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Automatic and accurate detection of the closure-burst transition events of stops and affricates

serves many applications in speech processing. A temporal measure named the plosion index is pro-

posed to detect such events, which are characterized by an abrupt increase in energy. Using the

maxima of the pitch-synchronous normalized cross correlation as an additional temporal feature, a

rule-based algorithm is designed that aims at selecting only those events associated with the

closure-burst transitions of stops and affricates. The performance of the algorithm, characterized by

receiver operating characteristic curves and temporal accuracy, is evaluated using the labeled

closure-burst transitions of stops and affricates of the entire TIMIT test and training databases. The

robustness of the algorithm is studied with respect to global white and babble noise as well as local

noise using the TIMIT test set and on telephone quality speech using the NTIMIT test set. For these

experiments, the proposed algorithm, which does not require explicit statistical training and is

based on two one-dimensional temporal measures, gives a performance comparable to or better

than the state-of-the-art methods. In addition, to test the scalability, the algorithm is applied on the

Buckeye conversational speech corpus and databases of two Indian languages.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4836055]
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I. INTRODUCTION

Stops form an important class of speech sounds. During

the production of stops,1 acoustic pressure is built up behind a

closure at a place within the vocal tract, resulting in a silent

interval or a low level acoustic signal, with or without voicing.

When the pressure is released suddenly, it introduces a rela-

tively high energy burst or transient in the acoustic signal,

spanning a short interval. The production of an affricate is also

similar to that of a stop consonant.1 The instant in the acoustic

signal corresponding to the sudden release is referred to as the

“burst-onset”2 or the closure-burst boundary or the closure-

burst transition (CBT). The problem of automatic detection of

the CBTs of stops and affricates from a continuous speech sig-

nal is recognized as important in several studies.2–6 In the

remaining part of this section, we briefly discuss the problem

as relevant to (i) automatic speech recognition (ASR) and (ii)

acoustic-phonetics studies. Subsequently, we review the meth-

ods proposed in the literature for detection of the CBTs.

Approaches to ASR may be classified broadly into two

classes. The ones based on statistical models primarily employ

hidden Markov models (HMMs) and a generic acoustic

feature such as Mel-frequency-cepstral-coefficients (MFCCs)

common to all the phones.7,8 Alternative approaches are based

on initially deriving the phonetic-feature-specific information

from the speech signal, followed by the identification of

phones.9–12 A landmark-based ASR system is an example of

the latter approach where “events” in the speech signal with

rapid temporal and spectral changes, called the landmarks, are

extracted in the initial stage. The subsequent step is to analyze

the speech signal only around the landmarks to derive acoustic

information for the purpose of classification of phones.10

Automatic detection of the CBTs is of relevance to both types

of ASRs; it has been shown that the performance of an HMM-

based ASR system can be enhanced by incorporating the in-

formation of the CBTs along with the MFCCs.4 The detection

of the CBTs plays a role in identifying the burst-onset land-

mark, a manner class called “stops” or the distinctive feature

called “interrupted” in other ASR systems.2,9,13,14

In acoustic-phonetics studies, detection of the CBTs has

been shown to help in the identification of the appropriate

analysis interval for determining the place of articulation of

stops.15 Further, voice onset time (VOT) is noted to be a sig-

nificant attribute useful for the discrimination of voiced from

unvoiced stops.16 VOT also aids in accent identification,

clinical applications, etc.17,18 State-of-the-art methods pro-

posed for automatic measurement of VOT require an a priori
knowledge of the CBTs.19 Thus, automatic detection of the

CBTs caters to this need.

In the literature, the methods proposed to detect burst-

onset landmarks, stop-bursts, manner class “stop,” and stop

consonants rely on the temporal and/or spectral characteris-

tics of the speech signal around the CBTs for feature extrac-

tion and the labeled CBTs as the ground truth for

validation.2–6,13,20 We briefly review all these methods by

noting the acoustic feature and the classification strategy

used. For detecting the stop-bursts, Bitar20 used the degree

of abruptness in energy difference between two appropri-

ately located frames as an acoustic measure, which was
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originally proposed by Espy-Wilson,21 in a fuzzy rule-based

classifier. Liu2 used the rate-of-rise of energy (RoR) across

appropriately located frames in six specific frequency bands

and a threshold-based logic to detect stop-burst landmarks.

King and Taylor13 have used short-time energy and MFCCs

along with their derivatives (39 parameters) as the feature

vector and trained neural networks to identify all the sound-

pattern-English (SPE) features proposed by Chomsky and

Halle.22 Hou et al.14 utilized a range of temporal and spectral

acoustic features (energy ratios, zero-crossings, linear pre-

diction coefficients, etc.) as inputs to classifiers such as

multi-layer perceptron and Bayesian classifier to extract all

the SPE features. These features were subsequently used to

detect stop consonants. Lin and Wang4 have used a two-

dimensional cepstrum as the feature vector (56 dimensional)

and a random forest (RF) classifier for detecting burst-onset

landmarks. Niyogi et al.5 used three energy measures (log of

total energy, log of energy above 3 kHz, and Wiener en-

tropy) as a feature vector in a support vector machine (SVM)

classifier to detect stop consonants. Niyogi and Sondhi3 used

the same feature vector with an optimal adaptive filter con-

sisting of 33 parameters to detect stop consonants. Salomon

et al.23 have used four temporal features to detect acoustic

landmarks and used them in a HMM classifier to identify

several manner classes including “stop.” Jayan and Pandey6

used a Gaussian mixture model (GMM) of smoothed log

magnitude spectrum (256 coefficients) and the rate of change

of the components of the GMM to detect stop consonants.

