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Abstract

Evoked potentials (EP) are electrical responses of the central nervous system to sensory
stimuli applied in a controlled manner. The stimuli are applied in the form of auditory clicks,
visual patterns or electrical pulses, depending upon the neural pathway being tested. The
responses are essentially electrical potential differences and are picked up at different identified
locations on the scalp using surface electrodes. The amplitudes, occurrence times and durations
of the various characteristic components of the EP’s convey diagnostically important information
about the corresponding sensory neural pathway. Based on the analysis time segment chosen
from the time of application of the stimulus, evoked responses are classified as short, middle
and long latency responses. EP occurs as an additive process to the natural brain activity
known as electroencephalogram (EEG) and other physiological noise. The major problem in the
acquisition of evoked potentials lies in their unfavourable signal-to-noise ratio (SNR). Usually,
stimulus-synchronous averaging of a few hundreds to few thousands of responses to identical
stimuli is carried out to increase the SNR. This is effective, since the stimulus induced changes
in the EEG are negligible. Various attempts have been made by different research groups either
to reduce the number of sweeps to be averaged to obtain a meaningful signal in order to reduce
the recording time or to recover the information lost by averaging.

In this thesis, we address the problem of estimation of brainstem and middle latency
auditory evoked potentials, both of which are cortical responses of the brain. We propose meth-
ods for enhancing the averaged BSAEP signal, consequently reducing the number of sweeps
required to obtain an acceptable signal to noise ratio. Although AEP can be considered station-
ary across an ensemble, it is non-stationary within a sweep, during which time, the frequency
characteristics of the various temporal components vary. We use multiresolution techniques be-
cause wavelets provide a basis matched to a large class of non-stationary signals, and are by far

superior to conventional approaches from the point of view of noise reduction. A wavelet basis
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is localized in both time and frequency, and so can effectively track signal non-stationarities.
The multiresolution structure of wavelets allows one to zoom in on local signal behaviour to
analyze signal details, or zoom out to get a global view of the signal. The techniques are aimed
at reducing the number of sweeps to be averaged to achieve a good SNR.

In the first approach, an attempt is made to improve the SNR of the ensemble average
and enhance the significant components of the signal, namely, the peaks and valleys by using
spatially selective Gaussian filtering in the wavelet domain. When the signal is corrupted by
correlated noise that cannot be separated in either frequency or time domain, a signal based
local filtering of the noisy signal in the transform domain is a promising solution for improving
the balance between detail preservation and noise attenuation. We have used a nonlinear filter-
ing method in the wavelet domain for enhancement of evoked potentials corrupted by stationary
correlated noise. In the absence of knowledge about the noise statistics, a transform domain
filtering, which takes local statistics into consideration rather than the global signal structure,
is a better choice. It adapts the spatially selective filtering technique for EP signal enhance-
ment. We decompose the signal employing an undecimated nonorthogonal discrete wavelet
transform (UDWT), implemented using & trous algorithm. Inter-scale correlation information
in the UDWT domain has been used for edge detection, since a sharp transition in the signal
gives rise to maxima in several adjacent scales.

Edges are present at positions where there are maxima in the non-orthogonal wavelet
transform at several adjacent scales. This property is used to identify and enhance significant
component regions of the EP signal. Instead of retaining just the identified edges, and masking
out the rest of the wavelet coefficients, a Gaussian shrinkage function is placed at each identified
edge, scaling the wavelet coefficients around the edges. This ensures retention of not only
the signal peak information, but also the surrounding information. To distinguish and remove
transient and spurious noise, the variance of the wavelet coefficients in a window region around
the identified transition region is made use of. This filter entails component enhancement, while
avoiding visual artifacts around the edges. The filter may be viewed as a low-pass filter that
passes selected high frequency data. Results are presented for both simulated and actual AEP
signals.

In the second approach, we use a combination of two different wavelet methods for

signal estimation, namely, a hierarchical Wiener filtering which is a parametric approach, and a
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thresholding method such as hard/soft thresholding which is a non-parametric approach, both
in the UDWT domain. Results obtained using all the proposed methods are compared using
objective criteria, such as, mean square error, correlation coefficient, and the accuracy of the
latencies measured from the estimated signals.

In yet another approach, a model based estimator is used. We use neural network filters,
which possess built in nonlinear processing elements. A radial basis function neural network is
utilised as a model for the EP signal to account for the nonlinear nature of the signal. Gaussian
kernels are used to model the signal. Radial basis function (RBF) network can be considered
as an amalgamation of data modeling in high-dimensional space and artificial neural networks.
The input first undergoes a nonlinear transformation via the basis functions in the hidden layer;
the responses of the basis functions are then linearly combined to give the network output. The
choice of the number of basis functions in the hidden layer and their parameters is a key problem
in designing an RBF network. Deriving the kernel parameters from the signal can improve both
the effectiveness of the model and tracking property of the network. In the present work, the
Gaussian RBF network parameters are deduced from the wavelet transform of the noisy signal
to enable the network to learn the functional form of the underlying EP signal more effectively.
Several computer simulations have been carried out to examine the performance of the proposed
technique both for simulated and actual data. Results are presented which demonstrate the
superiority of using signal knowledge in deciding the network parameters to a fixed parameter
network. The latencies of the peak components are more consistent in the filtered responses

than in the original ones.
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Chapter 1

Introduction

1.1 Evoked Potentials

Ever since Hans Berger’s discovery, that the electrical activity of the brain can be measured
and recorded via surface electrodes mounted on the scalp, there has been major interest in
the relationship between such recordings and brain fucntion. The first recordings conducted by
Berger and his followers [7] were concerned with the spontaneous electrical activity of the brain,
appearing in the form of rhythmic voltage oscillations and are termed electroencephalogram
(EEG). Subsequent research observed brain activity time-locked to specific external stimuli
applied to a subject. In the last thirty years, the study of the electrical activity of the brain
related to a well defined sensory stimulus or to the accomplishment of a specific task has become
more and more widespread, aiming at a better understanding of the functioning of the central
and peripheral nervous system and the human behavior.

The application of a sensory stimulus to the peripheral nervous system results in
changes in the on-going activity of the central nervous system, which appear as additive super-
position to the background EEG activity. These responses are known as evoked potentials (EP)
and are commonly used for the clinical examination of perception. These responses are related
to the sensory processing of stimuli. The sensory stimuli are applied in the form of auditory
clicks, visual patterns or electrical pulses depending on the neural pathway being tested. The
responses which are essentially electrical potential differences, are picked at different identified
locations on the scalp using surface electrodes. Analysis of these signals can provide information

about the integrity of the neural pathways, especially those in the spinal cord and the brain.
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They can indicate the presence of disease or degeneration, and can help determine the location
of nerve lesions. The analysis of evoked potentials has had a major impact on neurophysiological
research, clinical neurology and neurosuregery in the last few years. There are three major EP

modalities, classified based on the stimulus applied, that are used in regular clinical practice:

e Visual evoked potentials (VEP) are used to diagnose visual losses due to optic nerve
damage, to monitor multiple sclerosis and to localize the cause of a visual field defect not

explained by lesions seen on CT or MRI.

e Auditory evoked potentials (AEP) are used to evaluate brainstem function,to detect lesions
in the auditory pathway, and to determine the type and degree of hearing problems. They
can distinguish pathology of the auditory nerve from that of the auditory pathways within
the brainstem. They may also be used to monitor brainstem function during surgery and

to determine brain death,

e Somatosensory evoked potentials (SEP) record transmission of nerve impulses from the
limbs to the brain, and can be used to diagnose nerve damage or degeneration within the
spinal cord or nerve roots from multiple sclerosis, trauma, or other degenerative diseases.
When combined with results from a nerve conduction velocity test, which measures nerve
function in the extremities, they can also be used to distinguish central from peripheral

nerve disorders.

Based on the analysis time segment chosen from the time of application of stimulus,
an evoked response can broadly be classified as early, middle or long latency response. Short
latency responses originate in the subcortical region or in the brainstem, while the middle and
long latency responses have well defined cortical origin. The peaks and troughs that appear
in the EP waveform are called ”components”. The latency of a component is normally taken
as the time, in milliseconds, from the time the stimulus is delivered, to a peak or trough of a
component. The amplitudes of the various peaks in a response may be measured either with
respect to the preceding peak of opposite polarity or a baseline. The characteristic response
and the individual component morphology are different for responses of different modalities.
EP components are recognized by their polarity and latency. The components occuring within
the first 100 milliseconds after the stimulus can be attributed to activity in localized anatomical

structures along known sensory pathways. The amplitudes and latencies of different components
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occurring within this duration convey diagnostically important information on the sensory path-
ways. Later components arise from more dispersed cortical sources [11] and are analysed to
understand higher cognitive processes such as attention, perception, memory and learning. They
are commonly referred to as, event related potentials (ERP).

The EPs are of very small amplitude, in the range of micro volts. Like many biolog-
ical signals, the measurement of EP is corrupted by noise from background activities. A main
source of noise is the spontaneous electroencephalogram generated in the brain. The amplitude
of this noise is much higher than that of the EP response. Thus, the signal-to-noise ratio (SNR)
of evoked signals is very low. Hence, to obtain an estimate of the buried signal, the common ap-
proach is to obtain an ensemble of many EP responses time locked to identical stimuli and then
compute an average of the ensemble, commonly known as ensemble average (EA). Normally,
several hundreds or thousands of epochs/sweeps are averaged before a satisfactory waveform is
obtained, on which measurements can be made. Our objective is to obtain a satisfactory signal
estimate with reduced number of sweeps in an ensemble.

We restrict our attention to a subclass of EPs, namely, auditory evoked potentials,
which include both short and middle latency responses. Short latency auditory responses have
a number of both high and low frequency components in the analysis time length. These signals
are the most complex with more components in comparison with the other modalities of EPs,
have very low SNR and hence are better suited to study any filtering or estimation algorithm.
Middle latency responses can also be seen as a more general evoked response model since they
contain typical characteristics of many types of evoked potentials The performance of any es-
timation algorithm on these AEPs can give an indication of their potential to deal with other
evoked signals. Henceforth, we will use the term EP to indicate both brain stem and middle
latency auditory evoked potentials. In the following section, we briefly explain the instrumen-
tation required to record these EPs and the different diagnostically important components in

them.

1.2 Introduction to auditory evoked potentials

Auditory evoked potentials are very small (2-10 microvolts for cortical AEPs to much
less than 1 microvolt for the deeper brainstem structures) electrical potentials originating from

structures within the brain. AEP signals are picked up in the far field from the cortex by
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ELECTRODE PLACEMINT & CONTACT IMPEDANCE ...

Active (+): Vertex Cz*
Reference (-): Earlobe

Ground (E): Forehead

Impedance: 5K ohm (Max) or less

* International 10-20 System

Figure 1.1: Recording setup for auditory evoked potentials

recording differentially with the active electrode placed on the vertex (Cz) and the reference
electrode at the mastoid bone or ear lobe. Figure 1.1 shows the recording montage for AEP
signals. They are recorded from the scalp in response to auditory stimuli, such as different tones
and speech sounds. Both needle and surface electrodes can be used for recording AEPs. Both
short and middle latency responses are used in assessing the auditory function. However, short
latency responses, also called brainstem auditory evoked potentials (BSAEP), are more stable
and are used to distinguish between conductive and sensory hearing loss.

A normal BSAEP signal and a typical middle latency response (MLR) are shown
in Fig. 1.2 (a) and (b), respectively, with the significant components indicated. About seven
peaks (designated as waves I - VII) are commonly identified in the BSAEP signals. Of these, the
initial five peaks are of clinical interest. The succeeding peaks VI and VII are quite variable and
therefore, are not used clinically. The troughs immediately following the peaks are designated
by the same numeral followed by a prime mark, e.g. the trough of wave I is designated as I'.

Each peak is considered to reflect a different portion of the auditory pathway [62]. It is the
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0 2 4 6 8 10 12
Time in ms

(a)
Figure 1.2: Typical auditory evoked potential signals (a) BSAEP (b) MLR

fifth positive potential or wave V occurring at about 5.7 ms and the following negative going
deflection, that provide the best means of estimating the auditory threshold. Typical latency
values of the components of a normal BSAEP are given in Table 1.1. Waves I — V are seen
in most normal individuals. Occasionally, wave IV may form a IV-V wave complex in normal
subjects. In such a case, wave IV does not indicate an abnomality. Wave II can be difficult
to distinguish in some normal subjects. By changing the stimulus intensity, rate and phase,
wave II can be identified in most normal subjects. It is abnormal to have only the wave I
present and not the succeeding ones. Similarly, presence of waves I and III with waves IV and
V absent, is also abnormal. The BSAEP abnormalities include absence of wave III and V and
prolonged I-I1II inter-peak latency. Since the normal range of distribution of peak amplitudes
and latencies is well specified, and since different diseases of the auditory pathway introduce
predictable distortions in these parameters [13], the BSAEP has considerable utility in clinical
diagnosis.

