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Abstract

Two new algorithms are proposed, which obtain pseudo complex cepstrum using Dis-
crete Cosine Transform (DCT). We call this as the Discrete Cosine Transformed Cepstrum
(DCTCQ). In the first algorithm, we apply the relation between Discrete Fourier Transform
(DFT) and DCT. Computing the complex cepstrum using Fourier transform needs the
unwrapped phase. The calculation of the unwrapped phase is difficult whenever multiple
zeros and poles occur near or on the unit circle. Since DCT is a real function, its phase can
only be 0 or 7 and the phase is unwrapped by representing the negative sign by exp(—j)
and the positive sign by exp(j0). The second algorithm obviates the need for DFT and
obtains DCTC by representing the DCT sequence itself by magnitude and phase compo-
nents. Phase is unwrapped in the same way as the first algorithm. We have tested DCTC
on a simulated system that has multiple poles and zeros near or on the unit circle. The
results show that DCTC matches the theoretical complex cepstrum more closely than the
DFT based complex cepstrum. We have explored possible uses for DCTC in obtaining
the pitch contour of syllables, words and sentences. It is shown that the spectral envelope
obtained from the first few coeflicients matches reasonably with the envelope of the signal
spectrum under consideration, and thus can be used in applications, where faithful repro-
duction of the spectral envelope is not critical. We also examine the utility of DCTC as
feature set for speaker identification. The identification rate with DCTC as feature vector

was higher than that with linear prediction-derived cepstral coefficients.



1 Introduction

Homomorphic deconvolution is a method based on the principle of generalized superposition,
which has useful applications in a variety of research fields, such as speech analysis and synthe-
sis, marine and earth seismology, medicine (EEG), radar and acoustic system analysis. It was
first applied to speech analysis by Oppenheim and Schafer (Oppenheim and Schafer, 1968).
Childers et al. (Childers et al., 1977) performed considerable work covering different aspects
and applications of homomorphic deconvolution and filtering. Homomorphic deconvolution
systems have usually been realized using the Fourier transform (FT), and the utility of the
output of deconvolution is very much data dependent.

Unfortunately, the nature of F'T dictates the possible uses of the method and restricts
its general applicability. It is well known that precise calculation of the unwrapped phase is
sometimes difficult (unreliable or even impossible) due to spectral notching or multiple bands
with low signal to noise ratios. Calculating the complex cepstrum without phase unwrapping
or integration methodology has been introduced in (Bernar and Watt, 1985). However, it is
still based on FT and therefore continues to have the limitations of complex cepstrum obtained
using FT.

Complex cepstrum (Sokolov, 1989), entirely based on time-domain calculations, avoids
or minimizes the problem associated with the FT method. Explicit transformations of an
ordinary, mixed phase time sequence into its complex cepstrum time sequence and vice versa
are derived in (Sokolov, 1989). This does not require the calculation of the unwrapped phase
and no specific windows are used to precondition the signal in order to produce a more accurate
representation of the complex cepstrum. In (Hessanein and Rudko, 1984), it is shown that if
the original signal is defined to be symmetrical, the Discrete Fourier Transform (DFT) used
in cepstral analysis can be replaced by Discrete Cosine Transform (DCT). This principle is
applied to evaluate the real and complex pseudocepstra of speech signals. In both the cases,
it is found that the use of DCT retains the information contained in the cepstrum, while
substantially reducing the computational complexity. However, to the best knowledge of the

authors, there has been no new work on the use of DCT for computation of the complex



cepstrum in the past decade.

