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ABSTRACT 
 
For synthesizing high quality speech, a concatenative Text-
To-Speech system requires a large number of well annotated 
segments at the phone level. Manual segmentation, though 
reliable, is tedious, time consuming and can be inconsistent. 
This correspondence presents an automated phone 
segmentation algorithm that force aligns the phonetic 
transcriptions with the utterances of the corresponding 
Indian language sentences. The algorithm uses the distance 
function obtained from the output of the recently proposed 
Bach scale filter bank and the statistical knowledge of the 
lengths of the phones to force align the boundaries between 
successive stop consonants. Preliminary results for Hindi 
database shows that 85.2% of the boundaries detected by 
the algorithm are well within 20 ms of the manually 
segmented boundaries. The misclassified frames (20 ms) per 
sentence or the Frame Error Rate is 20.4%.  

 
1. INTRODUCTION 

 
Accurate time markers indicating the beginning and ending 
times of a speech sound (phone) in a spoken sentence are 
crucial for building a high quality Text to Speech (TTS) 
system. Segmentation is the process of getting these time 
markers. Such segmented and labeled phones are used to 
create a new unit inventory meant for concatenative speech 
synthesis and also for prosody modeling. The quality of 
segmentation is critical because an error in either 
segmentation or labeling can give rise to an audible error in 
the synthesized speech. 

Manual segmentation is a conventional technique for 
segmenting speech. However, it turns out to be monotonous, 
time consuming and at times inconsistent. To circumvent 
these drawbacks, it becomes necessary to automate the 
process of segmentation. 

To develop a concatenative TTS system for any Indian 
language, a speech corpus is created by recording from a 
single speaker, utterance of a large number of sentences 
covering various acoustic and phonetic contexts. The 
phonetic transcription is obtained by mapping the 
graphemes to the corresponding phonemes using a 

grapheme to phoneme (G2P) converter. Thus, the phonetic 
labels of segmented speech are obtained from the phonetic 
transcription. The task therefore is to align these phonetic 
transcriptions to the actual boundaries in the corresponding 
speech utterances. This is an explicit segmentation problem, 
which differs from implicit automated segmentation where 
there is no a priori knowledge of the phonetic transcription, 
thus potentially increasing the number of “inserted” and 
“deleted” boundaries. 

As far as the work on automated explicit segmentation 
is concerned, Abhinav et al proposed refining context 
dependent phone based HMM (CDHMM) giving good 
boundary accuracy [1]. Neural network trees with known 
number of sub-word units have also been used for 
segmentation [2]. However, the need to develop TTS in 
multiple Indian languages and the non-availability of large 
speech corpora for Indian languages are the major 
constraints, which limit the use of these training based 
segmentation techniques. 

A recent segmentation work using the Bach scale filter 
bank has the advantage of being language independent and 
training free [3], [4]. We have extended the ideas of this 
work for our explicit segmentation algorithm. 
 
2. SEGMENTATION USING BACH FILTER BANK 
 
In this method, speech signal is treated as non-stationary. A 
constant Q filter bank is formulated, motivated by the 
perception of music. This bank has 12 filters in every 
octave, wherein the centers of successive filters are 
separated by a ratio of 2(1/12). 

Speech signal sampled at 16 kHz is passed through this 
filter bank and the set of outputs of the bank at any instant 
of time is treated as the feature vector. Here, speech is not 
presented to the filter banks as short segments (frames) as in 
the usual framework of quasi-stationary signal. Rather, we 
get feature vectors for every instant of time. Now, the mean 
of the log of the feature vectors in each 15 ms window is 
taken and the Euclidean distance between successive means 
is calculated. Seen as a 2-class problem, the distance 
between the means should peak if the feature vectors in the 
adjacent windows belong to different phoneme classes. The 



distance measure used is referred to as the Euclidean 
Distance between Mean Log (EDML) feature vectors. 