The individual components of MLR have been labelled Ny, Py, N,, P, and P,. The
Ny, Py and N, components overlap in latency. The N,/P, complex provides the most stable

waveform, which is used in general to estimate the response threshold.

1.3 Issues in EP research

The major problem in the analysis of EP signals lies in the unfavourable signal-to-noise
ratio (SNR), which characterises the stimulus evoked signal that is superimposed on the back-

ground EEG activity and other physiological noise. Moreover, neither the EP signal nor the
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Table 1.1: Typical latency values of the components of normal BSAEP and MLR

Component Wave || Latency (ms) Component Wave | Latency (ms)
I 1.7 £ 0.15 No 8- 10
11 2.8 +0.17 Py 10-13
111 3.9 +0.19 N, 16 - 30
v 5.1 +0.24 P, 30 - 45
A% 5.7 &+ 0.25 Ny 40 - 60
VI 7.3 £ 0.29 Py 55 - 80

background noise is limited to narrow frequency ranges. Rather, they overlap extensively. Spe-
cially, component latencies are harder to measure if the SNR is low. This necessitates the use
of some type of averaging or filtering to increase the SNR. Hence, averaging of few hundreds
or thousands of responses to identical stimuli is required in order to obtain a reasonable signal
estimate on which measurements can be made. In commercially available equipment, the in-
stantaneous average up to the current response is displayed in real time. Figure 1.3 presents
the ensemble average for different ensemble lengths for the case of a real BSAEP signal.
Similarly, in Fig. 1.4, the ensemble averages of different number of MLR sweeps
are shown. It can be observed from these figures, that the characteristic components that are
not visible in shorter ensemble lengths become visible with longer ensemble lengths and also the
amount of noise comes down facilitating mesaurements to be made on the signal. Generally, two
to three repetitions of the entire recording are done and the estimated signals are superimposed
to check for reproducibility. This can often take up to several minutes. However, it is highly
desirable to have an evoked potential system with significantly reduced acquisition times and

also resulting in a smoother signal with fewer number of sweeps. The following are the reasons:

e Longer recording times lasting few minutes may result in undue motion artifact, especially

in infant patients.
e In critical-care or operating room applications, short measurement times are requisite.

e The assumption of stationarity of both evoked response and the noise is more accurate
when a small number of sweeps is averaged i.e. the statistics of the observations are

unchanged only in short durations.

e To avoid habituation and refractoriness.



CHAPTER 1. INTRODUCTION 7

0.4 T T T T T T
0.2 @ I

-0.2t I I I I ! ! =

0.3F T T T T T T =
0.2 (b) Il
0.1 r

-0.1t I I I I ! ! =

0.2 (©) 1
0.1 !

01 I I I I I I
0

0.1f (d)

0 2 4 6 8 10 12
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Hence, with progress in advanced signal processing methods, the focus of evoked potential
research has been on improving the SNR of ensemble averages with fewer number of EP sweeps,
resulting in reduction in experimental time. The work presented in this thesis primarily deals
with this issue.

Development of processing and analysis methods which look at each single response
separately, has become another major area of work in EP research. In studies related to higher
cognitive processes, components occurring later than 200 ms after the stimulus application are
investigated. There is evidence that such processes could change from trial to trial [55]. A
review of methods for single trial analysis may be found in [4]. In the following section, we

present a brief overview of the methods used for EP estimation.

1.4 Overview of EP estimation methods

Dawson was the first to introduce methods of estimating evoked potentials from the
background EEG, initially by means of photographic superimposition [19], and later by the
technique of averaging [20]. Due to the development of advanced methods of signal processing
that allow one to enhance information in a classical case of low SNR values, many researchers
have been working on improving the SNR of either individual EP sweeps or the average of fewer
sweeps to speed up the measurement time. The estimation methods may broadly be classified as
averaging methods, filtering methods, model based approaches and wavelet based approaches.

These are explained in the following subsections.

1.4.1 Averaging methods

One very widely used technique for EP recording is signal averaging, which suppresses brain
activity unrelated to the stimulus. Signal averaging is based on the assumption that EP is a
deterministic signal embedded in spontaneous brain activity, which is the additive noise in this
case. The 'noise’ is assumed to be zero-mean, uncorrelated with the signal and also uncorrelated

from sweep to sweep. The additive signal model for the i-th EP sweep may be written as follows:
zi(n) = s(n) + vi(n) 1=1,2,---,P; 0<n<N (1.1)

where z;(n) is the i'® observed sweep, s(n) the underlying signal, v;(n) the noise associated

with the ith sweep, and n is the time index. The average over a set of P observations is called
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the ensemble average (EA) of P sweeps and is used to estimate the underlying signal §(n),

decreasing the noise power proportional to 1/P [4]. Ensemble averaging may be represented as,

P
5(n) = %Zwi(n) (1.2)
=1

One serious problem with the ensemble average is the inordinately large number of sweeps
required to obtain a suitable EP estimate. For example, in the case of brainstem auditory EP
measurements, several thousands of sweeps must be averaged. This measurement takes a few
minutes during which time, there may be undue motion artifact. Although a large P would
be desirable for adequate noise suppression, P needs to be kept small to keep experimental
conditions roughly constant. It is therefore highly desirable to have an evoked potential system
that can significantly reduce the acquisition time. Such a system could be especially useful
in critical-care or operating room applications where short measurement times are requisite.
Moreover, conventional ensemble averaging is typically used when the noise variance remains
the same during the entire recording.

A few variants of ensemble averaging have been attempted to account for variations
in signal or noise power in a session. One of them is weighted averaging, in which the weighting
of each waveform is performed in relation to its noise content. To track dynamic changes in the
signal component, moving window averaging (MWA) is performed, where a constant number of
the most recent sweeps / observations are averaged [38]. In certain situations, the noise variance
may vary considerably from one sweep to another. The method of weighted averaging proposed
by [50] et al. assumes that the statistical properties of the noise change from sweep to sweep,
while the evoked signal remains unchanged in each sweep. If the variance of the noise changes
as a function of time, then they showed that a weighted averaging can improve the SNR to a

large extent. This scheme can be represented as,

P
§(n) = szxz(n) (1.3)
i=1

where w; is chosen such that the sweeps with low noise activity are weighted more heavily
than the sweeps with high noise activity. The noise activity is estimated from the variance of
individual sweeps. Exponentially weighted averager (EWA) is another averager with a forgetting
factor, in which the most recent sweep is weighted the highest. The MWA may be considered as
a special case of EWA in which the forgetting factor is a constant. Selective averaging involves

the monitoring of the noise level of each sweep to eliminate the outliers [67]. The observations
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with a noise level exceeding a pre-determined threshold are excluded from ensemble averaging.
This approach is feasible as long as the noise level remains almost constant in all the observations
except a few. The exclusion approach will not perform satisfactorily when large variations occur
in the noise level.

A way to handle such non-stationary noise situations is to assume that the noise
variance remains constant within each sweep, although it changes from sweep to sweep. A
few non-parametric approaches have been attempted in such cases. In a few other methods, the
weights are determined by optimizing a certain criterion for SNR improvement in the case of non-
stationary noise. For example, maximum likelihood estimation of the signal results in weights
that are inversely proportional to the noise variance [2]. In this approach, the noise variance is
a parameter which is estimated prior to averaging. In another technique proposed by [10], the
weights are determined such that the SNR of the resulting ensemble average is maximized. The
weights are determined by the first eigenvector corresponding to a correlation coefficient, which
is obtained by correlating the individual waveforms to the conventional average. For the case
when the SNR is low, it has been suggested by [44] that the noise variance can be approximated
by the variance of the observed data. In the weighted averaging approach proposed by Davila
[18], an initial ensemble average is formed and the correlation coefficient of the incoming sweeps
with the computed EA is used to fix the weights of the sweeps used in updating the ensemble

average.

1.4.2 Linear filtering methods

The most common signal processing task is noise filtration. This is an essential part of
any signal processing system, especially when the final product is used for visual inspection or
for human interpretation. In most cases, filtering is the process of estimating a signal degraded
by additive noise. A number of filtering and smoothing procedures have been proposed for
estimating EP signals. Among them are linear processing techniques, whose mathematical
simplicity and the existence of a unifying theory make their design and implementation easy.
They exploit the signal’s time structure which is not used in averaging techniques. Their common
goal is to reduce noise further than possible with averaging. In all filtering or estimation methods,

either explicit or implicit assumptions about the underlying signals are employed. The most
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common assumptions are about the second order statistics of the evoked potential and the on-
going EEG. The difference between the various algorithms is in the techniques used to design
the optimal filter: either off-line from all the measurements or iteratively from a subgroup of
measurements.

The filter most widely applied in EP processing is the Wiener filter, also known
as minimum mean square error filter. It is a powerful tool for solving such problems. The
idea of applying Wiener theory of optimal filtering to the estimation of evoked potentials was
first reported by Walter [69] and later by Doyle [26]. Thereafter, it has been widely studied
in the literature. If the signal is stationary and a priori knowledge about signal and noise
can be obtained, then this technique will obtain a good estimation of the signal. The spectral
properties of the band-limited signal are used in designing the filter. This information is obtained
a posteriori from the averaged waveform. The design involves the computation of the spectrum
for the averaged data to estimate the signal power spectrum and the average of the spectra from
individual realizations [22] to estimate the noise power spectrum. The filter transfer function
uses both of these estimated spectra and hence is called a posteriori Wiener filtering (APWF).

There has been a controversy over APWF with its rather unrealistic model of the
EP as a stationary random process [4]. To overcome this limitation, time-varying filter was
developed in which the spectral estimation is performed for successive intervals of the observed
data. de Weerd [21] was the first to use time-varying filters for EP estimation. He divided
the overall frequency band into many subbands, and designed a Wiener like filter in every
subband. In doing so, the filter becomes better suited for processing of non-stationary data.
The application of time varying a posteriori Wiener filtering to averaged data with low SNR
has been found to reduce the variance of the signal estimate at the expense of an increased bias.
However, a close look at this method will reveal a defect in that the narrower the width of the
subband, the longer the filter response lasts, resulting in waveform overlap in the time-domain
to a great extent. A similar phenomenon will happen in the frequency domain if we design the
filters segment-by-segment in the time-domain.

McGillem and his group have extensively studied the Wiener filtering approaches in the
time domain [4, 55, 73]. They have proposed both time invariant and time varying versions
of the filters for EP estimation. The time invariant filter [55] is viewed as a linear operator,

which projects the observations into the signal space. Their method involves estimation of
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autocorrelation matrices of both the signal and the noise from several independent measurements
of EP’s which are then used in the optimal filter design. The time-varying filter model assumes
the signal to be random and to consist of several components, the amplitudes and latencies
of which are assumed to be random variables that may change within certain limits from one
repetition of the experiment to the next. The design of the optimum filter is based on the
covariance matrices of the signal and the measured data. The covariance matrix of the data is
estimated from the measured observations. They report that the time-varying filter performs
better than the time-invariant one, since the filter adjusts to the non-stationary nature of the
signal and the noise. Although this filter is designed to be applied on single sweeps, it requires a
priori knowledge of the signal and the noise. It provides a more powerful filtering than does the
time-invariant filter. Improvement of the SNR of averaged data has been achieved by [29] et al
by exploiting the fact that adjacent samples in the average are correlated. They have proposed
an optimal filter which is applied on the averaged response to enhance its SNR and does not
require a priori knowledge of the signal. The linear filtering approaches require stationarity of

both noise and signal. Moreover, these methods implicitly assume the shape of the EP.

1.4.3 Adaptive filtering methods

While the above mentioned techniques rely on some sort of a priori knowledge of signal and noise,
adaptive filters can automatically adjust their parameters based on the input signal without
invoking any assumptions or a priori spectral information. Adaptive filters are self- designing
filters which allow the filter to learn the initial input statistics and to track them if they are
time varying. Adaptive filtering techniques are considered to be most appropriate to establish a
functional relation between input and output, which is unknown due to incomplete knowledge of
the signal and noise processes, and to account for the eventual dynamic variations of the signal
shape during a recording session. The use of adaptive filtering in the analysis of EPs has been
studied extensively during the last ten years.

A lot of attention has been paid to the use of the LMS algorithm in the filtering of
single evoked responses. Usually, the measured single sweep is selected as the primary input
and various other choices are proposed for the reference input. The LMS algorithm updates the
parameters in the direction of the reference input. If the reference input is fixed, the iterative

method can serve at most as a regularization method, i.e the mean squared error diminishes in
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the direction that is determined by the reference input vector. In some cases, when the reference
input changes during the iteration, true adaptation can also be achieved.

