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Abstract—In this paper, we propose a new sub-band

approach to estimate the glottal activity. The method is

based on the spectral harmonicity and the sub-band tem-

poral properties of voiced speech. We propose a method to

represent glottal excitation signal using sub-band temporal

envelope. Instants of maximum glottal excitation or Glottal

Closure Instants (GCI) are extracted from the estimated

glottal excitation pattern and the result is compared with

a standard GCI computation method, DYPSA [1]. The

performance of the algorithm is also compared for the

noisy signal and it is shown that the proposed method

is less variant to GCI estimation under noisy conditions

compared to DYPSA. The algorithm is evaluated on the

CMU-ARCTIC database.

Index Terms—glottal closure instant, epoch, GCI,

DYPSA, CMU-ARCTIC.

I. INTRODUCTION

Estimating the excitation pattern of the vocal tract

helps us to understand the interaction between the vocal

tract and the source in speech production. One such

representation of source signal is the electro-glotto-

graph (EGG) signal, which indicates the area of con-

tact between the vibrating vocal folds. Thus, it is a

representation of the variation of air pressure below

the glottis. Vocal tract excitation is maximum when the

glottis is closed abruptly and this excitation is repre-

sented by one of the peaks in the speech signal. Instant

of maximum excitation is used in many applications

including speech coding, speech modification, synthesis,

and duration modification. To extract the instants of max-

imum excitation in speech signal, properties of the glottal

closure instant (GCI) have been used, such as singularity

property [3], and phase slope of the linear prediction

residual [1]. In our approach, excitation pattern is used

to estimate the GCI’s. The human speech production

mechanism is shown in Fig. 1.

Production of speech may be viewed from different
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Fig. 1. Simplistic view of speech production model

perspectives. Source filter model proposed by G.Fant

[10] is one such model, which assumes that the speech

signal can be assumed to be generated from a source

signal exciting a linear filter, where source signal is the

glottal excitation signal and filter models the vocal tract.

It is known that the linear prediction (LP) parameters

of the speech signal gives an approximation to vocal

tract shape involved in the production of speech. Speech

production may also be viewed as an AM-FM model,

proposed by Maragos et.al. [8], where speech signal

is viewed as a combination of modulated signals. In

the source-filter model of speech production, there are

two factors involved in speech production, namely, the

excitation signal (source), and the vocal tract transfer

function (filter). Hence, extracting one information es-

sentially needs a reliable assumption of the other.

The earliest work on estimating Glottal Closure In-

stant (GCI) based on the LP residual technique is by

Ananthapadmanabha et.al [2]. In this approach, it is

shown that the LPC residual may provide a sub-optimal

GCI information. Another method based on the phase

slope information of the LP residual is discussed by

Smits et.al [4], where the positive zero-crossing of the

phase indicates the glottal closure instants. This is further

investigated by Kounoudes et.al. [1] to propose DYPSA
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Fig. 2. GCI detection based on sub-band envelope information

algorithm. Here, dynamic programming is employed

to correct the baseline phase slope based pitch mark

algorithm by minimizing the pitch deviation cost and

the phase slope costs.

Wavelet analysis has also been employed for the detec-

tion of GCI which is based on its singularity detection

property, as GCI’s are associated with singularity. The

method in [3] does not yield good results for soft glottal

closures such as in the cases of voice onsets and offsets.

In this method, the lines of maximum amplitudes in

each wavelet band is tracked dynamically to arrive at the

GCI. Also, this method makes a fundamental assumption

that the speech signal has predominantly negative peaks,

which is equivalent to making the assumption on the

polarity of the pitch mark. Sub-band analysis of speech

to find pitch frequency (F0) is discussed in [5] and [6],

both using the auditory models of speech perception.

In this paper, we derive a representation of the exci-

tation pattern of vocal tract using sub-band motivated

processing. To validate our claim, GCI is extracted

from the estimated excitation pattern and the result is

compared with the baseline GCI obtained from the EGG

signal and with the DYPSA algorithm. In order to test the

robustness of the algorithm, DYPSA and the proposed

method are also tested on noisy data. All the experiments

are carried out on the CMU-ARCTIC database.

