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ABSTRACT

We propose a new technique for modifying the time-scale of speech
using Independent Subspace Analysis (ISA). To carry out ISA, the
single channel mixture signal is converted to a time-frequency rep-
resentation such as spectrogram. Here, the spectrogram is gener-
ated by taking Hartley or Wavelet transform on overlapped frames
of speech. We do dimensionality reduction of the autocorrelated
original spectrogram using singular value decomposition. Then,
we use Independent component analysis to get unmixing matrix
using JadeICA algorithm [5]. It is then assumed that the over-
all spectrogram results from the superposition of a number of un-
known statistically independent spectrograms. By using unmix-
ing matrix, independent sources such as temporal amplitude en-
velopes and frequency weights can be extracted from the spec-
trogram. Time-scaling of speech is carried out by resampling the
independent temporal amplitude envelopes. We then obtain time-
scaled independent spectrograms after multiplying the independent
frequency weights with time-scaled temporal amplitude envelopes.
Summing all these independent spectrograms and taking inverse
Hartely or wavelet transform of the sum spectrogram to recon-
struct and overlap-add the reconstructed time-domain signal to get
the time-scaled speech. The quality of the time-scaled speech has
been analyzed using Modified Bark Spectral Distortion(MBSD)
[6]. From the MBSD score, one can infer that the time-scaled sig-
nal is less distorted.

1. INTRODUCTION

Time-scale modification of speech refers to processing performed
on speech signals that changes the perceived rate of articulation
without affecting the pitch or intelligibility of the speech. Such
modification can be categorized into two classes: time-scale com-
pression (or speed-up) which increases the rate of articulation; and
time-scale expansion (or slow-down) which decreases the rate of
articulation. Traditional uses of time-scale modification allow for
faster listening of messages recorded on answering machines, voice
mail systems, and other information services. On the otherhand,
the goal of slow-down (time-scale expansion) is to aid in compre-
hension or dictation of rapidly spoken speech segments with im-
portant information, such as an address or phone number.

Several algorithms have been developed to achieve time-scale
modification based on the inherent structure of the speech signal.
Time-domain techniques rely on the periodic nature of speech, while
analysis/synthesis techniques exploit redundancies in the signal to
reduce the speech waveform to a limited set of time varying pa-
rameters. Time-domain techniques operate by inserting or deleting
segments of speech signal, which can result in discontinuities in
the transition between inserted or deleted segments. The (Time-
domain harmonic scaling) TDHS algorithm [1] determines the lo-

cal pitch by employing multiple correlations of signal segments. A
triangular windowing function is aligned with the pitch periods and
the resulting segments are added such that pitch periods are inserted
or deleted to create a time-scale modified signal. The algorithm
requires exact pitch determination to operate successfully. It pro-
vides good quality in the class of low complexity time-domain al-
gorithms. There are a few alternatives to this method, such as Syn-
chronized Overlap-Add (SOLA), which was originally proposed
by Roucos and Wilgus [2], and Waveform Similarity Overlap-Add
(WSOLA), proposed by Verhelst and Roelands [3]. These tech-
niques have low complexity and operate in the time-domain, but
do not rely on pitch tracking. As these methods use fixed window
lengths and fixed windowing intervals, they have advantages for
real-time implementation.

Our method uses fixed frame length to generate spectrogram
of the speech signal. However, from our observation, for getting
a good time-scaled speech, one needs to choose frame length de-
pending on approximate pitch period of the signal under consider-
ation. Real transform has been used to generate the spectrogram
and to avoid handling of phase at the reconstruction stage. We re-
duce the dimension of the spectrogram followed by Independent
component analysis (ICA). To achieve the required time-scaling,
we resample the independent temporal envelopes. Finally, we add
all the time-scaled independent spectrograms and resynthesise to
get the time-scaled signal.

2. INDEPENDENT SUBSPACE ANALYSIS (ISA)

Casey’s innovation in ISA [4] was to take a mono signal (that
ordinarily cannot be unmixed directly using ICA) and perform a
change of basis operation before employing cannonical ICA tech-
niques. Based on redundancy reduction techniques, it represents
sound sources as low dimensional independent subspaces in the
time-frequency plane. ISA makes a number of assumptions about
the nature of the signal and the sound sources present in the signal.
The single channel speech mixture is assumed to be a sum of ’� ’
unknown independent sources,
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Taking Hartley transform on the signal and using the ’ � ’ coef-
ficients for ’ � ’ slices yields a spectrogram of the signal, � of di-
mension ����� , where � is the number of frequency channels, and
� is the number of time slices. From this, it can be seen that each
column of S contains a vector which represents the frequency spec-
trum at time � , with ��������� . Similarly each row can be seen as
the evolution of frequency channel over time, with � �!����� . It is
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Fig. 1. Block diagram of Time-scaling using ISA.