Laguna et al. [45] designed an adaptive impulse-correlated filter for the enhancement
of somatosensory evoked potentials. The filter has two inputs; the primary input is the incoming
recurrence of the EP signal, and the reference input is a unit impulse sequence synchronized
with the beginning of each recurrence. If the variability of the signal is small and the SNR of
recurrence is not too low, this method can obtain a satisfactory signal estimation. When the
SNR of a recurrence is small, as is usually the case in EP measurements, it will take much
longer to converge. Thakor [65] proposed a method of adaptive filtering using one sweep as
primary input and the following sweep as the reference input. As the SNR of individual sweeps
is very small, a very poor reference signal is being used for the adaptive filter. Therefore, the
SNR at the output of the filter will hardly be improved, and the distortion of the signal will
also be significant. Chan [12] et al. have presented a method using adaptive line enhancement
technique to detect and track BSAEP signals. In order to make an optimal and rapid estimation
of the signal corrupted with noise, they used the ensemble average of the first few sweeps as the
reference input.

Adaptive implementation of the optimal time-varying filter is reported by Yu [74]. For
each data point, they used a bank of filters whose weights are adaptively changed. They proposed
a reduced order filter structure using which the computational complexity of the time- varying
filter is reduced even while accounting for the non-stationary structure of the EP signal. Their
data-adaptive scheme is shown to be asymptotically converging to the optimal time varying filter
solution. The method is computationally intensive. A multireference adaptive noise cancellation
technique is applied in [57] to improve the SNR of somatosensory evoked potential signals
by eliminating predominant myoelectric interference in those signals. The model has multiple
reference channels to model all the active sources contributing to the myoelectric interference in
the observed signal. The model parameters are estimated adaptively using the adaptive noise

cancellation principles.

1.4.4 Model based approaches

Another approach to extract EP from back ground noise is to obtain parametric models for the

EP and noise and use this information to enhance the EP. Many of the linear models model the
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EP as an autoregressive (AR) or autoregressive moving average (ARMA) process [37] [73]. The
spontaneous EEG is modeled as an AR process, on which the evoked potential is superimposed
[44]. The AR coefficients are calculated from the prestimulus EEG and are assumed to remain
constant throughout the post-stimulus epoch. The characteristics of the EP are derived from the
average waveform. This way, the a priori information about the stimulus time-point, the average
EP response and the ongoing EEG activity are all incorporated in the model. Spreckelsen and
Bromm [61] have proposed a method of estimating single evoked potentials using parametric
modeling and Kalman filtering, They model the background EEG and the EP using the pre-
stimulus information and ensemble average, respectively. Using this model information as the
input to a Kalman filter, they have achieved significant SNR gains. The key to the successful
operation of this technique is the initial qualitative estimate of the EP. In another work [51],
the estimated AR coefficients are adaptively modified for every sweep to account for the non-
stationary noise. Their method utilizes the pre-stimulus data and employs modern adaptive
filter algorithms to produce significant reduction in noise variance in BSAEP signals.

Thakor et al. [68] have used function approximation methods. Their model takes into
account both the periodic nature of the response as well as its band-limited nature. They assume
the noise free evoked response as a quasi-periodic signal and represented it as a discrete dynamic
Fourier Series where the Fourier coefficients are time-varying. An adaptive LMS algorithm is
used to estlimate the coefficients. The estimator is designed to track spectral variation across
trials. However, in the case of real data where both EP signal and EEG noise have overlapped
frequency bands, the method has limited application. This is because, one of the assumptions
for proposing the estimator is that the noise is uncorrelated with the signal as well as with
every component of the Fourier series. In [36], event related potentials (ERP) are estimated
using Prony’s method. In their approach, they assumed the ERP as a sum of weighted damped
sinusoid basis functions. The noise spectrum to be used for the parameter estimation is derived
from the pre-stimulus data. The method has been tested to estimate the event related signal,
which does not have many components to be detected. More recently, radial basis functions are
used as a model for the EP signal to account for the nonlinear nature of the signal by Fung et

al [28]. They used a fixed parameter Gaussian kernel to model the EP.
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1.4.5 Wavelet based methods

A few wavelet transform based methods have been used basically to analyze the time varying
structure of EP signals [5, 6, 66]. Thakor et al. [68] used multiresolution wavelet analysis
of the EP signals using orthogonal wavelets to characterize complex changes in their shape
during neurological injury. They were able to deduce components of diagnostic value from
the decomposed signals. Bertrand et al. [8] have used filtering in the wavelet domain for EP
signal estimation. They translated the time varying Wiener filtering formulation suggested by
de Weerd et al. [22] into the wavelet domain with good results. The decomposition of frequency
domain into overlapping frequency bands using analogue filters in [22] is made simpler by using
the invertible wavelet transform. In their method, assuming the frequency characteristics of EP,
they set the wavelet coeflicients outside a specific time-frequency region to zero and retain the
coefficients within the specified region. The wavelet coefficients are manually selected in order
to eliminate high-frequency components before and after the occurrence of fast brain response.
They used the magnitude of spectrograms in the wavelet domain to compute a level dependent
Wiener filter transfer function which is used to scale the individual coefficients in the transform

domain. By inverting the modified coefficients, a filtered signal is obtained.

1.4.6 Other approaches

Some of the other techniques are based on EEG cluster analysis [3, 31, 32] and segmentation
procedures [41]. These methods basically analyze EP’s on a single trial basis and therefore,
take into account the dynamical processes involved in EP generation. In these approaches, a
clustering algorithm is employed to identify a subset of sweeps that contain consistent responses
and then these sweeps are used to obtain an enhanced EP estimate [14]. More recently, fuzzy
clustering approach is used [76] for an improved EP estimate. This employs selective averag-
ing, wherein fuzzy algorithm is employed to group individual sweeps according to their shape

similarity; this is followed by averaging all the sweeps in the same group.

1.5 Objective of the thesis

The present work suggests methods to improve the SNR of ensemble averaged AEP’s

by reducing the residual noise. The objective is to obtain a smoother and improved estimate,
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which facilitates component measurement. The AEP’s consist of low-frequency components of
relatively long duration and higher frequncy components of shorter duration. For a correct
description of the signal power, we must take into account not only its spectral distribution, but
also its temporal distribution. In other words, although EP is considered stationary across an
ensemble, it can be considered as non-stationary within a sweep, during which the frequency
characteristics of the various temporal components vary. Hence, time-invariant descriptors such
as Fourier spectrum cannot provide an adequate representation of these transient responses.
An important drawback of frequency domain models is that the Fourier transform may not
parsimoniously represent the transient nature of EP components and may introduce Gibbs
phenomenon in the estimates of the component waveforms. Hence, the analysis of EPs requires
filters possessing time-varying characteristics.

Wavelets have become increasingly popular tools to efficiently deal with nonstationary
signals. We propose novel estimator algorithms that use the inter-scale correlation information
in the wavelet domain to differentiate the signal and the noise dominant regions. This facilitates
the design of spatially selective filters in the wavelet domain to suit the application under
consideration. The proposed techniques are based on the clustering property and the persistence
property of the wavelet coefficients. The clustering property means that if a particular wavelet
coefficient is large/small, then adjacent coefficients are also likely to be large /small. The
persistence property of the wavelet coefficients is that large/small wavelet coefficients tend to
propagate across scales. This property is also the foundation of the well-known embedded
zerotree wavelet algorithm [59] proposed for image coding. We use these properties to design
different estimators to denoise the EP signals. All the proposed estimators implicitly assume

homogeneous responses across sweeps and colored noise corrupting the signal.

1.6 Data used for the study

All the estimators are tested extensively on simulated BSAEP and MLR data. They are then
tested on real data. The details about the simulations and the acqusisition details of real data

are presented in the following subsections.
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1.6.1 Simulated data

A BSAEP which was obtained with the traditional techniques of averaging 512 sweeps of actual
human responses sampled at 40 KHz, is used as the original signal, s(n). To this, simulated
EEG is added to generate an ensemble of noisy EP sweeps. The additive model to simulate a

noisy EP sweep, z(n) may be written as follows:
z(n) = s(n) + v(n) (1.4)

where v(n) is the simulated EEG signal and s(n) is the evoked single sweep. The background
EEG superimposed on the evoked signal was simulated as an autoregressive process [74] as

follows:
v(k) = 1.5084v(k — 1) — 0.1587v(k — 2) — 0.3109v(k — 3) — 0.0510v(k — 4) + 6(k) (1.5)

where (k) is white Gaussian noise. The power spectrum of the simulated EEG noise is com-
parable to actual EEG. This is termed as BSAEP-Sim signal. In our experiments, ensembles of
different SNR’s are simulated by adding different amounts of noise to s(n).

The middle latency responses are also generated in a similar fashion by choosing an
EA of 512 actual MLR sweeps as the signal s(n). To this, simulated EEG is added to generate
512 noisy sweeps. This ensemble is termed as MLR-Sim. To simulate MLR with different SNR’s,
the EEG is added to s(n) with different scale factors.

1.6.2 Real data

Beckman silver-silver chloride electrodes are applied with conductive paste to sites C,, P,, O,
and I, according to the 10-20 system. All the electrodes are referenced to linked mastoids; the
forehead is used as ground. The responses are recorded by repetitive sound stimuli applied as
auditory clicks to the ear. In the case of BSAEP signals, the stimulus pulse of 0.1 ms duration
is applied with an intensity of 60 dB above normal hearing level. Stimulus click rate is 17 Hz.
The low voltage of AEP signals combined with relatively high background noise requires the use
of highly sensitive amplifiers and computer averaging equipment. The data is first amplified,
then sampled at 40 KHz and quantized to 12 bits. For each stimulus, the first 512 points (or
equivalently 12.5 msec) of the response is recorded. The low filter is set to 100 Hz and the
high filter to 3000 Hz. The instrumentation required to record the BSAEP and the MLR are

different as their bandwidths are different. The passband of the recording system for middle
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latency responses is 25 to 175 Hz and the usual stimulus repetition rate is 10 per sec. The
signal is sampled at 10 KHz frequency. We obtained BSAEP data for 4 subjects and MLR data
for 9 normal subjects. An ensemble of 512 response trials for each subject is obtained in both
the cases. The data is all post-stimulus. We evaluated the performance of all the proposed
estimators with data simulated at different SNR’s. In the case of real data, since there is very
little difference between the results obtained on the different normal data, we present the results

for one typical case each of BSAEP and MLR signals.

1.7 Organization of the thesis

In chapter 2, we propose a spatially selective filter in the wavelet domain to improve the
SNR of the EA and enhance the components of the EP signals. It adapts the spatially selective
filter (SSF) suggested for images by Xu et al [27], to account for the case of EPs corrupted
by colored noise. The proposed filter does not require prior knowledge of the signal or noise
and derives this knowledge from the noisy observation itself. It is based on the space-scale
correlation of the subband decompositions of a noisy signal, obtained through an undecimated
nonorthogonal discrete wavelet transform (UDWT) using & trous algorithm. Since a sharp
transition in the signal gives rise to a maximum in several adjacent scales, the correlation
between scales is used to identify the signal transition regions. Gaussian functions are placed at
the identified edges, scaling wavelet coefficients around the edges. This ensures retention of not
only the signal peak information but also the surrounding information. To distinguish transient
noise, the variance of the wavelet coefficients in a window around the identified transition region
is made use of. This filter may be viewed as a low-pass filter that passes selected high frequency
data. Results obtained are compared with the ones obtained using SSF technique, in terms of
correlation coefficient, mean square error and also individual component latencies. The method
proves to be superior to the SSF method.

A spatially selective Wiener (SSW) filter is proposed in chapter 3. This uses inter-
scale correlation in the wavelet domain to identify signal and noise regions. The signal and noise
strengths are used to compute the Wiener filter transfer function that operates in a spatially
selective fashion. We combine both the thresholding and filtering approaches in the wavelet

domain using a feature sensitive selectivity that can effectively filter noisy data.
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Chapter 4 presents a model-based estimation approach which employs built-in nonlinear
processing elements. The powerful modeling capability of RBF networks is used to model the
non-stationary characteristics of evoked potentials. A Gaussian radial basis function neural
network is utilised as a model for the EP signal to account for the nonlinear nature of the signal.
The choice of the number of the basis functions in the hidden layer and their parameters is a key
problem in designing an RBF network. In our work, the GRBF network parameters are deduced
from the wavelet transform of the noisy signal to enable the network to learn the functional form
of the underlying EP signal more effectively. Deriving the kernel parameters from the signal
improves both the effectiveness of the model and tracking property of the network. We show that
this yields better results in terms of reduction in the order of the network and a more accurate
signal model even in presence of noise. Results obtained are compared with the network whose
kernel parameters are evenly distributed over the entire length of the signal with equal spreads.
Results are presented which demonstrate the superiority of using signal knowledge in deciding
the network parameters to a fixed parameter network. Chapter 5 concludes the thesis with a

mention of certain directions for further work.