DCT coefficients have been very successfully deployed as features for character recognition
(Dhanya and Ramakrishnan, 2002; Vijay Kumar and Ramakrishnan, 2002). In addition, DCT
being a real orthogonal transform, can be advantageously used for resampling or interpolation.
In earlier research work, we exploited this to get a good technique for pitch modification (Mu-
ralishankar et al., 2003) and period normalization of ECG cycles for a superior compression
performance (Ramakrishnan and Saha, 1997). Though DFT and DCT are both sinusoidal
transforms, DCT has outperformed DFT in certain applications, such as JPEG (Joint Photo-
graphic Experts Group). DCT intrinsically gives higher spectral resolution. We have shown
that this results in better performance in applications such as, pitch detection in noisy speech
using Spectral Autocorrelation Function (Muralishankar and Ramakrishnan, 2000). Salahud-
din et al. (?) reported that DCT-based soft thresholding technique, when used for speech
enhancement, resulted in better output SNR and speech quality, than wavelet based methods.
Similarly, we strongly feel that DCT will have better performance in other speech applica-
tions, compared to DFT. Accordingly, we have explored the relative advantages of computing
complex cepstrum using DCT, expecting that this might reduce the error arising in the com-
putation due to DFT. In addition, the presence of the binary phase information along with
the magnitude might lead to better performance of DCT based complex cepstrum as a feature
vector, compared to one that has only magnitude information.

In this work, we introduce two new methods for obtaining pseudo cepstrum (Muralishankar
and Ramakrishnan, 2002). In the first method, forcing half-sample symmetric extension for the
signal under consideration, we obtain the relation between DFT and DCT. A major difficulty in
complex cepstral analysis is the necessity to unwrap the phase in order to make it a continuous
function. The relation between DFT and DCT permits the definition of a simpler phase
unwrapping algorithm. Since the bases of the cosine transform are real functions, the principal
value of their phase can only be 0 or 7. Accordingly, we represent the phase as exp(—jm) for
negative sign and exp(j0) for positive sign. With this representation, Log. operation has
been carried out on the sign as well as magnitude of the DCT to obtain log spectrum. After

phase unwrapping, the sequence is concatenated with its mirror image to obtain a sequence of



twice the length. This is inverse Fourier transformed. We call this cepstrum, discrete cosine
transformed cepstrum (DCTC). In the second method, no assumption is made regarding the
signal, and straightaway, the pseudo-cepstrum has been calculated using DCT and IDCT. The

phase unwrapping algorithm is the same as in the case of the first method.

2 Mathematical formulation of the DCTC

In a homomorphic system for deconvolution, the characteristic system transforms a time
function (signal) from a convolutional space into its image in an additive (cepstral) vector
space, i.e., there is a functional time relation connecting these signals (Oppenheim and Schafer,
1989). We now investigate this relation. Consider a sequence z[n] with a rational Z-transform

of the form

_ A [T, (1 —agzt) TI5e, (1 — bez)
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The set of values of a; and g are, respectively, the zeros and poles inside the unit circle,
by, and di are zeros and poles outside the unit circle, and |ag|, |bk|, |gk|, and |dg| are all less
than 1 (Oppenheim and Schafer, 1968). The complex cepstrum exists if In{ X (z)} is analytic.
Only a sequence z[n| with positive mean and a phase derivative with zero mean will have
a unique analytic function In{X(z)} (Quatieri, 1979). Thus, a general, discrete-time, mixed
phase sequence z[n| requires time alignment and adjusting the constant A to be positive in
order for the complex cepstrum to exist. By definition, the Z-transform C(z) of the cepstrum

sequence c[n] is

C(z) = In{Y(2)} 2)

where Y'(z) is the Z-transform of y[n], obtained by time aligning z[n]. After taking the deriva-

tive of Eq. 2 with respect to z and taking the inverse Z-transform, we obtain
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This nonlinear difference equation is an implicit relation between y and ¢, and for minimum or

maximum phase sequences, it can be reduced to implicit recurrence expressions (Oppenheim

and Schafer, 1968). However, the goal of this paper is to obtain a cepstral representation using

the orthogonal transform, DCT.