assumed that the overall spectrogram � results from the superpo-
sition of ’ � ’ unknown independent spectrograms ��� . As the super-
position of spectrograms is a linear operation in the time-frequency
plane this yields:
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It is then assumed that each of the � � can be uniquely repre-
sented by the outer product of an invariant frequency basis function� � , and a corresponding invariant amplitude envelope or weighting
function ’ � � ’ which describes the variations in amplitude of the fre-
quency basis function over time. This yields

��� � � ���	�� (3)

Summing ��� yields
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In practice the assumption that the frequency basis functions are
stationary means that no change in pitch can occur within the spec-
trogram. Casey and Westner [4] overcame this assumption by break-
ing the signal into smaller blocks within which the pitch can be
considered stationary.

The independent basis functions correspond to features of the
independent sources, and each source is composed of a number of
these independent basis functions. The basis functions that com-
pose a sound source form a low-dimensional subspace that rep-
resents the source. The basis functions are selected based upon
capturing maximum variance present in the spectrogram in other-
words optimal information for source separation. Once the low-
dimensional subspaces have been identified the independent sources
can be resynthesized. In our approach we do resampling of the am-
plitude envelope or weighting function � � before resynthesizing to
achieve the required time-scaling.

3. TIME-SCALING USING ISA

Figure 1 shows the block diagram of time-scale modification us-
ing ISA. A description of the preprocessing and the calculation of
independent frequency basis function and amplitude envelope is
presented in detail in the following subsections.

3.1. Preprocessing

The speech data is divided into a number of overlapped frames with
an overlapped interval equal to half the frame length. Here, the
frame-length has been chosen based on twice the average pitch pe-
riod of the speech signal. It is windowed using a hamming window
and mapped to the spectral domain using real transforms such as
Discrete cosine transform (DCT), Discrete sine transform (DST),
Hartley transform etc., We have also used sub-band based approach
to map the speech data into the spectral domain. We get the spec-
trogram after the mapping where it has ‘ � ’ frequency bins and ‘ � ’
frames (time slices).

3.2. Singular value decomposition

Consider a transposed spectrogram as the matrix � � , its singular
value decomposition (SVD) is given by
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the application of SVD is equivalent to the eigenvalue decomposi-
tion of the covariance matrix � � . Standard SVD algorithms return
a diagonal matrix � of singular values in decreasing order and two
orthogonal matrices 
 & � � . Matrix 
 � ��� ������������� ��� � , also re-
ferred to as the row basis, holds the left singular vectors, which is
equal to the eigenvectors of ��� � . Matrix � � ��� ������������� ��� � also re-
ferred to as the column basis, holds the right singular vectors equal
to the eigenvectors of � � � . The singular vectors are linearly inde-
pendent and ther efore provide the orthonormal basis for a rational
transform into the directions of the principal components.

3.3. Reduction of dimensionality

The SVD orders the basis vectors according to the size of their
singular values. The singular values represent the standard devi-
ations of the principal components of � . These standard devia-
tions are proportional to the amount of information contained in
the corresponding principal components. A maximally informa-
tive subspace of the input data � is obtained by applying following
procedure.

A linear transformation � is calculated according to the eq. 6.
Where, � is a submatrix consisting of the upper ’ � ’ rows of � .
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The transformation matrix � is multiplied with the spectrogram � ,
yielding a representation � of reduced rank and maximally infor-
mative orientation as given in eq. 7.

� � � � (7)

The number ’ � ’ of retained dimensions is a meaningful parame-
ter of the spectrogram. However, from our observations a lim-
ited amount of 30 upto 70 dimensions is sufficient for getting good
resynthesized speech. Fewer dimensions lead to an incomplete de-
composition and hence poor resynthesized speech, while more di-
mensions give no reasonable improvement in the perceived resyn-
thesized speech. Higher dimensions increase the computational
load.



3.4. Independent component analysis (ICA)

Source separation model is a transformation, where the observa-
tions � are obtained by a multiplication of the source signals �
by an unknown mixing matrix

�
. The reduced rank spectrum �

can be interpreted as an observation matrix, where each column
is regarded as realizations of a single observation. In this work,
the JadeICA algorithm [5] is applied for the estimation of

�
. It

minimizes higher order correlations by joint approximate diago-
nalization of eigen matrices of cross cumulant tensors. The esti-
mated matrix

�
is used to calculate the independent components.

Its pseudo-inverse
�����

represents the unmixing matrix, by which
the independent sources can be extracted. Employing eq. 8 mod-
ification of the independent temporal amplitude envelopes � are
obtained from the reduced rank spectrogram � .

� � � ��� � (8)

The estimation of the independent frequency weights � is achieved
by eq. 9 and a subsequent pseudo-inversion.

�
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The independent spectrograms are computed by multiplying one
column of � with the corresponding row of � ,
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where � � � ������������� � , � � � ����������� � and � � � ������������� � .