Chapter 2

Wavelet based spatially selective

Gaussian filtering

2.1 Introduction

The wavelet transform (WT) has rapidly become an indispensable signal processing tool
for a variety of applications, including estimation, classification and compression. One of the
reasons for the success of wavelets is that they form unconditional bases for a wide variety of
signal classes. In the wavelet domain, noise attenuation can be optimized locally with negligible
distortion of the signal details. Wavelets, being well localized in time and scale, are useful tools in
handling noisy data sets where signal and noise have overlapping frequency bands. The BSAEP
is characterized by few high frequency component peaks of various short durations followed by
1 or 2 low-frequency components. If one wants to preserve both the high and low frequency
components occurring at distinct times, a time-varying filter adapted to the local frequency
characteristics of the signal is required. To take into account the non-stationary nature of
evoked potential signals, de Weerd and Kap [22] have proposed a time varying filter based on
the Wiener approach. They translate the original Wiener filter formulation from the frequency
domain into time-frequency domain and use a set of zero phase-shift real digital filters having
a bandwidth proportional to their center frequency. The filter applies time-varying attenuation
functions to the outputs of the bank of filters, which are then summed to form the filtered EP.

Bertrand et al. [8] have translated this concept into wavelet domain using the

invertible orthogonal wavelet transform. In their method, assuming the frequency characteristics

21
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of EP, they set the wavelet coefficients outside a specific time-frequency region to zero and retain
the coefficients within the specified region. The wavelet coefficients are manually selected in order
to eliminate high-frequency components before and after the occurrence of fast brain response.
The method is signal specific and also assumes prior knowledge of signal characteristics and hence
is not a general one. Thakor et al. [68] have performed multiresolution analysis of the EP signal
using orthogonal wavelets to characterize complex changes in their shape during neurological
injury. They are able to deduce components of diagnostic value from the decomposed signals.
Samar and Raghuveer [58] have described the application of wavelets to event-related potentials
and examined their ability to represent the signal using fewer parameters. Bartnik et al. [5] have
determined the wavelet coeflicients that best discriminate EPs from spontaneous EEG, and used
them to estimate single trial EPs. The need for better estimation methods for EP is growing with
increased use of EP in clinical environments, either for diagnosis or for surgical monitoring. It
is felt that an improved estimation of the buried signal is possible by using statistical knowledge
of its wavelet decomposition. In this chapter, we propose a spatially selective Gaussian (SSG)
filter that operates at specific identified locations in the wavelet domain.

Wavelet domain filtering is well suited for EP signals for the following reasons:

e Wavelets provide a basis matched to a large class of non-stationary signals. The significant
constituents of a EP signal are the nonstationary components that appear along with the

stationary EEG noise. Wavelet basis efficiently captures these signal features.

e Some local portions of the signal have important and significant components while consid-
erable noise is also present in the same band. Unlike the purely frequency localization of
the Fourier basis, a wavelet basis localizes in both time and frequency, and so can effectively

track signal non-stationarities when the signal and noise frequency bands overlap.

e Wavelet transform has the property that large/small wavelet coefficients tend to propagate
across scales. This persistence property can be advantageously used to identify signal

dominant regions by studying the correlation of the coefficients across the scales.

e Temporally varying thresholding with local estimation of noise variance in different scales

is possible in wavelet domain.

e The content and the accuracy of the diagnostic information can be improved by using

scale-dependent spatially selective filtering.
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In this chapter, we propose a WT based algorithm to account for the non-stationary
components in the EP’s. This technique is an adaptation of the spatially selective (SS) filter
algorithm proposed for images by Xu et al. [27]. It is simple, efficient and can be implemented
in real time. The proposed filter does not require prior knowledge of the signal or noise and
derives this knowledge from the noisy observation itself. Before explaining the details of this
algorithm, we briefly explain the basics of WT in section 2.2. Section 2.3 presents the or-
thogonal and nonorthogonal wavelet decomposition using the two popular algorithms, namely,
Mallat’s pyramidal algorithm and the a trous algorithm. Further organisation of the chapter is
as follows: The general concept of filtering in the wavelet domain, the spatially selective filtering
based on the direct spatial correlation of wavelet coefficients across the scales, and the proposed
modification leading to spatially selective Gaussian filtering are all explained in section 2.4. A
pseudo-code illustrating the entire procedure is outlined in section 2.5. In section 2.6, we de-
scribe the different measures used to evalauate the performance of the estimator. The results
obtained using evoked potential data are presented in section 2.7. We discuss the results in

section 2.8 and the conclusion follows in section 2.9.

2.2 Wavelet Transform

The continuous wavelet transform (CWT) representation y(s,7) of a function f(t) may be
defined as,
+00
)= [ 10,0 (1)
where 1), ;(t) belongs to a set of basis functions called the wavelets. s and 7 are the two con-
tinuous real variables representing the wavelet scale and translation respectively and * denotes

complex conjugation. The basis function set is generated from a single basic wavelet 1 (t), the

so-called mother wavelet or analyzing wavelet:

Ps,r(t) = ﬁ?ﬁ (t_—T) (2.2)

S
In the above equation, the set of basis functions is generated by varying s and 7. For any
given value of s, the function 1, .(t) is a shift of the wavelet 1 (¢) by an amount 7 along the
time axis. The result of applying eqn.( 2.1) on the signal will be a collection of time-frequency

representations of the signal, each with different resolution. The definition of the wavelets as
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dilations of the function v, () means that high frequency wavelets correspond to s < 1 or wide
bandwidth and possess good time resolution, while low frequency wavelets have s > 1 or narrow
bandwidth and possess good frequency resolution. The factor /s normalizes the energy across

different scales. The inverse CWT is given by,

0= [ [ ey drds (2:3)

Some of the problems associated with CW'T are that it has an infinite number of
transform coefficients and is also computationally complex. The obtained coefficients are highly
redundant. Furthermore, it is not necessary to use the entire support of (s, 7) to reconstruct
o)

Discrete wavelets are not continuously scalable and translatable; they can only be

scaled and translated in discrete steps. This is achieved by modifying the representation as,

W) = [ FOvis0a (2.4

where () is defined as,

1 " (t —jTosB> (2.5)

Yi;(t) = \/% ol

Although it is called a discrete wavelet, it normally is a (piecewise) continuous function. In

the above eqn. ¢ and j are integers and sg > 1 is a fixed dilation step. The translation factor
70 depends on the dilation step. When discrete wavelets are used to transform a continuous
signal, the result will be a series of wavelet coefficients, and it is referred to as the wavelet series

decomposition. The inverse wavelet transform for discrete wavelets is given by,
F) =322 W(i5)i () (2.6)

i€Z jEZ

To reconstruct a signal from its wavelet decomposition, the necessary and sufficient condi-
tion is that the energy of the wavelet coefficients must lie between two positive bounds. The dis-
crete wavelets can be made orthogonal to their own dilations and translations by special choices
of the mother wavelet. An arbitrary signal can be reconstructed by summing the orthogonal
wavelet basis functions, weighted by the wavelet transform coefficients. By using orthogonal
basis functions, all the redundancy in a DWT can be removed. However, orthogonality is not

essential for the representation of signals.



CHAPTER 2. SPATIALLY SELECTIVE GAUSSIAN FILTERING 25

Mallat’s multiresolution decomposition [53] and the & trous algorithm [60] are two
separate implementations of the discrete wavelet transform. Mallat’s method is based on the
principle of reducing the redundancy of the information in the transformed data. Moreover, the
transform is shift variant. It means that the wavelet transforms of a signal and its time-shifted
version are not simply shifted versions of each other. The & trous algorithm results in a non-
orthogonal and redundant data set. Depending on the application, each of these models can be
advantageously used. Both the algorithms are observed to be special cases of a single filter bank
structure [60]. A good improvement is possible in the case of denoising applications by giving
up orthogonality and using a redundant and shift invariant discrete wavelet transform. We
briefly explain the difference between these two popular decomposition methods in the following

subsections. For an in depth study of DWT and related subjects, one may refer to [39, 53, 63].

2.3 DWT computation methods

2.3.1 Multiresolution wavelet decomposition - Pyramidal algorithm

The idea of consecutive approximations at finer and finer frequency resolutions is formalized by
the concept of multiresolution approximation (or multiresolution analysis). Mallat has explained
the relationship between multiresolution analysis and wavelet transform in [53]. A function
f(z) € V; is projected, at each scale j, onto the subset V;_;. This projection, s, is defined as

the scalar product of f(z) with a scaling function, ¢, x(z).
sik =< f(2),279¢(277x — k) > (2.7)

where k is the translation parameter and j is the dilation parameter. Integer translations and
dyadic dilations are used. ¢(x) has the following property:
oo
¢(z) = Y h(n)p(2z —n) (2.8)
n=—00

This is referred to as dilation equation since ¢(z) is expressed in terms of its own dyadic dilations
and translations. The dilation equation results in a decreasing sequence of closed subspaces,
V; € Z which approximate L?(R). Each of the successive approximation spaces, --- C Vo C

VicVyCV.1CV.y---, have a resolution 2/ and form a nested sequence, i.e

Vi € Vi (2.9)
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Figure 2.1: Multiresolution orthogonal decomposition of a signal.

The sequence {kh(n),n € Z} € [? is the impulse response of a low-pass filter. The principle of
multiresolution decomposition is shown in Fig. 2.1. The information lost in Vj;1 can be restored
using the complementary subspace Uj;1 of V;. Subspaces U; are generated by a wavelet function
1 k(x) which is derived from the scaling function to analyze finer details of the signal. The
projection djj of f(x) on U; is defined as

dir =< f(z),2779(2 7z — k) > (2.10)
The scaling functions and the wavelet functions are related as,

1 =z
3(3) = Lotz —n) (211)

The sequence {g(n),n € Z} € [? is the impulse response of a high pass filter. Using h(n) and

g(n), the wavelet analysis is defined as,

1
Sjk = 5 Z h(n - 2k)3j—1,k:
n
1
djk = 5 > g(n —2k)s;_1 (2.12)
n

For orthogonal wavelets, the reconstruction is performed by

ik =2 h(k—2n)sj 10 +2)_ g(k—2n)dji1n (2.13)

n n
The behavior of the computed discrete wavelet transform is governed by the choice of the filters.
One disadvantage of the classical decimated DWT is the lack of shift invariance. As shown in
[46], the wavelet decomposition of a signal can differ enormously when the input signal is shifted
by even one sampling interval. However, it is a non-redundant representation and is very useful

for coding applications since it removes redundant information.
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2.3.2 TUndecimated wavelet transform - & trous algorithm

The undecimated wavelet transform (UDWT) has been independently discovered several
times, for different purposes and under different names, e.g. shift/translation invariant wavelet
transform, stationary wavelet transform, or redundant wavelet transform [9, 52, 60]. In signal
analysis, unlike compression applications, a redundant expansion of the signal is often desired.
It is a closer approximation to the continuous wavelet transform. It is a nonorthogonal variant
of the classical wavelet transform and plays an important role in denoising algorithms. It is
translation-invariant, which means that it is independent of the position of the input signal.
Several redundant decompositions exist in the literature [23, 48]. One such scheme, the & trous
(means 'with holes’) algorithm is well known for its computational efficiency. A discussion of the
algorithm and its history can be found in [47]. We briefly present this method in this section.

In this algorithm, the filters are dilated at each projection, but the decomposition is
not decimated. Therefore, each scale has N points corresponding to the N data points. For
the scale j, these points correspond to 2/ different decompositions obtained with the decimated
transform using all the circulant shifts of the signal. These decompositions, each one composed
of N/27 points, are intertwined. This overcomes the dependence of the transform on the position
of the input signal. Hence it is translation invariant unlike the decimated wavelet transform.
This is a WT defined as the difference between the scaling functions of two successive scales.
The sampled data is assumed to correspond to zeroth scale and is denoted as {c(0,%k)}. The

subsequent smoothed sequences are given by,
gyz )e(§ — 1,k +2771) (2.14)
and the wavelet coefficients are the difference between two successive smoothed sequences:
w(j+1,k)=c(j+1,k)—c(j,k) (2.15)
The coefficients {h(l)} are derived from the scaling function ¢(¢):
}:h (t—1) (2.16)

The reconstruction is the sum of all the scales and the smoothed signal at the coarsest scale:

J
= > w(j, k) +c(j, k) (2.17)
j=1
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Figure 2.2: Undecimated discrete wavelet transform of a signal.