Generally, these methods are validated against a labeled

database with marked closure-burst boundaries, such as the

TIMIT database. A common criterion is that if the detection

is within a certain temporal tolerance (20–40 ms) of the la-

beled closure-burst boundary of a stop/affricate, then the

method is deemed to have detected the burst-onset landmark

or a stop/affricate consonant or the manner class “stop.” The

performance is characterized in terms of false acceptance

and rejection rates and the associated receiver operating

characteristic (ROC) curve by some methods and in terms of

deletion and insertion rates by others. Also, the statistics of

the temporal deviation of the detected CBTs from the la-

beled boundary are considered for characterizing the accu-

racy of detection.

In this paper, we propose two new temporal features and

a rule-based classifier for the detection of the CBTs and find

out if it can result in a performance comparable to the best

reported in the literature for similar experimental conditions.

Also, we study the robustness and scalability of the proposed

method. Formally, the objectives of the paper are: (i) To pro-

pose and use a one-dimensional temporal measure to detect

events with abrupt increase in energy such as the CBTs of

stops. (ii) To design a rule-based algorithm (without the need

for statistical training) to select a subset of these events

belonging to stops and affricates using a second temporal fea-

ture. (iii) To validate the algorithm on the entire TIMIT train-

ing and test databases with criteria similar to those used in the

previous studies3,4 and to characterize the performance by the

ROC curves. (iv) To test the robustness of the algorithm in

the presence of two types of additive noise, viz., stationary

white noise and non-stationary babble noise and also on

telephone quality speech. (v) To test the scalability of the

algorithm on the Buckeye corpus comprising conversational

speech and a database of two Indian languages.

II. PROPOSED TEMPORAL FEATURES

Research into finding new temporal measures and their

application in speech processing is recognized as an impor-

tant area.23 It has been suggested that temporal measures are

relatively robust and that human perception also makes use

of temporal cues.24

In this section, we propose a temporal measure named the

plosion index (PI) to detect events with abrupt change in energy.

Sometimes such a change in energy (as seen around the CBTs)

is also observed in events like strong voiced onsets preceded by

a low-level signal. In Sec. II B, one more temporal measure,

namely, the maximum normalized cross-correlation (MNCC), is

proposed to discriminate a CBT from a voiced onset.

A. The Plosion index

Intuitively, for a signal with a transient characterized by

a significant change in local energy, the ratio of the peak am-

plitude in the transient to the average of absolute values over

an appropriate interval excluding the immediate neighbor-

hood of the peak amplitude may be expected to be high. In

order to capture the intrinsic nature of a transient-like signal

preceded by a low-level signal, as in a CBT of a stop, we

define a temporal measure named the PI at an instant of in-

terest, n0, for a signal s[n] as

PIðn0;m1;m2Þ ¼
jsðn0Þj

savgðm1;m2Þ
; (1)

where

savgðm1;m2Þ ¼

Xi¼n0�ðm1þ1Þ

i¼n0�ðm1þm2Þ
jsðiÞj

m2

(2)

is the average of the absolute amplitudes of m2 samples, offset

from n0, by m1 samples. Being a ratio, the PI is a dimension-

less measure, independent of the recording level. The defini-

tion of the PI may remind a reader of the measure crest

factor or peak-to-average ratio existing in the literature.

However, the crest factor is an index that characterizes an

entire signal, where both the peak and the average values

are obtained from the complete signal. In contrast, the PI

is an instantaneous measure and a function of two param-

eters, m1 and m2.

In the context of the detection of the CBTs of stops/af-

fricates from a continuous speech signal, an appropriate

choice needs to be made for m1 and m2. Since certain

low-level noise-like signal components, called the

pre-frication, are usually present preceding the instant of

maximum amplitude within an unvoiced stop-burst,3 we

choose m1 as the number of samples corresponding to 6 ms

(see Sec. V A for a justification for this choice). This

excludes the samples of pre-frication (which are of
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amplitude higher than those in the stop-closure region) while

computing savg. Based on the statistics of the minimum clo-

sure duration for stops,25 m2 is chosen as the number of sam-

ples corresponding to 16 ms. Throughout this work, m1 and

m2 are kept fixed corresponding to these chosen values.

Figure 1 illustrates the role of m1 in enhancing the value

of the PI, through an example of a stop (/k/), shown in Fig.

1(a), occurring at a consonant cluster (/s/-/k/). Figures 1(b)

and 1(c) show the corresponding PI values computed (at the

peaks between successive zero-crossings) without and with

the use of the offset m1 while computing the savg, respec-

tively. The presence of a strong pre-frication may be

observed resulting in lower values of the PI in Fig. 1(b).

However, the PI values almost increase twofold when the

offset m1 is used.

1. Pre-processing for the computation of the PI

The change in energy around the CBT is low for a

voiced stop with a weak release preceded by a relatively

strong pre-voicing component. Figure 2(a) shows an exam-

ple of such a case. At the instant of release n0, the PI

computed on this signal is about 4. In order to attenuate the

pre-voicing component preceding such a CBT and thereby

enhance the amplitude contrast, the speech signal is

high-pass filtered with a cut-off frequency of 400 Hz.2

However, this does not significantly influence the abrupt

change in the amplitude around the CBTs of unvoiced stops

and affricates. Figure 2(b) shows the high-pass filtered signal

corresponding to the same segment shown in Fig. 2(a). Now,

at the instant of release, n0, despite a decrease in the peak

value, the PI increases to about 16. The intervals correspond-

ing to m1 and m2 are also marked in Fig. 2(b).

Further, the peak amplitude of a transient signal is influ-

enced by its phase characteristics. For example, consider a

heavily damped sinusoid resembling a transient. Its absolute

maximum amplitude depends on the initial phase angle and

is the lowest for 0� and the highest for 90�. However, both

the maximum amplitude and the location of the maximum in

the Hilbert envelope (HE) of such a damped sinusoid are in-

dependent of the initial phase angle.26 Hence, the PI is com-

puted on the HE of the high-pass filtered speech signal. A

Hilbert transform is computed in the time domain by con-

volving the speech signal with a 32-point finite impulse

response of the Hilbert transformer.