II. PROPOSED METHOD

First, we show that the peaks of the sub-band envelope

(SBE) information represent the maximum excitation

instants.

Consider v(t) to represent the vocal tract transfer

function, and e(t), the excitation signal. Speech signal

s(t) may be written as s(t) = e(t) ∗ v(t). Let sk(t) be

the filtered speech signal around a centre frequency wk

which may be written as,

sk(t) = e(t) ∗ v(t) ∗ hk(t) (1)

where, hk(t) is the impulse response of the filter se-

lecting the speech signal around the frequency wk,

and ∗ indicates the convolution operation. Since e(t)
is considered to be a sequence of impulses placed at

the excitation instants; the speech signal is harmonic in

w0 = 2π/T . Considering the speech signal in kth band,

we write (1) as,

sk(t) = e(t) ∗ vk(t); vk(t) = v(t) ∗ hk(t) (2)

And, in the frequency domain, we may write,

Sk(w) = E(w)Vk(w) (3)

Since e(t) is assumed to be a sequence of impulses, that

is, e(t) = δ(t− rT ),−∞ ≤ r ≤ ∞,

Sk(w) = {
∑

r

δ(w − rw0)}Vk(w) (4)

Here, the excitation pulses are assumed to be placed at

regular interval of T for ease of analysis. Now consid-

ering only the harmonics of the excitation signal in the

kth band (assuming 2K+1 harmonics, and wk ≈ mw0),

we have,

ek(t) = exp(−j(m−K)w0t)+...+exp(−j(m−1)w0t)+

exp(−jmw0t) + exp(−j(m+ 1)w0t) + ...+

exp(−j(m+K)w0t) (5)

ek(t) = exp(−jmw0t)(1+2(cos(w0t)+cos(2w0t)+...

+ cos(Kw0t))) (6)

The envelope is defined by the term 1+2(cos(w0t)+
cos(2w0t) + ... + cos(Kw0t)), and it is easy to no-

tice that the excitation envelope has local maxima at

t = rT ;−∞ ≤ r ≤ ∞. Now consider the weighting

introduced by the vocal tract on the envelope. The

envelope may be approximated by

Ck(t) ≈ a0 + 2(a1cos(w0t) + a2cos(2w0t) + ...+

aKcos(Kw0t)) (7)

ai ≥ 0. Extracting the envelope information from each

band of the signal, we have a representation of the

excitation signal in each band. The source excitation
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Fig. 3. Extracting the envelope from each sub-band

pattern of speech is computed as the sum of individual

excitation patterns obtained from each sub-band.

C(t) =
N∑

k=1

Ck(t) (8)

The algorithm is explained through a block diagram

shown in Fig. 2. Speech is decomposed into sub-bands

and the envelope information in each band is obtained.

Sub-band envelope is extracted by considering the peak

values between successive zero-crossings in the sub-

band speech signal. These points are interpolated using

cubic spline interpolation to obtain a smoothed sub-

band temporal envelope. Extraction of sub-band temporal

envelope is shown as a block diagram in Fig 3.

III. IMPLEMENTATION

Before starting the process, first we identify the voiced

and unvoiced parts of the speech signal, and take the

voiced portion for detecting pitch marks or GCI. Then,

a linear phase FIR filter bank with 80 bands is designed

using filter order of 64. Then the speech signal is filtered

with first 10 low frequency bands since the other bands

are found not to contribute much to the robustness of

the GCI estimate. Then envelop of local maxima of the

10 filtered signals is taken and the unvoiced regions are

assigned to zero to prevent detection of pitch in unvoiced

regions. Then the envelope signal is considered frame by

frame for further analysis. Transitions in each sub-band

signal are then estimated, and only those bands having

higher transition rate are considered to find the GCI,

and this method corresponds to the dynamic weighting

as indicated in Fig. 2. The processed dynamic weighted

signal is the estimated excitation pattern.