3.5. Time-scaling

After obtaining independent frequency weights � and independent
temporal amplitude envelopes � from the reduced rank spectro-
gram � , we then resample � depending on the time-scale factor,
i.e., for factors � � , result in time-stretching of the input signal
and for factors � � , result in time-compression. We denote the re-
sampled temporal amplitude envelopes as ��� . Finally, independent
spectrograms are computed (after resampling) by multiplying one
column of � with the corresponding row of ��� , as shown in eq.
11.
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where � � � ��������� � , � � � � ����������� � � and � � � ��������� � . For � � ���
reconstructed speech is expanded in time and for ����� � recon-
structed speech is compressed.

3.5.1. Sub-band ISA based Time-scaling

Sub-band based approach removes the restriction of fixed resolu-
tion and introduce multi-resolution in mapping from time-domain
to time-frequency domain. We call this as sub-band spectrogram.
To generate sub-band spectrogram, we use Biorthogonal wavelet
instead of normally used Daubechies because it exhibits the prop-
erty of linear phase, which is needed for signal and image recon-
struction. Once we get the sub-band spectrogram, we follow simi-
lar steps explained in previous subsections, to achieve time-scaling.

3.6. Reconstruction

After resampling of independent temporal amplitude envelopes, we
sum all the independent spectrograms and later inverse transform-
ing of the sum-spectrogram, we get time-domain signal which is
resultant of overlapped and time-scaled version of the input sig-
nal. The time-domain signal is overlapped and add with the same
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Fig. 2. Time-scaling using ISA(a) Few frames of the original sig-
nal. (b) Few frames of the signal time-scaled by a factor of 1.5. (c)
Few frames of the signal time-scaled by a factor of 0.7.

frame-length and shift. This removes the windowing effect in the
time-scaled signal.

4. RESULTS AND DISCUSSION

To evaluate the abilities of the present approach, we tested on spo-
ken sentences from different speakers. These sentences were recor-
ded using SM-58 microphone under less noisy conditions. As dis-
cussed previously, we choose the frame-length approximately equal
to twice the average pitch period of the signal under consideration.
Figure 2 shows few frames of time-expanded and compressed sig-
nals along with few frames of original signal (Fig. 2(a)). In Fig.
2(b) and 2(c) we have shown few frames of ISA based time-scaled
signals for the factors 1.5 and 0.7 respectively. We can see small
temporal deviation of the time-scaled speech compare to original
speech and with the pitch being intact, as shown in Fig. 2. Figure
3 shows the time-scaled signals and corresponding spectrogram to-
wards right side, respectively. One can see the close matching of
the spectrogram between original and time-scaled signals.

To measure the quality of time-scaled speech, we used objec-
tive measure that correlates well with the subjective quality mea-
sure. Among various objective measures, we use Modified Bark
Spectral Distortion (MBSD) [6]. This estimates speech distortion
in the loudness domain, taking into the account the noise masking
threshold in order to include only audible distortions in the calcula-
tion of the distortion measure. Its performance improvement over
Bark Spectral Distortion (BSD) has been presented in [6]. BSD
measure is the average squared Euclidean distance of estimated
loudness of the original and the coded utterances.

Even though the conventional BSD measure showed a rela-
tively high correlation with mean opinion score (MOS), there are
areas of possible improvement. Motivated by the Transform cod-
ing of audio signals, which uses the noise masking threshold, the
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Fig. 3. Time-scaled signals (left panel) and corresponding spectrograms (right panel). (a) original speech signal /kaveriya ugamasthana
kodagu/. (b) Time-scaled signal (scaling factor = 1.5) of (a). (c) Time-scaled signal (scaling factor = 0.7) of (a).

MBSD measure has incorporated this concept of noise masking
threshold into the conventional BSD measure, where any distortion
below the noise masking threshold is not included for the calcula-
tion of distortion. This new addition of the noise masking threshold
replaces the empirically derived distortion threshold value used in
the conventional BSD [6]. Since the MBSD compares the distorted
speech to the original speech, its performance would be sensitive to
the temporal misalignment. So a synchronization algorithm based
on loudness domain is applied prior to performing the MBSD [7].
Upon applying MBSD on our time-scaled speech, the results were
encouraging interms of the distortion values close to zero, indicat-
ing good quality and less distortion in the time-scaled speech (as
shown in Table 1).

5. CONCLUSION
We presented here a new method for time-scale modification using
ISA. In this method, resampling of independent temporal ampli-
tude envelope has been done to achieve the required time-scaling.
The advantage in our approach lies in the fact that we need to get
independent temporal amplitude envelopes and frequency weights
only once for a given speech signal; the required time-scaling is
obtained than by resampling of independent amplitude envelopes.
The MBSD measure indicates negligible distortion in the time-
scaled speech using our method.
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