J being the number of decomposition scales. Fig. 2.2 shows the computation of the UDWT of
a signal as a block diagram. This can be viewed as the scalar product of a function f(z) with a
scaling function that corresponds to a low pass filter. The transform is typically iterated on the
output of the low-pass band c(j, k) to create a series of detail coefficients at different scales.

In a recent work [60], Shensa has shown that & trous algorithm bears an intimate
relationship to Mallat’s decomposition. Both schemes are shown to be different instances of a
single filter bank structure, the DW'T. The Mallat’s scheme is simply the decimated output of
the DWT which is characterized by octaves obtained by alternating the low-pass filter H with
decimation and tapped by a band-pass filter G. Since the coefficients are not downsampled, the
conditions necessary for perfect reconstruction in the case of decimated wavelet transform need

not be met in the case of UDWT.

2.4 Filtering in the wavelet domain

Consider the classical problem of estimating an unknown deterministic signal s = {s(n)},n =

1,---, N, from a set of noise-corrupted samples, x = {z(n)},n = 1,---, N, which may be denoted
as,

X=8+V (2.18)
where v = {v(n)},n = 1,---, N is a zero-mean white Gaussian noise of variance o2. By taking

the DWT of eqn. ( 2.18),
Wx = Ws + Wv (2.19)
or equivalently,

y=0+z (2.20)
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Figure 2.3: Filtering in wavelet domain

where Wx = y,Ws = 6 and Wv = z, respectively. After applying the WT, the resulting
sequence, y is again the sum of the transformations of the signal (f) and the noise (z). This is
a consequence of the linearity of W. In general, the wavelet coefficients of a function are large
in regions where the function is irregular and small in smooth regions.

If a function is corrupted by additive noise, the noise dominates the wavelet coefficients
at small scales. Thus, most of those coefficients contain the noisy part of the signal and only a
few large coefficinets are related to strong singularities in the underlying function. An orthogonal
wavelet transformation will map v to z, which is again a zero-mean white Gaussian with variance
o2, while compacting the signal s into a small number of large wavelet coefficients. A reasonable
approach to wavelet-based signal estimation is to zero out the small entries of y, which are most
likely due to the noise (where there is no signal), while retaining the large entries that are most
likely due to the signal; such an approach is known as wavelet denoising. An operator H may
be so defined as to modify the transform coefficients to obtain the signal estiamte §. This may

be represented as,
§ =W HWx (2.21)

The block diagram for the above filtering operation in wavelet-domain is given in Fig. 2.3.
The nature of H determines the effectiveness of the filter. Thresholding filters, and other statisti-
cal filters are different approaches for denoising a given observation. In the following subsection,
we explain the spatially selective filtering of Xu et al. [27] proposed for noise filtration in images.
Then we propose an extension to this work using a Gaussian filter in a spatially selective manner

for estimating EP’s.

2.4.1 Spatially selective filtering

Mallat et al. [52] introduced the concept of complete signal representation by WT domain

maxima. They were able to distinguish signal maxima from noise maxima by analyzing the
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singularity properties of WT domain maxima of a signal across various scales [54]. Witkin
[71] first introduced the idea of using space-scale correlation of the subband decompositions of
a signal to filter noise from the signal. Using direct multiplication of the coefficients across
subband decompositions, he was able to distinguish major edges from noise. Xu et al. [27]
studied spatial filters in the wavelet domain as an alternative to Fourier domain filters. They
proposed a spatially selective filter (SSF) based on the space-scale correlations of the subband
decompositions of a noisy signal. The major transitions in the signal are tracked from coarse
scales to fine scales, thereby distinguishing major signal edges from the background noise. The
method relies on the persistence property of the wavelet transform to accomplish the task of
filtering noise from signals. A large spatial correlation between the scales is considered to indicate

lth

a signal edge. Direct ["* order spatial correlation across scales, corr;(m,n) is defined to be

corry(m,n) = I:_0w(m +14,7n), n=12---,N (2.22)

where [ is the number of scales involved in the direct multiplication and m < M — [ + 1, where

M is the total number of scales. An edge is identified at any position n for which
|corry(m,n) > |w(m,n)| (2.23)

This algorithm, which iteratively identifies the important wavelet coefficients in each scale, is well
explained in [27]. A binary mask is used to retain the identified significant wavelet coefficients
and discard others. The absence of edges or significant features in a localized region of the
signal allows the noisy background to be removed there. We propose modifications to this filter
by introducing an additional measure to discriminate between the signal and noise edges and
smoothing the regions surrounding the identified edges. The proposed method is explained in

the following subsection.

2.4.2 Spatially selective Gaussian filtering

We adapt the edge identification algorithm proposed by Xu et al [27] to suit the case
of EP estimation. Our experiments showed that the use of binary masks for selecting wavelet
coefficients in each scale at the identified edges leads to oscillations or artifacts at the end points
of the masks. Hence we use Gaussian masks rather than binary masks. This optimizes noise

attenuation locally, with negligible distortion of the signal details at the identified edge points.
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Figure 2.4: Block diagram of spatially selective Gaussian filtering in wavelet domain

It smooths and scales not only the significant edge information, but also the surrounding infor-
mation. This helps in avoiding Gibb’s oscillations or artifacts around the identified significant
features.

By using the spatially selective filtering algorithm suggested in [27], binary masks are
obtained, that are to be applied on the different wavelet scales. To avoid detection of spurious
noise as significant features, the variance in the wavelet domain in a small window of length
k before the identified edge, is compared with the variance in a window after the edge. Since
the noise is assumed to be a stationary process, this measure eliminates the false detection of
transient noise edges as signal features. Figure 2.4 shows the block diagram of the proposed
spatially selective Gaussian (SSG) filter. The inter-scale correlation, coupled with the changes
in variance around the identified point, are thus used to differentiate between noise and signal
dominant coefficients.

To differentiate a signal edge from a noise edge, we consider small regions in each
scale, before and after the identified edge location, n, and compare the variances of the regions.
Employing windows of width k, we define, for scale m, o?(n) = var(winl = w(m,n—k : n—1)),

and 02(n) = var(win2 = w(m,n +1:n +k)),

if  abs(o1(n) —o2(n)) <e

discard the edge (indicates noise edge)
else

retain the edge (indicates signal edge)

end

where € € R is fixed as a small fraction of o1(n) and is positive. The absence of edges or
other significant features in a localized region of the signal allows the wavelet coefficients in
that region to be made zero thereby removing the background noise. The Gaussian shrinkage

function n(w(m,n)) centered at the identified edge n, with a standard deviation p,, = 0.101(n)



CHAPTER 2. SPATIALLY SELECTIVE GAUSSIAN FILTERING 32

is defined as

1 _/(n—k)?
nn(k)—pnﬂ—we ( 22 ) (2.24)

In summary, the proposed algorithm works in three stages. Initially, it identifies the

locations, where the correlation between adjacent wavelet scales is high. Then, it uses the
change in variance in the neighborhood of identified edges to exclude correlated noise edges.
Finally, a Gaussian shrinkage function centered at the edge point scales the wavelet coefficients to
enhance the non-stationary signal components. The number of levels of decomposition M (> 1)
is dependent on the structure of the signal. For the signals under consideration, M = 4 is found
to give satisfactory results in all the cases. The Bjs-spline scaling function is used as the basic

wavelet in our work. The associated filter H(z) is given by,
(2.25)

We compare our results with those of the space-scale filter, wherein binary masks are used at
the identified edges instead of Gaussian masks.

The detecion of significant signal regions is a fundamental step for all the different
techniques proposed in this thesis for EP estimation. Accordingly, the algorithm for detecting
the component regions in the wavelet domain is given as a pseudo code in the section that

follows.

2.5 Pseudo-code for spatially selective Gaussian filtering in the

wavelet domain

Loop for each wavelet scale m

{

Loop for the iteration process

{

% Compute the Power of Corrg(m,n) and W(m,n):

PCorr(m) = X,Corra(m,n)?

PW(m) = X%,W(m,n)?



CHAPTER 2. SPATIALLY SELECTIVE GAUSSIAN FILTERING

Re-scale the power of Corry(m,n) to that of W (m,n):

% Loop for each point n

{
new Corra(m,n) = Corrg(m,n) * %
} end loop n
% Loop for each point n
{
if |Corra(m,n)| > |W(m,n)|

{ % Identify significant features using W(m,n) and Corry(m,n)

Corre(m,n) = 0.0
W(m,n) = 0.0

mask(m,n) =1

} end if
} end loop n
} iterate until PW (m) < the noise threshold at scale m
% At the identified points, check for change in variance to rule out noise edges

% Loop for all mask(m,n) =1

{

oi1(n) = wvar(winl =W(m,n—k:n—1))

oo(n) = wvar(win2=W((m,n+1:n+k))

if abs(o1(n) — 02(n)) <€
Discard the detected point as noise
else
Retain the detected point as a signal feature

end

}

% Compute Gaussian shrinkage function (W (m,n)) centered at the identified point n,

33
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% with a standard deviation p(n) = 0.101(n) defined as

_ m = 1 e (n— k)2
Gmask(m, k) = n(W(m, k)) = p)Var ( p2(n) )

Loop for each point n

{
Wnew(m,n) = Gmask(m,n) * W(m,n)
}  end loop n

}  end loop m

2.6 Performance evaluation

In order to compare the performance of different estimation methods, we need to define
criteria that measures how well the estimator approximates the true signal. We have used mean
square error (MSE) and correlation coefficient (CC) to evaluate the performance of the proposed
estimators. We compute these quantities for different SNR’s of the input noisy signal. If s is

the required actual signal and § is the estimator’s output, the MSE is defined as,
MSE = E[(s — 3)?] (2.26)

The correlation coefficient is defined by,

cov(s,§
pas = 228 (2.27)

0503
where cov(s, §) is the covariance obtained from,
cov(s,§) = E{[s — E(s)][§ — E(3)]} (2.28)

and variance o2 is given by,

o2 = E(s%) — [E(s)]? (2.29)

S

The input/output SNR is calculated as,

: S 8%(n)
Yome1 82
outputSNR = 101log lizgzi ;EZ;] (2.31)
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In addition to the above quantifiers, the latencies of all the components in the estimated signals
are compared with the latencies obtained from a simple EA of all the sweeps in a given data
file. It is to be mentioned that the performance metrics defined here are used to evaluate not
only the spatially selective Gaussian filter, but also the other techniques proposed in this thesis

in other chapters.

2.7 Experimental Results

To begin with, we present the experimental results obtained with simulated brainstem
auditory evoked potentials and middle latency auditory responses. Subsequently, we illustrate

the performance of the proposed SSG filter on clinically recorded BSAEP and MLR responses.

2.7.1 Simulated data

The BSAEP-Sim signal, simulated at different SNR’s starting from 1 dB, is used as input to the
SSG filter. Fig. 2.5 shows the BSAEP-Sim signal at 1.75 dB and also its decomposition into 4
scales with a Bs-spline scaling function using non-orthogonal UDWT as per & trous algorithm.
The simulated signal has all the first five components although they are not visible because of
the low SNR. The estimator’s performance is found to be poor in terms of visual perception, at
SNR’s less than 0 dB. Consequently, we present the results obtained with inputs of SNR greater
than 0 dB. In all the implementations, we decomposed the signal into 4 scales and computed
the spatial correlation between two adjacent scales (I = 2).

The correlations between adjacent scales for three different sets of scales, namely,
corre(1,2), corre(2,3) and corry(3,4) are displayed in Fig. 2.6 in three columns. The wavelet
coefficients corresponding to significant features in the original signal such as sharp peaks and
valleys appear stronger in the correlation domain than in the wavelet domain. The binary masks
obtained using the principles of SSF technique are shown in the second row of the same figure.
The corresponding Gaussian masks obtained after the variance check are shown in the third
row of the figure. This filtering technique preserves the finest scale information corresponding
to high frequency edges. In other denoising techniques, either the finest scale information is
removed altogether or a homogeneous smoothing operator is applied on the complete length of
a scale. Using the information from the neighbourhood of the identified important coefficients,

spurious noise edges are eliminated.



CHAPTER 2. SPATIALLY SELECTIVE GAUSSIAN FILTERING 36

0.2 ’

-0.2
04 ! ! ! ! ! ! ! ! ! !

-0.2kt | | | | | | | | | =

02F T T T T T ©) T T T T ]

-0.2kt I I I I I I I I I =
50 100 150 200 250 300 350 400 450 500
0.1 T T T T () T T T T T

-0.1 I I I I I I I I I ]

50 100 150 200 250 300 350 400 450 500
0.1 T T T T T © T T T

-0.1 I I I I I I I I I ]
50 100 150 200 250 300 350 400 450 500

Figure 2.5: Decomposition of BSAEP-Sim signal using UDWT. (a): BSAEP-Sim signal at SNR
1.75 dB. (b,c,d,e): Decomposition into scales 1, 2, 3, and 4, respectively.
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Figure 2.6: Derivation of Gaussian masks for BSAEP-Sim signal. Row 1: Correlation between
scales 1 - 2, 2 - 3, and 3 - 4, respectively. Row 2: Binary masks obtained using the principles of
selective filtering. Row 3: Corresponding Gaussian masks.