2.1 DCTC-1

Let z[n] be a real sequence, defined for 0 < n < M — 1. Consider its half-point, symmetrically

extended sequence y[n]:

z[n] 0<n<M-1
yln] =
z2M —1—-n] M<n<2M-1

The 2M-length DFT of y[n] can be simplified as (Rao and Yip, 1990),
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which is the DCT of z[n], except for the scaling factors. Incorporating this in Eq.4,

Y[k = Zexp(g%) Xperlk]

We can write Xpor[k| as

Xper(k] = exp(¢[k]) [Xporlk]|

where

1K = 2 (sgn(Xpor k) ~ 1)



and

1, for p>0
sgn(p) =
-1, for p<oO

Therefore,

Y[k = 2exp(IF 1 elk]) [Xpor[k] 0

Y'[k] can be written as exp(j0[k]) |Y[k]|. Taking natural logarithm of the right-hand side of

the equation, we have

In(2) +In|Xper (k] + 20 + €[K] Q

Separating the real and imaginary parts of Eq. 9, we have,

Re[k] = In(2) + In | X per[K]|

k

Imlk] = (M + (sgn{Xpcrlkl} — 1))

o | 3

Here, 0 < k < M — 1. We construct ([{], a sequence of length 2M, from the above M-length

sequence, as shown below:

(= Re[l] + jIm]l] : 0<I<M-1
(Re2M —1— 1]+ jIm2M —1—1))* : M <I<2M —1

DCTC-1 is computed for the symmetrically extended signal y[n| as follows:

yln] = {IDFT(C[)}

where (0 < n < 2M —1). g[n] is real because of the symmetry of ([I].



2.2 DCTC-2

Instead of using the relation between the DFT and the DCT for symmetrically extended
signals, this approach uses DCT and the corresponding IDCT (Martucci, 1994) to obtain the
DCTC-2. Consider a finite duration, real sequence z[n|, defined for 0 < n < M — 1 and
zero elsewhere. Taking M-point DCT of the above sequence, we have Xpcor[k] defined for

0 <k <M —1. Using Eq.7 and expanding &[k], this can now be written as

Xporlk] = exp( (sgn{ Xper [k} — 1)) [Xper[H] (10)

Taking natural logarithm on both sides,

In{Xpcr[kl} = %(Sgn{XDCT[k]} —1) + In[Xperlk]| (11)

Then we obtain the pseudo-complex cepstrum of z[n] as,
~ ks
.’II[’I’L] = RE{IDCT[%(SQ’)’L{XDCT[k‘]} — 1) + In |XDCT[k]”} (12)

3 Linear phase component in complex cepstrum

For the complex cepstrum to exist, it is necessary for the phase function to be continuous and
be an odd function on the unit circle. It does not exist (is not defined) if linear phase is present,
since log 2" does not have a Laurent expansion near z = 0, and therefore, the phase function
is not continuous (Childers et al., 1977). Nevertheless, some authors consider the linear
phase component of the complex cepstrum by assuming that the Fourier transform of log e/™
substitutes for the Z-transform of log z” on the unit circle. The linear phase component must
be removed before computing the complex cepstrum. Otherwise, it introduces rapid decaying

oscillations in the complex cepstrum (Childers et al., 1977) since its Fourier transform is

0, n =
Zlinear phase[n] = (13)

=L cos(nm) = (-1)" L n#£0



Here, r is equal to the number of zeros outside the unit circle. If this number is large, the
Zlinear phase|] term can be large. The oscillations, introduced in the complex cepstrum due to
the presence of the linear phase component in the signal, may mask the inherent periodicities
of the signal reflected in the complex cepstrum. The presence of a linear phase term may
influence the choice of the filter in the cepstral domain, since each point will have contributions
from the linear phase component that changes sign from sample to sample. For a finite length
sequence, there are no poles so that the denominator of Eq. 1 is unity and its Z-transform is

of the form,

X(z) = AZ" H (1 —apz™t) ﬁ (1 — by2) (14)
k=1 k=1

Writing X (z) as a polynomial in z and using the proof given in (Sokolov, 1989), we see that
the linear phase factor depends on the number of zeros outside the unit circle, m,, and that

the contribution to the phase due to the constant term A, is an integer multiple of .