On the processed dynamic weighted signal, the local

maxima are found which are the contenders for the

pitch marks. Now, these contenders include many extra

detections other than the potential pitch marks.

The refinement of the contenders for pitch marks

is now carried out by exploiting the property of local

periodicity and relative amplitudes of the successive
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Fig. 4. Extraction of GCI from clean speech (the black curve is the

Processed dynamic weighted signal; the blue curves are the envelope

signals selected for addition; red peaks are the estimated GCI’s; the

green curve is the EGG signal; cyan peaks are the GCI’s detected by

EGG signal)
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Fig. 5. Extraction of GCI from noisy signal with SNR=0 dB. Color

conventions are same as Fig. 4

local maximas. The local pitch period is found by consid-

ering the average time-differences between consecutive

maximas (which lie within the range of minimum and

maximum possible pitch period) around the point of

consideration.
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Fig. 6. Extraction of instants of minimum excitation energy from

clean speech signal (The black curve is the speech signal; the magenta

curve is the Processed dynamic weighted signal; blue peaks are the

estimated GCI’s; the green curve is the EGG signal; cyan peaks

are the GCI’s detected by EGG signal; red peaks are the minimum

excitation points )

IV. FINDING INSTANTS OF MINIMUM EXCITATION

ENERGY IN VOICED SPEECH

The instants of minimum excitation energy in voiced

speech are important as they represent the time instants

at which the glottis is completely open and the excitation

energy is minimum. These instants are used in unit-

concatenation for MILE-TTS synthesis system. This

minimum excitation energy is useful as any concatena-

tion at a higher excitation energy region in voiced speech

is prone to degradation in naturalness of the output

speech and the minimum excitation instants do not

pose such challenges. Experiments on the concatenation

based on the instants of minimum excitation energy is

implemented in MILE-TTS [11]. A minimum excitation

instant is estimated from the excitation pattern as the

instant before the estimated GCI, where the derivative of

the envelope is minimum, or it can also be considered

as the instant of zero-crossing in speech signal occurring

before the estimated GCI. The instants of minimum

excitation energy and their detections are shown in Fig.

6.

V. EVALUATION OF GCI ACCURACY

The GCI is detected from the estimate of the excitation

signal using the proposed analysis of the speech signal.

From Fig. 4, we may see that the peak of the estimated

excitation pattern corresponds to GCI. Evaluation of

the accuracy of GCI detection is carried out on the

TABLE I

COMPARISON OF GCI DETECTION ACCURACY AND EXTRA

DETECTIONS ON CMU ARCTIC DATABASE WITHOUT NOISE

Method Detection accuracy in % Extra detections in %

Proposed 92.8% 1.73%

DYPSA 96.7% 2.18%

CMU-ARCTIC database. The recordings consist of the

EGG signal along with the corresponding speech signal

sampled at the rate of 32 kHz. First, the ground truth for

glottal closure instants is collected from the recorded

EGG signal. The accuracy is reported based on the

deviation of the estimated GCI position with respect to

the reference obtained from the EGG signal. Generally,

a deviation of 1 millisecond is taken as a safe bet to

consider it to be accurate. Extra detection indicates the

number of extra GCIs over those detected using the EGG

signal.

VI. RESULTS

Table I compares the detection accuracy (deviation

within 1ms duration w.r.t. GCI from EGG signal), per-

centage of extra detections using our SBE method and

DYPSA algorithm on the clean database. It is observed

from Table I that SBE method has comparable accuracy

with that of DYPSA on the clean speech database. Fig.

7 compares the accuracy and extra detections of SBE

and DYPSA algorithm for various values of signal to

noise ratios. It is observed that our method outperforms

DYPSA algorithm as the SNR decreases. Fig. 8 shows

the histogram of number of estimated GCI’s for the CMU

ARCTIC database for deviation within 1 ms, between 1-

2 ms, 2-3 ms, and above 3 ms by four bins. It is seen

from Fig. 8 that when noise is added, most of the GCI’s

are concentrated within 64 samples or 2 ms duration

using our proposed method, whereas many GCIs have

deviation greater than 2 ms using DYPSA algorithm.