It may be observed from Figs. 2.6 (b) and (c), that the number of significant wavelet
coefficients detected in each scale comes down after the variance check. The wavelet coefficients
in each scale are shown in Fig. 2.7, before and after being modified by the Gaussian masks. The
coarsest scale (which in this case is the fourth one) coefficients are unaltered since we get only
M —1 correlation vectors by using second order spatial correlation when the signal is decomposed
into M scales. The retension of the coarsest scale data preserves the shape information of the
signal. Coeflicients with higher values persisting across scales are retained and the remaining
are discarded as seen from the second column of Fig. 2.7.

Figure 2.8 compares a signal obtained by the proposed method with the one obtained
using binary masks. The input signal has a SNR of 1.75 dB. It can be seen that the small noisy
variations present in the output of binary mask filtering are removed by the proposed technique.
This is due to the fact that we study the variance around the identified edge region in order to
retain or suppress the wavelet coefficients. The performance of the estimator for different input

SNR’s is investigated in terms of correlation coefficient and MSE. The estimator output for each
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Figure 2.7: Output of spatially selective Gaussian filtering of BSAEP-Sim signal. Column (a):
UDWT coefficients at scales 1, 2, 3 and 4, respectively. Column (b): Spatially selected scale
data after Gaussian filtering.

input SNR is correlated with the original signal and is plotted in Fig. 2.9(a). The performance
of the estimator is found to be unsatisfactory for input SNR’s less than zero. Hence, the outputs
of the estimator are computed and plotted for SNR’s of the input signal ranging from 1.75 dB to
about 10 dB. Similarly, the MSE of the estimated outputs is plotted in Fig. 2.9(b) for different
SNRs of the input signal. It can be observed that the MSE achieved by the proposed filter is
less for any input SNR compared to the space-scale filtered (SSF) output.

Similarly, the proposed filtering is tested on the simulated middle latency response,
MLR-Sim. In Fig. 2.10, we show the decomposition of the MLR-Sim signal into 4 scales. The
inter-scale correlations between scales 1-2, 2-3, and 3-4 are shown in the first row of Fig. 2.11.

The significant regions, detected for different scales using SSF method, are presented as binary
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Figure 2.8: Comparison of outputs estimated using binary and Gaussian masks for BSAEP-Sim
signal with a SNR of 1.75 dB. (a) Noisy signal. (b) Filtered output obtained using binary masks.

(c¢) Output obtained using Gaussian masks.
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Figure 2.10: Decomposition of MLR-Sim signal using UDWT. (a) MLR-Sim signal with a SNR
of 1.75 dB. (b,c,d,e): Decomposion into scales 1, 2, 3, and 4, respectively.

masks in the second row of Fig. 2.11. The coarsest scale data is retained without modification,
since it generally has less noise and contains the shape information of the signal. The Gaussian
masks for different scales, determined using our method, are shown in the third row. The
retained wavelet coefficients, after multiplication by the Gaussian masks, are shown in Fig. 2.12,
along with the original decompositions. The signals estimated using both SS filtering and SSG
filtering are shown in Figs. 2.13 (b) and (c), respectively. In this figure too, it can be observed
that the Gaussian filtering around the identified edges helps in retaining the edge information
and smoothing the small variations around the edges. The performance of the estimator, in
terms of correlation coefficient and MSE, is investigated for different input SNR’s. The results

obtained are plotted in Fig. 2.14.
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Figure 2.11: Derivation of Gaussian masks for MLR-Sim signal. Row 1: Correlation between
scales 1 - 2, 2 - 3, and 3 - 4, respectively. Row 2: Binary masks obtained using spatially selective
filtering. Row 3: Corresponding Gaussian masks.
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Figure 2.12: SSG filtering of MLR-Sim signal. (a) Decomposition of MLR-Sim signal into scales
1, 2, 3 and 4 using UDWT. (b) Corresponding modified coefficients after Gaussian filtering.
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Figure 2.13: Comparison of outputs obtained using binary and Gaussian masks for MLR-Sim
signal. (a) Noisy signal. (b) Filtered output obtained using binary masks. (c) Output obtained
using Gaussian masks.
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Figure 2.14: Performance evaluation of the estimator on MLR-Sim signal of different SNR’s. (a)
Correlation coefficient Vs. input SNR. (b) MSE Vs. input SNR.
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Figure 2.15: Estimation of real BSAEP signals for different ensemble lengths. Row (a): EA
of 100, 200 and 300 sweeps. Row (b): Signals estimated using SS filtering. Row (c): Signals
estimated using SSG filtering.

2.7.2 Real data

We tested the technique on 4 different ensembles of BSAEP signals of four different subjects.
In Fig. 2.15, ensemble averaged BSAEP signals are shown along with the processed signals
for different lengths of the ensemble. It can be noticed that for any ensemble length that is
considered, the filtered signal results in an improved estimate suppressing the wriggles in the
component peaks, thereby facilitating accurate measurement of the diagnostically important
latencies and amplitudes. It may be observed from both Figs. 2.15 and 2.16, that changes in
the morphology of the EA are always reflected in the processed outputs.
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Figure 2.16: Estimation of real MLR signals for different ensemble lengths. Row (a): EA of
100, 200 and 300 sweeps, respectively. Row (b): Signals estimated using SS filtering. Row (c):
Signals estimated using SSG filtering.
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2.8 Discussion

The proposed spatially selective Gaussian filter has feature sensitive selectivity in passing high
frequency data at low SNR. Methods based only on the magnitudes of wavelet coefficients are
suitable when the noise is white; the signal information is packed into few large coefficients and
the noise is distributed into smaller magnitude coefficients. Spatially selective filtering is required
in cases where the noise is colored. Since SSG filter uses the statistical distribution of wavelet
coefficients across the scales and also in localised regions within a scale, it better estimates
signals corrupted with correlated noise. As far as the precision of the predicted latencies are
concerned, binary mask performs as good as Gaussian filtering. However, our method results in
a lower MSE than binary mask based SSF.

Since the wavelet transform merely involves a multistage filtering operation, it is
neither computationally complex nor expensive. The inter-stimulus interval is shortest for the
BSAEP, which is roughly 58 msec. Of this, 45 msec is available for computation, after the acqui-
sition of individual sweep of 12.5 msec. Execution of our algorithm takes only 0.853 msec using
a Pentium 300 MHz processor under Windows N'T Operating System in MATLAB environment.
With the inclusion of ensemble averaging, total computation time is around 1 msec, out of the

available 58 msec. Thus the algorithm can be integrated into any existing EP system.

2.9 Conclusion

Unlike images, EP signals do not have very sharp edges. This calls for an approach
different from the simple hard thresholding of wavelet coefficients at edge locations. The wavelet
domain Gaussian filter is superior because of its edge and feature-sensitive selectivity in passing
and scaling the wavelet coefficients. The filtering around the identified edge is smooth, thus
enhancing the signal component regions, without introducing any distortions like in the case
of binary masks. Temporally varying the threshold using local estimation of noise variance
can account for slow transition regions better. The features with the same strength as the
noise are distinguished by using the change in variance around the identified edge. By using
this additional measure, false detection of sharp noisy edges is avoided. The proposed filtering
algorithm is based on a non-orthogonal undecimated DWT, since the latter offers better edge

detection and leads to signal that is correlated across scales. In contrast, the orthogonal wavelet
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transforms have fewer coefficients at coarse scales, which prevents computation of correlation
across scales. Although the proposed SSG filter does not possess any optimality property, it is
simple and efficient and well suited for the case of EP’s.

When the signal is corrupted by correlated noise that cannot be separated in either
frequency or time domain, a signal based local filtering of the noisy signal in the transform
domain is a promising solution. It improves the balance between detail preservation and noise
attenuation. We have used Gaussian filtering in wavelet domain for enhancing evoked poten-
tials corrupted by stationary correlated noise. Hard thresholding the regions, where correlation
is high between adjacent scales of nonorthogonal wavelet tranform, causes artifacts and Gibbs
oscillations around the boundaries of the thresholding masks. A Gaussian function at the tran-
sition region is found to be better suited for signals whose nonstationary regions are not too
sharp. The proposed method can be used when the signal is non-stationary and a proper noise

model is not available, and is effective as a post-processing tool in EP estimation.



Chapter 3

Spatially selective Wiener filtering in

the wavelet domain

3.1 Introduction

Signal denoising approaches in the wavelet domain may broadly be classified as thresholding ap-
proaches and filtering approaches. Thresholding algorithms are based on the energy compaction
property of the wavelet transform and assume noise to be white with Gaussian distribution.
Due to this, small coefficients are more likely to be due to noise, while the large coefficients are
due to important signal features. The essence of a threshold is that it should be large enough to
eliminate noise, but small enough to keep the signal features. However, if the noise is coloured,
then the noise coefficients could to be larger than signal coefficients in some bands, and it may
not be possible to accomplish both of the above goals with just one threshold.

In filtering approaches, the fundamental philosophy is to consider the set of wavelet
coefficients as a stationary random process and use statistical estimation techniques for denoising
the signal. These schemes tend to manipulate individual wavelet coeflicients in order to denoise
the observed signals. Wiener filtering has been the most popular among the filtering approaches
in the wavelet domain. However, the drawback of Wiener filter is that while it suppresses the
high frequency noise, it also removes the high frequency components that represent the signal
edge features.

We combine both the thresholding and the filtering approaches using a feature sensi-

tive selectivity in the wavelet domain that can effectively filter noisy data. In this chapter, we

48
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propose a spatially selective Wiener (SSW) filtering scheme that uses inter-scale correlation in
the wavelet domain to identify signal and noise regions and use their strengths to compute the
Wiener filter transfer function. This computed function is used in a spatially selective fashion
to filter the noisy signal. We first present an overview of the various denoising approaches in the
wavelet domain and then explain in detail the proposed method. We then provide the results

obtained for both simulated and real signals.

3.2 Overview of wavelet domain estimation methods

3.2.1 Thresholding methods

The ability of wavelets to pack most of the signal energy in relatively few large coeffi-
cients makes wavelet based processing particularly attractive for signal denoising and estimation.
Wavelet thresholding procedures exploit this energy compaction property for effective signal de-
noising, and are optimal in a minimax mean-square-error (MSE) sense for a variety of signal
classes [25]. The thresholding schemes generally assume identically and independently dis-
tributed white Gaussian noise with unit variance corrupting the signal of interest.

In the most basic form of wavelet thresholding for denoising, if the coefficient is smaller
than the threshold, it is set to zero; otherwise, it is kept or modified. The process of thresholding
wavelet coefficients can be divided into two steps. The first step is the choice of the nature of
the thresholding scheme. Two standard choices are: hard and soft thresholds [24]. The second
step is the choice of the threshold, A\. Hard-thresholding zeroes every coefficient that falls below
a defined threshold, while in soft-thresholding, a smooth and continuous non-linear function
is applied to the transform coefficients. The most straightforward approach is to additionally
shrink all the surviving coefficients by the value of the threshold. The thresholding function is
given by:

e "Hard thresholding:”
TP (djk) = dyg, [ldjel > N+
e ”Soft thresholding:”

T3 (dj 1) = sgn(djk)(|dj| — N+



CHAPTER 3. SPATIALLY SELECTIVE WIENER FILTERING 50

A variety of methods have been proposed for the estimation of A [34]. The earliest method
proposed by Donoho and Johnstone [24] is a universal threshold, which is a function of the

noise variance and the length of decomposition. It is defined as,

A = ogy/2log(n), where,oc = M AD/0.6745,

MAD is the median absolute deviation of the coefficients of the finest scale and n is the number of
data samples. The factor 0.6745 is chosen after a calibration with Gaussian distribution. Often,
the initial noise variance is estimated from the wavelet coefficients at the finest transform level,
and a normalization by the MAD is applied. This method assumes the noise to be white with
Gaussian distribution and the underlying signal of interest to be sufficiently smooth such that
only noise is present at high frequencies. A level dependent thresholding of wavelet coefficients is
more appropriate for correlated noise. Threshold selection is determined by the manner in which
the denoising procedure is optimized: in a mean squared error, minimax, or visually appealing
(Visu-shrink) [24] sense. The success of these methods depends entirely on the noise variance
used to fix the threshold. The noise variance is estimated in the wavelet domain.