4 Validation of DCTC using theoretical complex cepstrum

We simulate a linear system to show that the DCTC obtained by our method compares well
with the theoretical complex cepstrum (TCC) (Oppenheim and Schafer, 1968). In Fig. 1(a),
a complex pole pair and a complex zero pair (|z12| = 0.99) are placed near the unit circle. It
is shown in (Sokolov, 1989) that poles and zeros, proximal to the unit circle, present severe
problems to the calculation of the unwrapped phase in the FT based method for cepstrum.
The system impulse response h[n], truncated to 65 points, is shown in Fig. 1(b). A complete
representation (not shown) would portray a decaying oscillatory function with a duration
of several hundred samples. Given the locations of the poles and zeros, the TCC can be

calculated:

In|A4]|, n=>0
h(n) = — i, S+ T8 5, n>0 (15)
b ,  dr
Yk E YR, n<0
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Figure 1: (a) Pole-zero plot of the simulated linear system. (b) System impulse response
truncated to 65 points. (c) TCC of the simulated linear system. (d) Complex cepstrum using
Fourier Transform. (e) DCTC-1 (solid line) overlapped with TCC. (f) DCTC-2 (solid line)
overlapped with TCC.

The coefficients ag, g, bg, and di are defined in Eq.1 and the cepstrum is shown in Fig.
1(c). Removing the linear phase component in the signal by shifting the time sequence z[n]
by m, = 7 samples to the left produces the aligned sequence y[n]. The DCTC-1 is presented
in Fig. 1(e) (solid line) along with the TCC. We emphasize here that no window has been
used and only a simple truncation has been performed. Fig.1(d) illustrates the FT cepstrum.
Here, phase unwrapping has not been accurately achieved because of the presence of multiple
poles and zeros very near the unit circle. The DCTC-2 is displayed in Fig. 1(f), which is a
closer approximation to the TCC, than the other two. Thus, it is evident that DCTC matches

the TCC better than the FT based complex cepstrum.

5 Applications of DCTC

The DCTC, as proposed, is a concept requiring further work to improve its effectiveness in
applications. It is still worthwhile, however, to explore its strengths and weaknesses in its

present form. In the subsections that follow, we employ DCTC for spectral estimation, pitch



detection and speaker identification and report our results.

5.1 Estimation of spectral envelope

As a first step, we explore the applicability of DCTC for estimating the envelope of any speech
spectrum. Speech spectra are generally quite scalloped, owing to the changes in the pitch of
the speaker. The pulse train can be liftered from the cepstrum by a bandpass lifter. After
inverse processing, we obtain an estimate of the envelope of the speech spectrum. Figs. 2 and
3 compare the spectral estimates of utterances of a male with fundamental frequency =100
Hz, obtained using DCTC-1 and DCTC-2, with those obtained employing DFT and linear
predictive cepstral coefficients (LPCC). DCTC and LPCC are obtained from a Hamming
windowed speech segment of 32.5 msec duration. Spectra are estimated using the first 13
coefficients of DCTC of both voiced and unvoiced speech samples. LPCC spectrum is obtained
using 12" order LPC analysis. Figs. 2(a) to 2(d) and 2(e) to 2(f) display the spectra obtained
using DCTC-1 for voiced and unvoiced speech samples, respectively. Figs. 3(a) to 3(d) and
3(e) to 3(f) show spectra obtained using DCTC-2 for voiced and unvoiced speech samples,
respectively. Figs. 4 and 5 give the corresponding results for a female speaker with pitch
frequency = 290 Hz.