Figure 3 illustrates the PI values computed at every sam-

ple for a segment of a speech signal consisting of a fricative

followed by a stop followed by a vowel. The PI is high

(>600) around the CBT (126 ms) and low elsewhere. It may

be observed from Fig. 3 that there is an interval (marked by

dashed vertical lines) around the CBT within which the PI is

high. However, since the CBT is an instant, it is desirable to

have only one candidate representing a transient interval. To

reduce the interval measure to an instantaneous measure, we

propose a merger rule, which is explained as a part of the

detection algorithm in Sec. III.

2. Discriminability of the PI

In order to test the discriminability of the PI for detect-

ing the CBTs against other events, the normalized histo-

grams of representative PIs for (i) stops/affricates and (ii)

other phones (vowels, semi-vowels, glides, nasals, and frica-

tives) from the entire labeled TIMIT database are computed

FIG. 1. Illustration of the need for offset m1 in reducing the effect of

pre-frication on the PI. (a) A segment of speech with a fricative followed by

a stop, (b) the corresponding PI values computed without the offset m1, (c)

the corresponding PI values with the offset m1.

FIG. 2. Illustration of the utility of the high-pass filtering for reliable detec-

tion of the CBTs of voiced stops. (a) A segment of a voiced stop with a

weak release, (b) the corresponding segment after high-pass filtering. It may

be seen that there is an increase in the value of the PI by a factor of 4 after

high-pass filtering.

FIG. 3. Illustration of the ability of the PI to capture events with abrupt

increase in energy. (a) A segment of a speech signal with a fricative fol-

lowed by an unvoiced stop followed by a vowel, (b) the Hilbert envelope of

the high-pass filtered speech, (c) the PI corresponding to the signal shown in

(b), computed with m1 and m2 corresponding to the time intervals of 6 and

16 ms, respectively.
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and shown in Fig. 4. The maximum value of the PI within a

labeled segment is taken to be the representative PI for that

phone. A total of 19 866 tokens of stops and affricates and

89 552 tokens of other phones are considered. Although a large

separation of the two classes is seen, there is a considerable

overlap. For example, if one chooses a threshold of 8 for the PI

to separate the classes, 93% of the CBTs of stops and affricates

would be detected correctly. However, 33% of other phones

would be incorrectly classified as the CBTs. This is because the

PI detects abrupt onset corresponding to any sound preceded

by a low-level signal. It is observed that most of these arise

from the strong onsets of voiced sounds which are to be discri-

minated from the CBTs of stops and affricates. For this pur-

pose, we define another temporal measure, called the MNCC.

B. The MNCC

It is well known that normalized cross-correlation

(NCC) quantifies the degree of similarity as a function of the

lag between two finite energy signals, irrespective of their

energies.27,28 In this work, the maximum value of the NCC

(MNCC) is used as the second temporal feature. By defini-

tion, the MNCC is a scalar and lies between 0 and 1.

In the literature, NCC is generally computed between the

segments of a speech signal, about 20–40 ms in duration, for

the purpose of pitch estimation and voiced-unvoiced deci-

sion.27 However, in the present work, we compute NCC

between the segments of speech over two successive inter-

epoch intervals. This assumes that the epochal information is

available. Epochs are extracted using an algorithm developed

by the authors using an extended concept of the PI called the

dynamic PI, which places epochs at glottal closure instants

over voiced regions and at random locations over unvoiced

regions.29 The value of the MNCC, computed between two

successive inter-epoch intervals, is assigned to all the samples

over the first inter-epoch interval. Thus, the MNCC plotted for

a speech signal appears as a staircase-like function.

For a speech signal corresponding to a voiced sound, the

vocal tract impulse responses for successive pitch periods

are highly correlated, resulting in a high value for the

MNCC. There is no such high-correlation between two suc-

cessive segments in the case of unvoiced sounds due to the

random excitation, which results in a lower MNCC. Figure 5

shows a speech segment (a stop followed by a vowel, a frica-

tive, and another vowel) with the corresponding values of

the PI and the MNCC. The MNCC is low (typically less than

0.6) for the unvoiced regions and high (typically greater than

0.6) for the voiced regions.

In order to test the discriminability of the MNCC for

voiced-unvoiced classification, we compute the normalized

histograms (Fig. 6) of the average MNCC within the la-

beled regions for the two classes of phones from the

TIMIT database; class-A consists of a total of 29 150

tokens of unvoiced stops, affricates, and fricatives; class-B

consists of a total of 73 016 tokens of vowels, semi-

vowels, glides, and nasals. The histograms show a clear

separation of the two classes with a negligible overlap area

of less than 5% for both the classes at a threshold of 0.6.

Thus, in this work, a threshold of 0.6 is used on the aver-

age MNCC computed over three successive inter-epoch

intervals to exclude strong voiced onsets being detected as

the CBTs. For example, in Fig. 5, although the value of

the PI is high at the vowel onsets, they may be identified

as not belonging to the CBTs since the average MNCC

around those onsets is above 0.6.

Around the CBT of a voiced stop, the MNCC will have

a high value due to the presence of quasi-periodicity. Hence,

there is a risk of these CBTs being discarded as voiced

onsets. However, a singular feature of the voiced stops is a

disruption of the periodicity over one or two cycles coincid-

ing with the release, which results in a significant “high-low-
high” structure in the MNCC around the CBT. Figure 7(a)

shows one such instance. Thus, the high-low-high structure

in the MNCC can be used to detect the CBTs of such voiced

stops. Further, the MNCC may be high even in the case of

multiple bursts of a single unvoiced stop, and thus may be

discarded as a voiced onset. This is because the signals

FIG. 4. Normalized histograms of the PI for stops/affricates (solid line) and

other phones (dashed line) of the entire TIMIT database. The x-axis is shown

in logarithmic scale for clarity. The overlap between the two groups in

higher values of the PI is largely due to strong voiced onsets.

