6. Distribution of each broad class of phones in the

NTIMIT database among the five classes.

Phone class H L S HL LH

Sonorant 62.89 15.29 5.46 12.21 4.16

Non-sonorant 19.77 50.45 12.12 13.54 4.11

Silence 18.01 36.86 38.31 4.96 1.86

Voiced non-sonorant 25.78 42.32 14.77 12.54 4.59

Unvoiced non-sonorant 17.68 53.29 11.20 13.88 3.95

Table 7. Percentage of onsets of broad phonetic classes detected,

as a function of temporal tolerance in the NTIMIT database.

Onset of Type 20 30 40

Sonorants? L–H, S–H 63.49 66.38 67.43

Unvoiced fricatives/

affricates*

H–L, S–L 36.42 39.17 41.23

Stop closures L–S, H–S 26.52 28.37 29.06

Bursts S–H, S–L 30.48 32.32 33.10

?Following an unvoiced fricative, unvoiced stop or an affricate.

*Following a sonorant or a silence.
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onset points [28]. (b) Our preliminary investigation shows

that OFE and OLE measures computed on a speech signal,

instead of bandpass signal, are useful to identify certain

transitions within vocalic segments. Also, OFE and OLE

may be computed on subband signals. Such an analysis on a

high frequency band could detect frication within the

unvoiced signal. (c) The number of extrema in a speech

signal relative to the number of extrema in the corre-

sponding bandpass signal is a useful parameter for distin-

guishing between voiced and unvoiced segments. (d) We

have observed that bursts most often lie at the end of a

silence or L-class. This narrows down the search interval

for detecting the bursts. These preliminary observations

need to be formalized and tested in a future work.
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