From the above results, it is observed that the first few DCTC coeflicients have the in-
formation about the vocal tract response. The figures show that the spectra, estimated by
the DCTC, are not as good as those estimated by LPCC, in terms of exactly following the
envelope. Thus, if one is interested in the best estimation of spectral envelope, then, DCTC
may not be the most appropriate method. Hence, DCTC cannot be used in its current form
for applications such as speech coding, where faithful reproduction of the spectral envelope
is extremely critical. However, the positions of the peaks are correctly estimated by both
the DCTC techniques. Further, the spectra estimated by both the DCTC approaches are
smoother than those estimated by LPCC as can be observed from Figs. 2 to 5. This feature is
a favorable attribute for application to speaker identification. In order to study this, we have
employed DCTC as the feature set in speaker identification experiments and studied whether

there is any improvement in performance to that obtained with LPCC.
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5.2 Speaker identification

We have employed DCTC as feature set for text-independent speaker identification. Such
applications model the speaker individuality by employing features that convey vocal tract
information. This makes the complex cepstrum a natural choice as a feature for speaker
identification. However, due to the difficulties encountered in the FT-based approach for
obtaining the complex cepstrum, most practical systems use either Mel-frequency cepstral
coefficients (MFCC) or LPCC. Our experiments with DCTC, MFCC and LPCC demonstrate
the viability of DCTC for speaker identification, though future enhancements could further
improve its performance.

We have performed speaker identification experiments on a limited subset (50 male speak-
ers) of the TIMIT database. The average duration of each sentence in the database is around
3 sec and the sampling frequency is 16 kHz. Two sentences per speaker are used as the training
data and 3 sentences per speaker are used for testing. The speech data is first downsampled
to 8 kHz after antialias filtering. Analysis frames of length 31.25 ms are employed, with a
frame rate of 100/sec. Each frame is Hamming windowed and processed to obtain DCTC,
using the algorithms explained earlier. The first cepstral coefficient is excluded and the next
13 coefficients form the feature vector. To obtain MFCC, a bank of 24 triangular shaped filters
is used. The log energy outputs of these filters are transformed to cepstral coefficients using
DCT. The feature vector is formed from 13 coefficients, dropping the first coefficient. LPCC
is obtained using 12** order LP-analysis. The first 13 LPCC coefficients, excluding the gain
term, form the feature vector.

Since the training data is of 2 sec duration, and the frame size is 32.5 ms (frames overlap
by 10 ms), we roughly have 200 feature vectors from the training data. Thus, each speaker is
modeled using a 30-length vector quantization codebook, consisting of code vectors of DCTC,
MFCC or LPCC coefficients, each of dimension 13. The codebooks are trained using k-means
clustering algorithm (Duda et al., 2002), employing Euclidean distance measure. Speakers are
identified by evaluating the distortion between the features of the test speech sample and the
models in the speaker database. The results of the experiments are evaluated as in (Reynolds

and Rose, 1995). The test speech of each speaker is processed to produce a sequence of feature
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Table 1: Comparison of speaker identification performance of different features. The figures
given in the first row represent the relative number of correctly identified frames. The numbers
in the second row give the number of speakers identified as a percentage.

\ Feature [ LPCC | DCTC-1 [ DCTC-2 [ MFCC |
| Frame Identification Rate (%) | 65.1 | 670 | 689 | 734 |
| Speaker Identification Rate(%) | 8 | 8 | 90 | 94 |

vectors. This sequence is then divided into overlapping segments of 100 feature vectors each,
with an overlap of 90 feature vectors between successive segments. Each segment is considered
a separate test utterance. If Np is the total number of segments and N¢ is the number of
correctly identified segments, then the identification performance is evaluated in percentage as
%—g x 100. Thus, a segment based performance metric, rather than direct speaker recognition
performance, has been used.

Here, the length of test data from each speaker is approximately equal and so the perfor-
mance evaluation is not biased towards any particular speaker. While there may be variations
in performance with respect to individual speakers, the evaluation is aimed to track the av-
erage performance of the system for different speaker identification tasks, allowing a common
basis of comparison (Reynolds and Rose, 1995). Since our evaluation follows the scheme pre-
sented in (Reynolds and Rose, 1995), the obtained recognition performance is generally low
for all the feature sets employed, compared to the figures available in the recent literature.