FIG. 5. Illustration of the use of the MNCC to separate the CBTs from the

voiced onsets. (a) A speech segment, (b) the corresponding PI values, (c) the

corresponding MNCC values, showing MNCC values greater than 0.6 for

the voiced segments.

FIG. 6. Normalized histograms of the MNCC values of voiced (dashed line)

and unvoiced sounds (solid line) from the entire TIMIT database. The over-

lap area is about 5% in either case at a threshold of 0.6.
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corresponding to the individual bursts may be correlated with

one another. Figure 7(b) shows an example of an unvoiced

stop with multiple bursts, along with the plot of the corre-

sponding MNCC. This case of multiple bursts is dealt

with using the “number of potential candidates,” defined

in Sec. III.

III. THE CBT DETECTION ALGORITHM

It may be possible to use the representative PIs and the

MNCCs as the feature vector and train a classifier to detect

the CBTs. Instead, we formulate certain rules to select the

CBTs based on the knowledge derived by studying a number

of typical cases. In other words, we “learn the rules through

examples.” The following are the steps in the algorithm

illustrated by the flowchart in Fig. 8.

(1) The PI is computed only at the locations of the maxima

of HE between every set of successive zero-crossings of

the high-pass filtered signal.

(2) The instants at which the PI is greater than a threshold

(T1) are called the potential candidates.

(3) Based on the assumption that no two genuine stop (affri-

cate) releases occur within 20 ms of each other,4 any two

successive potential candidates that are within 20 ms of

each other are postulated to belong to one and the same

event. In this algorithm, only the very first potential can-

didate within such an event is retained and is called rep-

resentative burst candidate (RBC). The number of

potential candidates (Nc) within that event is noted. This

step is to ensure that there is only one RBC per CBT.

This is referred to as the merger rule.

(4) When the average MNCC over three successive inter-

epoch intervals immediately following the RBC exceeds

a threshold, T2, three possibilities arise.

(a) RBC is a CBT of unvoiced stop with multiple bursts:

This is confirmed when Nc exceeds a threshold (T3).

This is based on the observation that the number of

potential candidates is significantly higher for multi-

ple bursts than for onsets of voiced sounds.

FIG. 7. (a) Illustration of the high-low-high structure of the MNCC for a

voiced stop with a weak burst. (b) An unvoiced stop with multiple bursts

resulting in MNCC> 0.6.

FIG. 8. Flowchart of the proposed APR algorithm for detection of the CBTs.
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(b) RBC is a CBT of a voiced stop: This is ascertained

by a local high-low-high structure in the MNCC

around RBC.

(c) RBC is not a CBT (e.g., strong voiced onset): If nei-

ther of the above cases is satisfied, then RBC is

removed from further consideration.

(5) When the average MNCC over three successive inter-

epoch intervals immediately following RBC is less than

the threshold, T2, RBC is declared to be a CBT of a

stop/affricate.

The choice for the values of the thresholds is discussed

later (Sec. IV B). The output of the proposed algorithm,

called the detector output, is a vector with unit impulse at

the detected CBTs and zero elsewhere. The proposed algo-

rithm, hereafter called the APR algorithm, not only detects

the CBTs, but also the type of burst such as voiced with a

weak release, multiple bursts, unvoiced, or voiced bursts

with a relatively strong release. This is ascertained by the

path traversed in the algorithm to arrive at the detector out-

put. The maximum value of the PI within an event may be

used as a measure of the strength of release.

We illustrate, in Fig. 9, a segment of a speech signal (of

the utterance “put the butcher block table in the garage”)

along with the detector output obtained using the optimal

thresholds. There are correct detections of the CBTs for the

stops /p/, /b/, /b/, /t/, /b/, /g/, and the affricate /ch/. There is a

detection for the dental fricative /dh/ around 900 ms since

dental fricatives occasionally tend to be stop-like.30

However, around 2200 ms, there is a case of /dh/ without a

release, and hence there is no detection. In the region labeled

as a closure, /kcl/, around 1600 ms, there is a detection that

may be interpreted as incorrect.4 However, we interpret this

detection as belonging to a genuine CBT of an unlabeled /k/

in the consonant cluster (/k/-/t/) occurring at a word bound-

ary. It is recognized that the release may or may not be pres-

ent for the former stop consonant in a cluster.31 The labeling

could have been /kcl/-/k/-/tcl/-/t/. Incidentally, there is a con-

sonant cluster /t/-/dh/ around 900 ms. However, the burst of

/t/ is unreleased in this case and there is no detection.32

IV. EVALUATION PROCEDURE AND EXPERIMENTAL
DETAILS

Since the goal of the APR algorithm is to detect the

CBTs of the stops and affricates, these phones are said to

belong to the target class. However, phones such as glottal-

stops,33 flaps,34 and dental fricatives30 also may manifest the

CBTs. Since the manifestation of the CBT is not consistent

for these phones, detector outputs, if any, occurring during

these labeled segments are excluded while calculating the

performance measures. Previous studies4 have also followed

a similar criterion for these phones. All other phones are

included in the rejection class.

A. Performance measures

A labeled database is an absolute necessity for the vali-

dation of the CBT detection algorithm. We have adopted the

standard performance measures described in the literature3,4

that are defined below.

(1) Correct detection: A detection is considered to be correct if

it lies within 620 ms of the labeled closure-burst boundary.

The tolerance of 20 ms is to account for any possible inac-

curate boundary markings present in the databases.3

(2) Missed detection: This occurs when there is no detection

within 620 ms of the labeled CBT of a phone from the

target class.

(3) False detection: A detection is considered false, if it

occurs within the labeled region of a phone from the

rejection class.