Bayesian approaches to thresholding were recently explored by Chipman [15], Abramovich
[1], Clyde [17] and Johnstone [42]. Bayesian shrinkage does a heavy shrinking of small argu-
ments instead of thresholding. It does not separate the signal and noise sharply into two parts,
but obtains the best signal and noise estimates based on a particular prior distribution structure
of the space of wavelet coefficients. A prior distribution is imposed on the wavelet coefficients of
the unknown function. A relation between the parameters of the prior model and those of the
spaces within which realizations from the prior will fall, is established. This relation makes it
possible to incorporate knowledge about the function’s regularity properties into the prior model
of its wavelet coefficients. Gaussian mixture model for the wavelet coefficients is a popular prior
model in which each coefficient is assumed to arise from a mixture of two Gaussian distributions.

The prior parameters are determined a posteriori.

3.2.2 Filtering methods in wavelet domain

Empirically designed wavelet-domain filters have a performance superior to those of other de-
noising algorithms using wavelet thresholding. The two important filtering approaches that are
widely investigated in wavelet domain are Wiener filtering and spatially selective filtering, both

of which exploit the statistics of the wavelet coefficients. Spatially selective filtering methods
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use either the propagation of wavelet domain modulus maxima of a signal across scales [52]
or analyze the correlation across scales [27, 72] to identify signal and noise edges. The filter-
ing approaches adopted after characterizing the signal edges vary slightly in different methods.
[27, 49, 56, 75].

The design of the Wiener filter requires the knowledge of the strength of signal coeffi-
cients. By using estimated values for signal strength, we obtain an approximate form of Wiener

filtering in the wavelet domain which may be written as,

= 0,9) y
0(i, ) = Big) + o) U(Z.Vy( %)) (3.1)

where 9(@, j) is the estimated energy density of the signal component at resolution level 7 and
time j, o(i)? is the variance of z in scale i. Filtering by ( 3.1) preserves time-frequency regions
where the signal power is stronger than that of the noise, and attenuates regions where the
noise predominates. Mallat [52] has used a signal estimate obtained by hard thresholding in
the wavelet domain as a signal model to design a Wiener filter. This approach depends on the
statistics of the wavelet coefficients. In [64], statistical properties of the wavelet coefficients are
analyzed to design a block Wiener filter for denoising images.

Ghael et al. [33] have proposed empirical Wiener filtering of wavelet coefficients for
denoising based on two wavelet bases. In their Wienerchop algorithm, the signal is initially
estimated using a hard threshold in one transform domain and this estimate is subsequently
used to design the Wiener filter to be applied in another transform domain. Large coefficients
representing important signal features are estimated via wavelet thresholding. The thresholded
signal is then transformed into a new basis. This is required to implicitly provide an estimate
of the smaller coefficients via the smearing produced by the mismatch between the two bases.
An analysis of this filter is given by Choi et al. [16]. Although the analysis shows that this
results in an improvement in estimation error when compared to an estimate obtained by simple
hard thresholding, the difficulty is in the choice of the pair of wavelet bases used. Wienerchop
technique has been extended by Gallaire [30] by generating the second basis function via a
unitary transform to a class of multiple bases. A similar idea is pursued by Ishwar et al. [40].

As pointed out in [30], the most critical part in designing Wiener filter in wavelet
domain is the estimation of smaller signal coefficients. Our goal is to design an empirical
Wiener filter in which the signal model is obtained using the correlation between adjacent

scales, instead of using the magnitudes of individual coeflicients. By taking into account the
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statistical distribution of the wavelet coefficients, an improved signal model is achieved which

leads to better filter performance. The design of the filter is explained in the following section.

3.3 Spatially selective Wiener filtering

The original optimal Wiener filter transfer function in frequency domain was modified by
Walter [69] by using estimated power spectral densities from a posteriori data in computing the
filter tranfer function. In this case, a suboptimal Wiener filter transfer function in the frequency

domain is formulated as,

Py(w)

H) = 5w+ @)

(3.2)

where P;(w) and P,(w) are the estimated power spectra of the signal and the noise, respectively.
As originally proposed by Walter [69] and Doyle [26], this filter is estimated a posteriori from

an ensemble of R single responses, by

H(w) = % (1 - %) izg:; (3.3)

where P;(w) and Py(w) and are the power spectrum of the average of individual responses
embedded in noise and the average of the power spectra of the individual sweeps, respectively.
This a posteriori Wiener filter is a zero phase-shift digital filter. To take into account the
non-stationary nature of the individual evoked responses, de Weerd and Kap [22] proposed a
time-varying filter derived from the above approach. The filter applies time-varying attenuation
functions to the outputs of the bank of filters, which are then summed to form the filtered
EP. Bertrand et al. [8] have extended the DFT based time varying a posteriori Wiener filtering
technique to the wavelet domain by weighting each wavelet coefficient to get the time-frequency
Wiener filtered average response.

The design of the Wiener filter in the wavelet domain requires the knowledge of noise-
free signal coefficients which necessitates a data adaptive or empirical approach that infers the
filter directly from the noisy observations. The challenging part is the estimation of smaller signal
coefficients. A spatially selective filtering strategy is needed because a uniform threshold may not
be good enough if the noise is correlated. If we can use additional information, extracted from
the noisy observations, to distinguish between the signal and noise coefficients, then spatially

adaptive thresholds can be used to reap the benefits of keeping the important signal features
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Figure 3.1: Block diagram of the spatially selective Wiener filtering in the wavelet domain.

while removing most of the noise. The proposed method adapts the thresholds of the individual
coefficients to the spatially changing statistics of the EP signals.

In our earlier work [35], we used a Wiener filter formulation in the wavelet domain. In
that work, the signal scalogram is obtained from the ensemble average of a subset of observations;
the noise scalogram is obtained by alternate averaging the observations, which process minimises
the signal contribution. This is an adaptation to the wavelet domain, of the work carried out
by de Weerd [22]. We now approach the signal estimation problem from the perspective of
spatially adapting the Wiener filter in the wavelet domain. For the Wiener filter formulation,
we use the signal model obtained by exploiting the correlation properties in the wavelet domain.
The inter-scale correlation is used as an index to group the wavelet coefficients in each scale
into signal and noise coefficients. The powers of signal and noise in each of these groups in each
scale are used in ( 3.1) to compute a real, scale-dependent Wiener transfer function, in addition
to discarding the noise dominant coefficients. The block diagram of the proposed scheme is

presented in Fig. 3.1. The procedure is simple and easy to implement:
e step 1: Transform the data into the wavelet domain via the DWT: y = W.x

e step 2: At each resolution level j, group the empirical wavelet coefficients into disjoint

blocks {S7 = w(i, ), |w(i, §)| > corra(i, )} and {VI = w(i, j), |w(i,5)| < corra(i,j)}.

e step 3: Compute the signal power from {S7} and the noise power from {V7} to be used

in the transfer function in (3.2).

e step 4: Hard threshold the scale coeficients obtained in step 2 to eliminate the noise

dominant coefficients and retain significant coefficients.
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e step 5: Use the computed scale-dependent weighting factor in the significant signal regions

to attenuate the noise.

It is observed that such a two level filtering results in an improved response. The algorithm is
simpler than the one proposed in [30], which is based on multiple orthogonal bases. We present

the results obtained using the proposed SSW filter in the next section.

3.4 Experimental Results

The proposed algorithm has been tested on both synthesised and real BSAEP signals and middle
latency responses. Experimental results show that this spatially varying wavelet thresholding

yields significantly superior estimation of the signal.

3.4.1 Results for simulated data

The BSAEP-Sim signal estimated using the proposed technique for different input SNRs is
illustrated in Fig. 3.2. The SNR’s of the input noisy signals shown in the first row of Fig. 3.2 are
1.75 dB, 3.0 dB and 5.0 dB, respectively. The corresponding signals, estimated using SS-W filter,
are shown in the second row. The third row displays the original signal for comparison. The
significant components of the BSAEP are clearly visible in the estimated output, and facilitate
measurement even at a low input SNR of 1.75 dB, although it shows a small amount of residual
noise. The residual noise in the estimated signal reduces with increase in the SNR of the input.
Figure 3.3 compares the results obtained by our technique on BSAEP-Sim signal simulated at a
SNR of 3 dB to the results achieved by simple hard thresholding. Fig. 3.3(a) presents the noisy
input signal; the corresponding signals estimated using hard thresholding and the SS-W filter
are shown in Figs. 3.3 (b) and (c), respectively. The output of the hard threshold estimator has
a large amount of impulse noise and spurious fluctuations at the boundaries of the thresholding
masks. This phenomenon is observed for input SNRs less than 3 dB. However, this noise is not
present in the signals estimated using our technique.

The performance of the two estimators is also studied in terms of the MSE of the
estimated output for different input SNRs. The results of comparison are presented in Fig. 3.4,
along with the MSE of the simple ensemble average. At any instant, the input to the SS-W filter

is the ensemble average up to the current sweep, which may also be termed as current ensemble
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Figure 3.2: Signals estimated from BSAEP-Sim at different SNR’s. Row (a): BSAEP-Sim signal
with input SNRs of 1.75 dB, 3.0 dB and 5.0 dB, respectively. Row (b): Signals estimated using
SS-W filtering. Row (c): Original signal.
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Figure 3.3: Comparison of signals estimated from simulated BSAEP using two different tech-
niques. (a) Ensemble averaged BSAEP-Sim signal at a SNR of 3 dB. (b) Output of hard

thresholding. (c) Output of SS-W.
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Figure 3.4: MSE of the estimated output for different input SNRs. Solid line: SSW filter.
Dashed line: Hard thresholding. Dotted line: EA. Input: BSAEPSim.
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average (CEA). The SNR for the CEA increases with larger ensemble length. In Fig. 3.4, the
x-axis shows the different input SNR’s studied and the y-axis shows the corresponding MSE
obtained. It can be seen that for any given CEA or SNR, the MSE of the signal estimated using
SS-W is smaller than that obtained using the hard threshold estimator. The comparison of the
three techniques in terms of correlation coefficient is shown in Fig. 3.5. This comparison too
reveals superior performance of the SS-W filter method compared to both hard thresholding
and simple EA.

Similar study is carried out for the simulated MLR signals too. MLR-Sim signals
estimated using the proposed technique for different input SNR’s are shown in Fig. 3.6. The first
row shows the input signal at SNRs of 2.5 dB, 4 dB and 6 dB, respectively. The corresponding
estimated signals are shown in the second row and the original signal is shown in the third
row for comparison. At low SNRs also, the signal estimated using SS-W filter shows distinct
component peaks. The performance of the estimator is compared to that of the hard threshold
estimator in Fig. 3.7 for an input SNR of 5 dB. The impulse noise in the signal estimated
using hard threshold is due to the rectangular thresholding (windowing) performed in this case.
Although the signal estimated using SS-W filter has some residual noise, measurements can still
be made from it. Comparison with the hard threshold estimator and ensemble averaging is
carried out using the performance metrics of correlation coefficient and MSE. The correlation
coefficients of the outputs obtained for diferent input SNRs are presented in Fig. 3.8 for all the
three estimators. Figure 3.9 presents the MSE of the estimators for different input SNRs. Both
the figures show a superior performance of the proposed SS-W filter compared to the other two

estimators.



Correlation Coeff.

CHAPTER 3. SPATIALLY SELECTIVE WIENER FILTERING

59

09

0.8

0.6 ;!

0.5_ 4y

0.4

0.2 : :

SNR
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ferent input SNR’s. Signal Studied: BSAEPSim. Solid line: SSW filter. Dashed line: Hard
thresholding. Dotted line: EA.
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Figure 3.6: Signals estimated from MLR-Sim for different input SNR’s. Row (a): Noisy obser-
vations at SNRs 2.5 dB, 4 dB, and 6 dB, respectively. Row (b): Signals estimated using SS-W
filter. (c) Original EP signal for comparison.
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Figure 3.7: Comparison of signals estimated from simulated MLR using two different techniques.
(a) MLR-Sim simulated with a SNR of 5 dB. (b) Output of hard threshold estimator. (c) Signal

estimated using SS-W filter.
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Figure 3.8: Correlation Coefficients of the estimated outputs with the original signal - for dif-
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Figure 3.10: Real BSAEP signals estimated using SS-W and hard threshold estimators for
ensembles of different lengths. Column (a): EA of 200, 300 and 400 sweeps, respectively.
Column (b): Signals estimated using hard thresholding. (c) Signals estimated using SS-W filter.