The results are given in Table 1. It must be noted that the results are only indicative, since
they are based on experiments using data from limited number of speakers. From the results,
it can be seen that MFCC gives the best performance among all the features. Both DCTC-1
and DCTC-2 perform comparably with LPCC. This demonstrates the viability of DCTC as an
alternative for LPCC for speaker identification. Obviously, MFCC incorporates the perceptual
model and thus results in a “weighted” distance measure, which ought to perform better than
unweighted distance measures. Thus, by appropriately incorporating the auditory perceptual

model into DCTC, we can expect a performance of DCTC comparable to MFCC.
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Figure 2: Spectral match for male speech using DCTC-1, (a) to (d) Voiced speech. (e) and
(f) Unvoiced.
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Figure 3: Spectral match for male speech using DCTC-2, (a) to (d) Voiced speech. (e) and
(f) Unvoiced.
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Figure 4: Spectral match for female speech using DCTC-1, (a) to (d) Voiced speech. (e) and
(f) Unvoiced.
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5.3 Pitch detection

Finally, we investigate the effectiveness of DCTC for pitch extraction. In speech analysis, we
usually estimate the parameters of an assumed speech-production model. The most common
model views speech as the output of a linear, time varying system (the vocal tract) excited by
either quasi periodic pulses or random noise. It is useful to separate or “deconvolve” the system
and the excitation components. This is possible in the case of speech, because the convolved
signals have very different spectra (O’Shaugnessy, 2000). Cepstral deconvolution transforms a
product of two spectra into a sum of two signals. If the resulting summed signals are spectrally
different, they can be separated by linear filtering. We know that the formant structure varies
slowly in frequency compared to the pitch harmonics or noise. So, the contributions can be
linearly separated. The pitch period can be estimated by bandpass liftering the cepstrum and
then following the inverse process. It can also be measured directly from the cepstral domain
by measuring the time interval from the origin to the first peak.

Fig. 6 shows DCTC-1, DCTC-2 and real cepstral sequences, respectively, of a Kannada
utterance, /niilamegha/. Only the real cepstrum, rather than the complex cepstrum has been
shown, because the intention is to locate the peaks in the cepstral sequences. In order to
measure the pitch period from the results of the two DCTC algorithms, the interval from the
origin to the first peak is measured. Thus, we obtain the pitch contour of the word. Fig. 7(a)
shows the utterance /niilamegha/. Its pitch contours obtained using DCTC-1 and DCTC-2
are plotted in Figs. 7(b) and 7(c), respectively, along with the result of autocorrelation method
obtained using Praat (Boersma and Weenink, 2003). Here, we have used a frame length of 30
ms and a frame shift of 10 ms to obtain the pitch contours. A pitch range of 50-600 Hz has

been assumed here to pick the first peak in the cepstral domain.

6 Conclusion

We have shown the advantages of using DCT for computing the pseudo complex cepstrum.
Compared to the FT-based complex cepstrum, phase unwrapping is easy in the case of DCTC

and the latter also matches more closely with the theoretical complex cepstrum. Several
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applications of DCTC in speech processing have been examined through pitch detection and
speaker identification trials. We have demonstrated the usefulness of DCTC in obtaining
the pitch contours. Speaker identification performance using DCTC features is comparable or
better than that obtained by LPCC. This demonstrates the viability of DCTC as an alternative
for LPCC for speaker identification. DCTC has also been shown to be effective in obtaining
the overall spectral envelope. Even though the spectral envelope fitting by DCTC is not as
good as that of LPCC, it scores over the latter in higher discriminability, when it comes to
speaker identification performance, as shown by the results obtained. The added binary phase
information could be the key in deciding this improvement (Provenzale et al., 1992). The
results show that DCTC has some promise as an alternative feature for speech, with future

enhancements, such as incorporation of auditory perceptual model.
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