(4) False acceptance rate (FAR): The number of false detec-

tions divided by the total number of phones from the

rejection class.

(5) False rejection rate (FRR): The number of missed detec-

tions divided by the total number of phones from the tar-

get class.

(6) Temporal deviation of detection: The statistics of the devia-

tions of the locations of the detected CBTs from the labeled

boundaries, computed only for the correct detections.4

B. Choice of thresholds and the ROC curves

As one varies the thresholds for detection, there is a

trade-off between FAR and FRR. Based on the risk factors

and the application, one may like to make different choices

for FAR and FRR and accordingly select the thresholds.

Hence a knowledge of the nature of the trade-off between

FAR and FRR is required. This is provided by the ROC for

any detection problem, where FAR is plotted against FRR.

When there is no specific preference for either FAR or FRR,

then the performance is specified by the equal error rate

(EER), which corresponds to that point in the ROC curve

where FAR¼FRR. Hence, we characterize the performance

of the algorithm by means of the ROC curves and derive the

EER from the same. The ROC may be obtained by varying

the thresholds for the PI and the MNCC. Since the

FIG. 9. Illustration of the detected

CBTs for a segment of a speech signal

of the utterance “put the butcher block
table in the garage” taken from the

TIMIT test set. The detected instants

are shown by vertical lines along with

the corresponding TIMIT transcrip-

tions at those locations.
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distributions of the MNCC values for voiced and unvoiced

classes show a clear separation (an overlap area of less than

5% for either classes at a threshold of 0.6), we fix T2 at 0.6

and vary only the threshold T1 meant for the PI to generate

the ROC curves. T3 is fixed at 7, based on our empirical

observations.

C. Databases and experimental setup

We validate the proposed algorithm on three different

labeled databases, which differ significantly in terms of

speakers, dialects, recording conditions, speaking styles

(read vs conversational), and languages. These diverse con-

ditions contribute to a wide variability in the acoustic char-

acteristics of the speech signal. Also, we consider different

types of degradations on one of the databases (TIMIT). This

section describes all the experiments conducted.

1. The TIMIT database—Clean speech

To validate the APR algorithm on read speech, we use

the TIMIT35 database, which is labeled at the phone level. It

consists of a total of 6300 utterances spoken by 630 speakers

belonging to several dialects of North America. The database

is divided into the training and test sets of 8 dialects each,

comprising 4620 and 1680 utterances, respectively. The

APR algorithm has been validated on the entire TIMIT train-

ing and test databases independently. In TIMIT, the closure-

burst boundaries are marked explicitly for all stops and affri-

cates, which are taken as the ground truth for validation.

2. The TIMIT database with white and babble noise—
Global SNR

To study the noise robustness of the APR algorithm, we test

it on the entire TIMIT test set with two types of additive noise,

stationary white noise, and realistic, non-stationary babble noise.

White noise is generated using a zero mean Gaussian distribu-

tion whose variance is set in accordance with the desired global

SNR. Samples of babble noise are taken from the Noisex-92

database36 and appropriately scaled to obtain the desired global

SNR. Although TIMIT utterances used in the test set have a

mean SNR of 39.5 dB,3 in our calculations we have assumed the

speech to be clean. Thus, the actual SNRs are slightly lower

than the SNRs of 30, 20, and 10 dB reported in this study.

3. The TIMIT database with Schroeder noise—Local SNR

The global SNR is predominantly determined by the

strong voiced segments. Therefore, the local SNR around the

CBTs would be much lower and not directly predictable. In

order to study the performance of the APR algorithm at spe-

cific local SNRs around the CBTs, we have adopted the

Schroeder noise model and the procedure given by Niyogi

and Sondhi3 for generating the noisy speech of a desired local

SNR. According to this model, the noisy speech signal y(n) is

generated at every sample n using the formula

y(n)¼ s(n)[1þ eg(n)], where s(n) is the clean speech signal,

g(n) is the binary valued (�1 and 1) noise sample, and e is the

parameter determined by the specified local SNR. Three cases

of local SNRs, namely, 20, 10, and 0 dB are used in this study.

Only the TIMIT test set is considered in order to compare the

results of the APR algorithm with the published results.

4. The NTIMIT database—Telephone quality

To study the performance against channel degradation,

we employ the NTIMIT test database,37 which is the tele-

phone quality version of the TIMIT database. The utterances

in NTIMIT differ from those in TIMIT in two important

respects, namely, a reduction of bandwidth from 0–8000 Hz

to 300–3400 Hz and a degradation in SNR from 39.5 to

26.8 dB.3

5. The Buckeye corpus—Conversational speech

To test the scalability of the algorithm on conversational

speech, we consider the Buckeye corpus38 consisting of sev-

eral hours of recordings of spontaneous American English

speech of 40 speakers from central Ohio. Informal conversa-

tions were elicited by an interviewer in a seminar room with

the speaker allowed to move freely. The corpus is phoneti-

cally labeled using a two-stage labeling process involving

forced alignment and manual correction. The corpus is avail-

able in the public domain.39

In this corpus, the entire interval from the closure to the

onset of the next sound (e.g., vowel onset), including the

burst, has been assigned the label of the stop/affricate conso-

nant. Hence, we modify the definition of the correct detec-

tion: A detection is defined to be correct if it lies anywhere

within the entire region labeled as stop/affricate. Since there

are no separate labels for closure and burst intervals, tempo-

ral deviations of detection cannot be measured. A randomly

selected subset of the speech data from all the 40 speakers

has been considered. Since the duration of each speech file is

very long (on the order of ten minutes) and consists of sev-

eral utterances with intermittent long pauses, any detection

following a labeled long silence is ignored. The number of

stops and affricates in the selected subset is 1972 and the

number of phones from the rejection class is 11 307.