Figure 1 displays the plot of the values of the feature 
EDML as a function of time for part of a Hindi word 
utterance. We can see that the peaks of this function either 
coincide with or are close to the manually marked phone 
boundaries of the uttered word. 

 

  
Figure 1. The plot of EDML against time for a portion of Hindi 
utterance (“satypar”). The vertical lines denote the manually 
segmented phone boundaries 
 

This method gives 86.4% accuracy (automated 
boundary within 20 ms of a manual boundary), 21.4% 
insertions and 3.2% deletions for Hindi database, 81.9% 
accuracy, 15.3% deletions and 23.7% insertions for Tamil 
database, 82.5% accuracy, 22.3% deletions and 18.9% 
insertions for TIMIT database [5]. 

 
3. EXPLICIT SEGMENTATION 

 
The proposed algorithm makes use of the statistical 
knowledge of the durations of the phones. The major 
disadvantage of forcing boundary alignments on the entire 
speech waveform is that the boundary error gets 
accumulated. To avoid propagating the boundary errors 
from the start of the sentence to the end of the same, we can 
force boundaries for the phones between two phone classes 
at a time. Armed with the phonetic transcription, the first 
stage of the algorithm detects a phone class but is 
constrained to be a training free algorithm. 

In order to be detected, fricatives, vowels, nasals, 
diphthongs, nasal vowels and glides need some stored form 
of features. Also, different phones in each class require 
different features. However, as described below, stop 
consonants can be detected without storing any features. 
Thus, we follow hierarchical segmentation, where the stop 
consonants in a sentence are first located, and then the 
phones occurring between successive stop consonants are 
segmented. 

The first frame (10 ms) of any speech sentence is 
predominantly silence. However, stop consonants can either 

be voiced or unvoiced. To remove the low frequency 
components that are present in the closure region of a 
voiced stop consonant, the speech signal is high-pass 
filtered with a Bessel filter with the lower cutoff frequency 
of 400 Hz (the voice bar of voiced stops extends roughly till 
400 Hz). Now, MFCCs of all the frames of the filtered 
speech are calculated. The Euclidean distance is computed 
between the MFCC of the first frame of the sentence and the 
MFCC of every other frame. If this distance drops below a 
threshold value for a minimum of 3 consecutive frames (the 
minimum duration of a stop consonant is assumed to be 
roughly 30 ms), then it implies that the corresponding 
region may contain the silence part of a stop consonant or a 
silence region of speech or a combination of both. The 
frame within this region having the minimum distance from 
the first silence frame is surely a stop consonant (or silence 
or both) frame. Preliminary tests on 100 sentences from 
Hindi database give a stop consonant detection accuracy of 
87% with 20% insertions. 
       The number of regions involving actual silence between 
words and the closure regions of the stop consonants can be 
known from the phonetic transcription. Using this, the 
number of silence regions to be detected can be forced. In 
this case, the equal error rate (i.e., the number of insertions 
equals number of deletions) is 11.3% for 100 sentences in 
Hindi and 15% for 50 sentences of TIMIT database. This 
performance is of the same order as the stop detection 
accuracy proposed in [6], [7]. Figure 2 illustrates the stop 
consonants (silence regions) detected by the above 
algorithm in a portion of a Hindi utterance.  
 

 
Figure 2. Portion of a Hindi speech utterance – “satyapardriRh”. 
The utterance has a silence region at the start of the sentence and 3 
stop consonants (/t/, /p/ and /d/). The vertical lines denote the start 
of the frame classified as sure stop consonants by the proposed 
algorithm. 

The rest of the discussion in this work, assumes an 
error free stop consonant detection, and attempts to segment 



the individual phones between 2 successive correctly 
detected stop consonants. 

Using the Bach scale filter bank, the EDML function is 
calculated for the speech signal between every successive 
pair of stop consonants. By incorporating the knowledge of 
the regions of stop consonants, the end of the first stop 
consonant (b1) and the start of the next stop consonant (b2) 
can be found out using the energy change in the signal. This 
is illustrated for a portion of Hindi speech waveform in 
Figure 3. 