VII. DISCUSSION

The proposed SBE method makes few assumptions

to estimate reliable epoch information. First, it does not

depend upon the explicit pitch information; however, the

pitch information is estimated from the excitation pattern

to prune the spurious GCIs. Second, the algorithm is sim-

ple and cost effective for real time implementation, with

few filtering operations and interpolation. The proposed

algorithm is compared with DYPSA for both noisy and

clean speech and the results show that the SBE algorithm

outperforms DYPSA for noisy speech. This shows that

the algorithm is robust and may be employed in real time
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(b) Results on noisy speech with SNR=0 dB

Fig. 8. Histograms showing the no of detected GCIs vs the deviation

from those detected from EGG. 32 samples are equivalent to 1 ms

scenario. Also, the SBE algorithm gives us the flexibility

to estimate the instant of minimum excitation energy

which is not discussed here. The algorithm is employed

for pitch synchronous unit concatenation [11] in MILE-

TTS.

VIII. CONCLUSION

We have proposed a new method to estimate the glottal

closure instants. The method estimates the glottal exci-

tation pattern to arrive at the glottal closure instants. The

excitation pattern obtained also gives a handle to estimate

instants of minimum excitation, which find application

in speech unit concatenation. The results of the proposed

method are promising and the GCI estimation is robust

to noise.

REFERENCES

[1] A.Kounoudes, P. A Naylor, and M. Brookes, “The DYPSA

algorithm for estimation of glottal closure instants in voiced

speech,” IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 2007, pp. I-349-I-352.

[2] T.V. Ananthapadmanabha, B. Yegnarayana, “Epoch Extraction

from Linear Prediction Residual for Identification of Closed

Glottis,” IEEE Trans. on ASSP, vol. 27, no. 4, 1979, pp. 309–318.

[3] N. Sturmel, C. d’Alessandro, Francois Rigaud, “Glottal Closure

Instant Detection using Lines of Maximum Amplitudes of the

Wavelet Transform,” Proc. Intl. Conf. on Audio and Speech

Signal Processing, ICASSP, 2009, pp. 4517–4520.

[4] R. Smits and B. Yegnanarayana, “Determination of instants of

significant excitation in speech using group delay function,”

IEEE Transactions on Speech and Audio Processing, vol. 3,

1995, pp. 325-333.

[5] K. Gopalan,“Pitch Estimation using a Modulation Model of

Speech,” ICSP 2000, pp. 786–791.

[6] S.C. Sekhar, S. Pilli, L. C, and T.V. Sreenivas, “Novel Auditory

Motivated Subband Temporal Envelope Based Fundamental Fre-

quency Estimation Algorithm,” 14th European Signal Processing

Conference (EUSIPCO 2006), Florence, Italy, September 4-8,

2006.

[7] M.D. Plumpe, T.F. Quatieri, and D. a Reynolds, ”Modeling

of the glottal flow derivative waveform with application to

speaker identification,” IEEE Transactions on Speech and Audio

Processing, vol. 7, 1999, pp. 569-586.

[8] A. Potamianos and P. Maragos, ”Speech analysis and synthesis

using an AMFM modulation model,” Speech Communication,

vol. 28, July 1999, pp. 195-209.

[9] D.G. Childers and C.K. Lee, ”Vocal quality factors: analysis,

synthesis, and perception,” The Journal of the Acoustical Society

of America, vol. 90, Nov. 1991, pp. 2394-410.

[10] G. Fant, “Acoustic Theory of Speech Production,” The Hague,

The Netherlands: Mouton, 1960.

[11] V.R. Lakkavalli, Arulmozhi. P, and A.G. Ramakrishnan, ”Conti-

nuity Metric for Unit Selection based Text-to-Speech Synthesis,”

IEEE International Conference On Signal Processing and Com-

munications, 2010.