6. The MILE database—Dravidian languages

To further test the scalability of the algorithm, we con-

sider the MILE database comprising about 2000 utterances

of phonetically rich sentences of two Dravidian languages,

Kannada and Tamil, spoken by male speakers (one for each

language) annotated manually at the phone level. These

were recorded in a studio environment for the purpose of the

development of a text-to-speech synthesis system40 in the

MILE lab, Indian Institute of Science. Here, the CBTs are

not explicitly labeled. Hence, the performance evaluation is

the same as that used for the Buckeye corpus. The target

class includes all the stops and affricates of the correspond-

ing languages. The number of tokens in the target and rejec-

tion classes is 2352 and 11 700 for Kannada and 2359 and

13 635 for Tamil databases, respectively.

V. EXPERIMENTAL RESULTS

In this section, we present the results of the experiments

in the same order as described in Sec. IV. The results are
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compared with some state-of-the-art algorithms and sum-

marized in Table I. An analysis of errors is also presented

with reference to the TIMIT database.

A. The TIMIT database—Clean speech

1. The ROC curves and EERs

Figure 10 depicts the ROC curves for the TIMIT train-

ing and test databases. It is noteworthy that there is very little

difference in the ROC for the test and the training databases

with EERs (EER-APR) of about 7.7% for the test and 7.9%

for the training databases, respectively. Incidentally, EER is

achieved around a threshold for the PI of 8 which corre-

sponds to about 9 dB. In the literature, an energy difference

of 9 dB has been used for the detection of stop bursts.2,41 In

our study, it has been noted that if the PI alone is used for

the CBT detection without the MNCC and the associated

rules, EER increases to 12%.

In general, the CBTs of unvoiced stops are detected better

than those of voiced stops. This may be because the burst

release is weaker in the case of voiced stops. Specifically, the

detection accuracy is the highest for /p/ (around 96%) and the

lowest for /g/ (around 86%). For affricates, it is about 87%.

2. Temporal deviation

To quantify the accuracy of the detected locations of the

CBTs with reference to the labeled boundaries, we use the

temporal deviation of detection. The deviation di associated

with each correct detection is defined as di ¼ ti � t�i , where ti
is the detected location and t�i is the labeled closure-burst

boundary in TIMIT. Figure 11 shows the probability density

function (normalized histogram) of d and the cumulative dis-

tribution function of the absolute value of d for the entire

TIMIT test and training databases (combined together).

The percentages of the detected CBTs are 64%, 84%, 97%,

and 100% for deviations of 5, 10, 15, and 20 ms, respec-

tively. The mean deviation is 1.8 ms for unvoiced stops and

3.3 ms for the voiced stops. The standard deviation is 6 ms

for unvoiced stops and 5.1 ms for voiced stops. The distribu-

tion of d is skewed to the right because the hand-labeled

boundary in TIMIT often precedes the actual location of the

release as also noted by Lin and Wang.4 A transcriptor may

mark the closure-burst boundary at the beginning of the

pre-frication interval. This may explain the skewness

observed and justify the choice of m1 corresponding to an

interval of 6 ms.

3. Comparison with the previous work

We compare the results of the APR algorithm with those

of three state-of-the-art algorithms: RoR-based (denoted by

“Liu”),2 adaptive filtering approach (denoted by “N&S”),3

and RF-based (denoted by “L&W”).4 Strictly speaking, the

results are not comparable because of the different sizes of the

datasets considered, different criteria for the temporal toler-

ance for detection, and differences in the target sets consid-

ered. The number of tokens considered for testing in our study

is the highest among all the studies reported in the literature.

Figure 10 also shows the ROC curve of the N&S algo-

rithm (manually read from their study3 and re-plotted here)

TABLE I. Summary of all the experiments. APR algorithm is compared with three state-of-the-art algorithms on the TIMIT database without and with various

kinds of additive noise.

Dataset Details Liu (deletion%) N&S (EER) L&W (EER) APR (EER)

TIMIT test �7 k stops, �50 k others; 160 speakers 19 15 (subset used) 7.3 7.7

TIMIT training �21 k stops, 130 k others; 470 speakers — — — 7.9

TIMIT noise White; global SNR¼ 30,20,10 dB — 20,46,67 — 9.5,15,28.5

TIMIT noise Babble; global SNR¼ 30,20,10 dB — — — 9,13.5,26.5

TIMIT noise White Schroeder; local SNR¼ 20,10,0 dB — 21–22 — 7.8,8.1,10.8

NTIMIT Telephone quality 22 35 — 18.5

Buckeye corpus Conversational speech; 40 speakers — — — 19

MILE corpus Kannada and Tamil; 2 speakers — — — 16,12

FIG. 10. The ROC curves of the APR

algorithm (solid line: TIMIT test data-

base, dashed line: TIMIT training data-

base) with the EERs compared with

some state-of-the-art methods. FAR:

false acceptance rate; FRR: false rejec-

tion rate. The ROC curve (dotted line,

for a subset of the TIMIT test data-

base) and EER for the N&S algorithm

are taken from the paper by Niyogi and

Sondhi (Ref. 3). EERs for RF, SVM,

and GMM are taken from the work of

Lin and Wang (Ref. 4).
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and the EERs achieved by the different algorithms. The

trade-off between FAR and FRR is less severe in the case of

the APR algorithm than the N&S algorithm. As an example,

to achieve an FRR of 5%, the APR algorithm results in an

FAR of 13% against 32% for the N&S algorithm. The EER

of the N&S algorithm is 16%, with affricates included in the

rejection class. Lin and Wang4 report an EER of 7.3% using

a RF classifier, 7.7% using a SVM classifier, and 8.8% using

a 16-component GMM on the TIMIT test set. These EERs

are also indicated in Fig. 10. The EER of the APR algorithm

for the TIMIT test set (7.7%) equals that of SVM and is

marginally (0.4%) less than that of RF. However, in the

study by L&W, a temporal tolerance of more than 30 ms

is used for defining a correct detection. If the temporal

tolerance is increased to 40 ms from 20 ms in the APR

algorithm, the EER decreases to 7.2% from 7.7% on the

TIMIT test set, which is better than that with both the

RF and SVM classifiers used in L&W.4 Lin and Wang

have noted that the computational load of SVM makes it

impossible to be used as an efficient burst detector. On

the other hand, our proposed algorithm uses only two

temporal measures and a simple rule based classifier. Liu

has not reported the EER, but reports 19% deletion

(FRR) for stop-bursts with a temporal tolerance criterion

for detection being 30 ms. Another study by Niyogi

et al. reports an EER of about 13% using SVM classi-

fier on a single dialect of the TIMIT test database.5 The

EER for this case is not shown in Fig. 10.