 

   
Figure 3. Identification of the region between the end of one stop 
consonant and the beginning of the next, in a portion of a Hindi 
speech waveform for the phone sequence /k/,/a/,/nl/,/a/,/r/,/ph/. 

Consider a rectangular window of size δ times the 
standard deviation of the duration of the next phone, 
centered at b1+x where x is the mean duration of the next 
phone. Within this window, the maximum of the EDML 
function, EDMLmax is computed and all the peaks greater 
than α*EDMLmax are detected. If the number of such peaks 
exceeds λ1 or is less than λ2 (where λ1 > λ2), then the best λ1 

possible peaks within that window are chosen. Again, 
another rectangular window, of size δ times the standard 
deviation of duration of the next phone, is centered at 
b1+x+y where y is the mean duration of the next phone. The 
same peak finding process is repeated for all the phones 
within the successive stop consonants. Hence the possible 
choices are ≥ λ2 and ≤ λ1 for every boundary to be detected 
between two successive stop consonants. 

Figure 4 shows the EDML contour for the speech 
waveform in Figure 3. Also shown are the peaks detected 
for λ2 chosen as 5. 

Assuming a Gaussian PDF for the duration of the 
phones, the probability of transition to the next boundary is 
found out for each of these possible choices.  

Now, the problem can be stated as: Find the best 
possible boundaries such that the product of the transition 
probabilities in that path is maximized. Equivalently, the 
sum of the negative log of the transition probabilities is 
minimized.  

We have employed a graph theoretic approach to the 
problem, wherein each possible choice for a boundary is a 

node and the transition probability is the weight of an edge. 
This is illustrated in Figure 5.  

 
 
 

   
Figure 4. Contour of EDML values of the speech waveform shown 
in  Figure 3. A window is centered at the point away from b1 by 
the mean duration of phone /a/. The circles indicate the peaks 
chosen. It can be seen that some peaks are common choices for 
both the successive phones. 

Now, the best path that minimizes the cost of transition 
can be found. Since the start and end nodes (b1 and b2) are 
known, we can use Dijkstra’s greedy algorithm. The best 
choices of nodes obtained from this algorithm are taken as 
the best possible boundaries within the 2 stop consonants. 
Figure 6 shows the best possible boundaries obtained using 
the above algorithm as against the manual boundaries. 

 

   
Figure 5. Nodes with transition probabilities. The first and last 
nodes are b1 and b2. The choices for a boundary are considered as 
a node. The edges indicate the negative log of transition 
probability. 

The experiments were conducted on the Hindi database 
using the statistics of phone durations computed from the 
manually segmented database. Best results were obtained 
for the parameters δ = 8, α = 0.1, λ1 =5 and λ2 = 2. 
Performance on 30 sentences from the Hindi database is 
21.4% FER with a frame size of 20 ms and 20.4% FER with 



a frame size of 25 ms. The experiments were repeated for 
statistics obtained from TIMIT database and the 
corresponding FER for utterances of a single speaker are 
29.5% and 28.4%. The boundary error rate is 14.6% for 
Hindi and 19.4% for TIMIT database. 

  
Figure 6. Boundaries between stop consonants /k/ and /ph/. The 
thick vertical lines are the manually marked boundaries and the 
thin vertical lines are the boundaries identified by the proposed 
algorithm.  
 

4. CONCLUSION AND FUTURE WORK 
  

The proposed method promises good segmentation 
provided the statistics of the phones are known. A final 
round of manual intervention is required. However, this 
manual intervention is now less tedious and less time 
consuming. 

The mean durations of the phones are normalized to the 
speaker’s rate of speech between the two stop consonants. 
Also, it was found that the frame error rate between the 
manual segmentations carried out independently by 2 
trained segmenters is around 9%. 

Future work can attempt using the statistics of phone 
durations of one language for segmenting speech of another 
language. Also, stop consonant detection method with a 
much higher accuracy needs to be developed. 
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