In the L&W algorithm, the percentage of detections are

64%, 86%, 99.2%, and 99.6% for temporal deviations of 5,

10, 20, and 30 ms, respectively. The corresponding results for

the APR algorithm are 64%, 84%, 100%, and 100%, respec-

tively. The mean and standard deviation of d are 4.7 and

5.7 ms, respectively, for the L&W algorithm compared to 2.7

and 5.8 ms, respectively, for the APR algorithm on the test

database. Given the aforementioned facts, the performance of

the proposed algorithm appears significant, with the results

being comparable to the best in the literature. The features

(temporal and spectral) used in these studies being different,

their merits could possibly be advantageously combined.

B. The TIMIT database with white and babble noise—
Global SNR

To the best of our knowledge, there are very few studies

in the literature reporting on CBT detection performance in

the presence of noise. The ROC curves of the APR and N&S

algorithms on noisy speech are shown in Fig. 12 for three

different SNRs. The APR algorithm achieves EERs of 9.5,

15, and 28.5% at 30, 20, and 10 dB global SNRs, respec-

tively, for white noise as compared to 20, 46, and 67%,

respectively, reported by Niyogi and Sondhi.3 It is observed

that the EER (15%) of the APR algorithm at 20 dB global

SNR is about the same as that achieved by the N&S algo-

rithm on clean speech. Further, the degradation with decreas-

ing SNR is rapid in the case of the N&S algorithm. Although

Liu has reported the results for landmark detection in the

presence of noise, those results are not on the TIMIT data-

base and the performance for the detection of the CBTs has

not been explicitly mentioned.

Figure 12 also illustrates the ROC curves of the APR

algorithm for babble noise for the same SNR values. To the

best of our knowledge, there is no previous study on the

CBT detection with babble noise. It is interesting to note that

the performance in the presence of speech-like babble noise

is about the same as that with white noise. The degradation

in the presence of noise may be caused by the presence of

noise components during the closure interval and the smudg-

ing of the transient nature of the burst, which reduces the PI.

C. The TIMIT database with Schroeder noise—Local
SNR

Figure 13 shows the ROC curves obtained for this

experiment along with those of the N&S algorithm. EERs of

around 7.8, 8.1, and 10.8% are obtained at 20, 10, and 0 dB

FIG. 12. The ROC curves of the APR algorithm for the TIMIT test database

with additive white (solid line) and babble noise (dashed line) under various

global SNRs. Also shown are the ROC curves of the N&S algorithm (Ref.

3) (dotted line) for white noise for the same SNRs.

FIG. 13. The ROC curves for the TIMIT test database with the additive

Schroeder noise for various local SNRs for the APR (solid line) and the

N&S algorithms (Ref. 3) (dashed line).

FIG. 11. Histograms of the temporal deviation, d, for the TIMIT test and

training databases combined. (a) PDF and (b) CDF.
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SNRs, respectively, with the APR algorithm as compared to

about 21%–22% for the N&S algorithm for all the three

SNRs. For 0 dB SNR, EER obtained with the APR algorithm

is almost one half of that obtained by the N&S algorithm.

For the APR algorithm, the performance at 20 dB local

SNR is almost the same as that on clean speech. This advant-

age arises because the amplitude of local noise samples dur-

ing stop closures is relatively small and, hence, the PI is not

degraded significantly. This shows that the APR algorithm

effectively captures the transient nature of the CBTs and the

robustness depends on how well the transient nature is

preserved.

D. The NTIMIT database—Telephone quality

The ROC curve for the complete NTIMIT test database

of the APR algorithm is shown in Fig. 14. An EER of 18.2%

has been achieved. The degradation of performance, com-

pared to the TIMIT database (EER 7.7%), arises because of

the limited channel bandwidth and lower SNR. However, the

EER value (18.2%) is comparable to (15%) that on TIMIT

for 20 dB global SNR with additive noise. The ROC curve

for the N&S algorithm is also shown in Fig. 14, where the

NTIMIT test set was used both for training and testing (with

1346 tokens from the target class), for which an EER of

about 31% has been reported. However, the performance

was poorer (35% EER) when the adaptive filter was trained

using the TIMIT training set.3 Liu11 also reports the results

for a subset of NTIMIT (251 tokens from the target class). A

deletion rate of 22%, insertion rate of 5% with 12% substitu-

tion, and 17% neutral landmarks has been reported. The bet-

ter performance of the APR algorithm may be due to an

appropriate choice of the knowledge-based temporal meas-

ures used.

E. The Buckeye corpus—Conversational speech

Figure 15 shows the ROC curve of the APR algorithm for

the experiment on the Buckeye corpus. An EER of 19% has

been achieved, which is about 12% more than that obtained

for read speech of the TIMIT database. It is interesting to note

that the threshold for the PI for this EER is about the same as

that for the TIMIT database. The FRR for unvoiced stops is

less (13%) than that for voiced stops (27%). The results are

generally observed to be better for female speakers.

There have been very few studies on stop detection in

conversational speech. A previous study has considered the

detection of stop releases in conversational speech for the

Switchboard corpus.42 However, the results of that study

cannot be compared with the present work because (i) a hier-

archical scheme is used for landmark detection, where stops

form a subclass under the class [-sonorant]; i.e., detection

accuracy for stop-bursts is given assuming that the class

[-sonorant] is known and (ii) frame-wise accuracy is given in

that study. It has been observed in another study13 that de-

spite high frame-wise accuracy (�90%) for phonological

features, the overall phone accuracy can be very low

(�60%). Thus, more detailed studies are warranted on the

CBTs of conversational speech.

F. The MILE database—Dravidian languages

The ROC curves for the two MILE databases are also

shown in Fig. 15. An EER of about 16% is achieved for

Kannada, while an EER of 12% is achieved for Tamil at a

threshold for the PI which is about the same as that arrived

at for the TIMIT and the Buckeye databases. The detection

accuracy for voiced stops is lower than that for unvoiced

stops. Especially, it is least for /g/ (as in the case of TIMIT)

at around 50% for both these languages. If one excludes /g/

while calculating the performance measures, an EER of 11%

is achieved for both languages. This is a small-scale study to

test the validity of the algorithm on other languages.

However, a large-scale study is warranted. Nevertheless, the

results obtained are better than those reported in a recent

study across six languages where the average detection rate

for stops is around 74% for language-specific classifiers and

64% for cross-lingual and multilingual classifiers.43

Table I summarizes all the experiments, their results,

and the comparison with the previous work. It may be seen

that, independent of statistical training and with only two

temporal measures, the APR algorithm (i) is as effective as

the best in the literature for the entire TIMIT database, (ii) is

better than the state-of-the-art techniques for all other experi-

ments considered, namely, global white and babble noise,

local noise, and telephone speech, and (iii) is scalable to con-

versational speech and two languages other than English.

G. Analysis of errors

In this section, we analyze the causes for errors obtained

in the experiments conducted on TIMIT since it is the only
FIG. 14. The ROC curves of the APR (solid line) and N&S algorithms (Ref.

3) (dashed line) for the NTIMIT test database.

FIG. 15. The ROC curves generated by the APR algorithm for the Buckeye

corpus (dotted line) and the MILE databases (dashed line: Kannada data-

base, solid line: Tamil database).
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database with closure-burst boundary labeling. The CBTs

are missed by the APR algorithm in the following cases: (i)

Occasionally, some stops are produced without a prominent

release, resulting in a value for the PI less than the thresh-

old.44 An extreme case of this is when there is no release at

all.45 (ii) Some unvoiced stop consonants (often /t/) manifest

temporally like a strong fricative without a well-defined clo-

sure-burst signal structure. These cases result in a low PI.

(iii) Affricates sometimes manifest signal properties more

likely to be similar to those of the fricatives than the stops.

Falsely detected CBTs occur in the following cases: (i)

Onset of vowels and glides with irregular periodicity, vocal

fry, etc. (ii) Nasal-vowel transition with a sudden release result-

ing in a high-frequency component resembling a voiced-burst

release.13 (iii) Stop-fricative boundaries that have been labeled

in the TIMIT as /acl/-/b/, where a is a stop and b is a fricative.

A genuine weak burst of the stop may indeed be present at the

boundary, in which case the algorithm has actually detected

it.46 However, this issue needs further investigation. (iv) A

transient-like signal structure occurring within a fricative seg-

ment, especially during /f/.47 (v) Impulse-like noise within the

silence segments marked as “h#,” “pau,” “epi,” and stop clo-

sures, which are not related to stop-bursts.3

VI. CONCLUSION

A. Summary

The problem of detecting CBT instants from a continu-

ous speech signal is addressed in this paper using two simple

temporal measures, without the need for statistical training

and complex classification machines. The PI proposed

appears to be an appropriate acoustic correlate for the detec-

tion of the transient nature of the bursts. The usefulness of

the maximum normalized cross correlation is demonstrated

for reducing the spurious candidates at voiced onsets and for

detecting weak bursts of voiced stops. Since the algorithm

makes use of two scalar temporal measures and a simple

rule-based classifier, it is expected to be computationally ef-

ficient. The algorithm has been extensively validated on

databases recorded under diverse recording conditions, oper-

ating environments, dialects, languages and styles of speech

(read and conversational). The robustness of the algorithm

has been studied on stationary and non-stationary noise as

well as on speech with channel degradation. The results are

found to be comparable or better than the state-of-the-art

methods for similar experimental conditions. Based on the

present work, we infer that by an appropriate choice of

acoustic correlates specific for a phonetic feature and a sim-

ple set of rules (a knowledge-based approach), an algorithm

can perform as well as sophisticated statistical classifiers

using high-dimensional feature vectors. Hence, it appears

that it is worth pursuing a knowledge-based approach for

discovering such correlates for all the phonetic features.

B. Future research directions

We list below some important findings which need fur-

ther investigation. (i) The parameters m1 and m2 have been

kept constant for all the experiments conducted in this study.

However, small-scale experiments on conversational speech

have shown that the performance can be improved by opti-

mizing the values of these parameters. (ii) The definition of

the PI can be extended to auditory subbands of the speech

signal. This may further help in improving the performance

of the CBT detection in the presence of noise, detection of

place of articulation, and other landmarks. (iii) An extended

definition of the PI, dynamic plosion index, can be explored

for estimating the closure duration and VOT of stops. (iv)

Instead of taking a binary decision based on a threshold

(hard decision), a confidence measure can be defined to

quantify the degree of certainty in decision making. For

instance, if the threshold is fixed at 8, a genuine burst with

PI around 7.95 would be missed. However, this can still be

declared as a stop burst with a confidence measure close to

but less than unity (7.95/8), which can be used later with

other features for making a decision about the phone.
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