3.4.2 Results for real data

The proposed technique has been tested on a set of real brainstem AEP and middle latency
responses. The results obtained are presented in Fig. 3.10, along with those of hard thresholding.
Good and well defined components have been estimated from the noisy observations with the
proposed technique. As seen from the figure, the SS-W is clearly superior in estimating the

signal. Similar results for real MLR data are presented in Fig. 3.11.
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Figure 3.11: Comparison of real MLR signals estimated using SS-W filter and hard threshold
estimators for ensembles of different lengths. Row (a): EA of 200, 300 and 400 sweeps. Row
(b): Signals estimated using hard thresholding. Row (c): Signals estimated using SS-W filter.
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3.5 Discussion

Thresholding in a shift-invariant or translation-invariant (TI) expansion eliminates some of the
unpleasant artifacts introduced by modifying the coefficients of the orthogonal wavelet expan-
sion. Hence denoising in a shift-invariant, redundant representation outperforms that by the
orthogonal basis [46]. The wavelet transform based Wiener filter as described above improves
the EP data from repeated trials. A substantial reduction in noise has been observed. This
reduction is expected to improve subsequent quantitative analysis for extracting characteristics
such as amplitude, width and onset time of individual responses. Spatially selective Wiener
filtering is found to be giving better results both visually and in terms of mean square error in
comparison with hard thresholding.

Fig. 3.10 clearly illustrates the effectiveness of the proposed technique. For example,
the first column shows that the filtering scheme is able to recover all the signal maxima and
minima even from a highly noisy average of an ensemble of just 200 sweeps. Compared to the
normal case of a BSAEP which requires a minimum of 2000 sweeps, this is a reduction by a
factor of 10. Further, as seen from Fig. 3.3, hard thresholding introduces unwanted sharp spikes
in the resultant waveform, because of which the principal peaks and valleys of the response are
not always unambiguously identified. This is because of the phenomenon akin to the Gibbs
oscillations. Hard thresholding is equivalent to applying a rectangular window in the wavelet
domain, which entails the oscillations seen in the signal (time) domain. On the other hand, the
proposed spatially selective Wiener filter results in smooth, clear peaks and valleys, from which
measurements can be made easily. For the same input SNR, the MSE of the SSW estimate
is always less than that obtained with hard thresholing by a factor of at least 5. This is a
significant improvement in performance. In fact, as seen from Fig. 3.4, at low input SNR’s of
the order of 0.5 dB, SS-W filter gives rise to a very low MSE, which is comparable to that given
by the hard threshold estimator at SNR’s of around 4 dB. Results shown in Figs. 3.10 and 3.11

confirm that the technique produces equally valid results for real data too.

3.6 Conclusion

In this chapter, we have proposed a two level filtering method for estimating AEP signals. A

Wiener filter is formulated exploiting the inter-scale correlation in the wavelet domain. The
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wavelet transform data at a given scale is compared to its correlation with the data at larger
scales. Signal features are identified and retained because they are strongly correlated across
scales in the wavelet domain; noise is removed since it is poorly correlated across scales. The
signal features remain relatively undistorted because they are very well localized in space in
the wavelet domain. The spurious fluctuations normally caused near the end points of the
thresholding window in the hard thresholding scheme, and the smearing of the high frequency
data due to Wiener filtering are both nullified by using a combination of the two approaches,

resulting in an estimated signal far superior to that obtainable by either of them invidually.



Chapter 4

Gaussian radial basis function

network for EP estimation

4.1 Introduction

In the case of evoked potentials, the exact functional relation between the noisy obser-
vation and the evoked signal is unknown due to incomplete knowledge of the signal and noise
processes. Most of the efforts that have been made so far in EP estimation have used linear
parametric models. They include both time domain [73] and frequency domain [22] models.
Thakor et al. [68] have modeled EP as a dynamic Fourier series and the Fourier coefficients
are estimated adaptively using least mean squares (LMS) algorithm. Another relatively new
model-based estimation approach uses neural network filters, which possess built-in nonlinear
processing elements. Neural networks are used to effectively represent nonlinear mappings and
they can provide models that embody a much broader class of functions than linear models do.
Recently, a Gaussian radial basis function neural network (GRBFNN) has been used by Fung et
al [28] as a model for EP to account for the nonlinear nature of the signal. They assume that EP
responses can be modelled by a finite number of Gaussian radial basis functions (GRBF) with
their centers evenly distributed over the sweep time. Their weights are adaptively determined
using LMS algorithm.

The choice of the number of basis functions in the hidden layer and their parameters
is a key problem in designing a radial basis function (RBF) network. In the absence of a priori

knowledge about the latencies of individual component peaks of the signal, a uniform parameter
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radial basis function network (U-RBFN), with its centers uniformly placed over the length of
signal and with equal variances, may not be able to model the signal components efficiently.
Deriving the kernel parameters from the signal itself can improve both the effectiveness of the
model and the tracking property of the network. Hence, we propose a method, using which the
GRBF network parameters are deduced from the wavelet transform of the noisy signal to enable
the network to learn the functional form of the underlying EP signal more effectively. We use
the correlation in the wavelet domain for significant edge detection as explained in chapter 3,
and use the latter information to determine the GRBF network. We show that this yields better
results in terms of reduction in the order of the network and a more accurate signal model even
in the presence of noise. The results are compared with a network, whose kernels have centers
evenly distributed over the entire length of the signal and have equal spreads.

This chapter is organised as follows. A brief description is presented in section 4.2
on generalised RBF networks and a network with Gaussian kernel functions for EP estimation.
The method adopted for determining the network parameters is explained in section 4.3. The
results obtained for both simulated and actual data are discussed in section 4.4. This is followed

by conclusions in section 4.5.

4.2 Radial basis function networks

A RBF network approximates an unknown mapping function by using a two-layer data
processing structure. First, the input data undergoes a nonlinear transformation via the basis
functions in the network hidden layer. Then the responses of the basis functions are linearly
combined to give the network output. In particular, RBF networks have been proven to possess
the ’best approximation property’; that is, they can represent a continuous function arbitrarily
well. They perform the nonlinear mapping f : R® — R according to the formula

M
y(X) =D we(|| X - Cy 1) (4.1)

k=1
where X € R” is an N-dimensional input vector, ¢(.) is the given nonlinear radial basis function,
also known as kernel function, || . || denotes the Euclidean norm, wy, (k = 1,2, ..., M) are the
weights, C; € R" are the RBF centers, and M is the number of hidden units. A block schematic
of the RBF network is shown in Fig. 4.1. In place of the sigmoidal functions used in multilayer

perceptrons, radial basis functions are employed as the nonlinear activation functions of the
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hidden nodes. A radial basis function produces a localised response to an input. The response is
a function of the Euclidean distance between the input and the centroid associated with the basis
function. The nonlinearity within a RBF network can be chosen from a few typical nonlinear
functions. A general concensus is that the choice of the nonlinearity is not crucial for the good
performance of the RBF network. However, the performance critically depends on the chosen
centers and their widths.

The design of the network involves the selection of the basis functions, their number,
and determining their parameters to achieve the best generalization performance for a specific
data processing task. The parameters to be chosen are the centers Cy, and the radial dilation fac-
tors, usually called widths. This problem is most often tackled by clustering the data points and
using the cluster centers as the RBF centers [43]. Genetic evolution approaches for optimizing
the center locations and widths have also been attempted [70].

The task of training a RBF network can be broken into two phases: selection of basis
function parameters, followed by the determination of the output layer weights. In the case of
the Gaussian kernels, the parameters are the centers and the variances. The network output
layer adjusts its weights as it searches for the optimum contribution of the basis functions to

the network output, so that the best match to the desired response is achieved.

4.2.1 EP estimation by Gaussian radial basis function network

EP responses are modelled by a finite number of Gaussian radial basis functions. The

recorded ;™ evoked response, X j, may be vectorially denoted as,

where S; = [sj(1) --+ s;(IN)] and V; = [vj(1) -+ v;(IN)] denote the signal and noise content
in the j** sweep, with the time index ranging from 1 to N. Both the signal and the noise are
assumed to be stationary random processes with Gaussian distribution and uncorrelated to each
other. We have chosen Gaussian function as the radial basis function in designing a network
with M hidden nodes to approximate the underlying dynamics of S; in (4.2). The output of the
GRBFNN may be written as,

V;=8;=w'H (4.3)
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Figure 4.2: Schematic of the GRBF network for EP estimation

In the above equation, HY = [Hy; Hy;--- Hyy) is the hidden layer output matrix, and H, =
[hp(1) hp(2) --- hy(N)] represents the output of the p'* hidden node. The weights wT =
[w(1),---,w(M)] can be determined using optimization methods such as gradient search algo-
rithm by providing the input X; and the corresponding desired output Y; for few input-output

measurements. A schematic of the GRBF network with M hidden nodes is shown in Fig. 4.2.

hyp(n) = exp (—M) (4.4)

Op
where i, and o, are the Gaussian kernel parameters. The key problems to achieve the best
performance are the placement of the centers y, and the determination of the variances o,. In
the proposed method, the number of hidden nodes and the Gaussian kernel parameters are all

obtained from the WT of the input signal.

4.3 Determination of the kernel parameters

In the wavelet domain, signal features are still well localized in space. Sharp transitions in the

signal are preserved and depicted well. Wavelet transform modulus maxima capture the sharp
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variations of a signal, and their evolution across the scales characterizes the local regulariy of
the signal. By using undecimated wavelet transform, a signal edge is detected at a position
where there are maxima at several adjacent scales [52]. The second order correlation between
adjacent scales is used to identify the signal transition regions. A binary mask vector of length
N corresponding to each scale is created in which the positions corresponding to each significant
coefficient is equated to 1 (refer chapter2). For computing the correlation, we leave out the
smallest scale. This is because noise dominates the smallest scale in low SNR signals and
therefore, inclusion of the smallest scale for correlation based analysis of the input signal results
in too many wrong edges being extracted [24]. The number of kernels used is the same as the
number of edges detected in the wavelet domain. Their centers are determined as the mid-
points of the regions in which the wavelet transform is highly correlated across scales. The
width between two adjacent edges is taken as the variance of the kernel.

We decompose the EP signals into 4 scales using Bs- spline scaling function. A
translation invariant and nonorthogonal decomposition using ¢ Trous algorithm is used for the
decomposition. As the technique is based on edges detected from the input signal in the wavelet
domain, to obtain good results with less distortion, we summate the first [ sweeps to initially
improve the input SNR to a reasonable degree. This is carried out to avoid detection of noise
edges which are likely to dominate at very low SNR. Subsequently, we use the current average
of the sweeps as the desired signal in the GRBF network weight adaptation so that the model
parameters converge faster. Fig. 4.3 shows a noisy BSAEP signal with a SNR of 1.5 dB, along
with its decomposition into the 4 scales and the second order correlation vectors computed
using scales 2,3 and 3,4. The binary mask obtained using the correlation vectors is also shown
in the same figure. The mask indicates the most important signal edges and their widths. This
technique of detecting edges in the wavelet domain is well explained in [27] and [35]. We used
the number of edges detected in the space-scale domain as the number of GRBF kernels M to
be used and their centers i, are determined as the mid points of the identified significant signal

regions. The time interval between two adjacent edges is taken as the variance o, of the kernel.

4.4 Experimental results

The individual sweeps of AEPs have a low SNR. To obtain good results with less distortion,

we summate the first 100 ensembles to initially improve the input signal SNR marginally. This
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Figure 4.3: (a) and (f): Noisy BSAEP signal at SNR of 1.5 dB. (b), (c), (d), and (e): Its
decomposition into scales 1, 2, 3, and 4, respectively. (g) and (h): 2nd order correlation between
scales 2 - 3 and 3 - 4. (i) and (j): Binary and the corresponding Gaussian mask vectors.
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is carried out to avoid detection of spurious noise edges which are likely to dominate in the
wavelet domain at very low SNR. This enhanced signal with considerable remnant noise is used
for wavelet decomposition and subsequent estimation of the EP signal. We use the instantaneous
ensemble average upto the current sweep, called the current ensemble average (CEA), as the
desired signal in the network weight adaptation. With every additional sweep, the SNR of
the CEA improves as we assume a stationary EP signal across an ensemble of observations.
Results obtained with the proposed technique (W-RBFN) are compared with those of the U-
RBFN estimator. The comparison is carried out in quantitative terms using the correlation
coefficient and the MSE of the estimated outputs, and also in terms of the measured latencies
of the components, for different SNRs of the input signal. Results demonstrate the superiority
of determination of network parameters based on signal knowledge rather than using uniformly

spaced Gaussian kernels of fixed variance.

4.4.1 Results for simulated data

Figure 4.4 illustrates an EA of 100 BSAEP sweeps and the signal estimated from it using
the proposed technique. Significant regions detected in the wavelet domain using the magnitude
of inter-scale spatial correlation are shown as a binary vector in Fig. 4.4(b). In the wavelet
domain, the number of significant regions detected is 22 and hence those many hidden nodes
are used in the GRBF network. The corresponding Gaussian kernels used in the time domain
are shown in Fig. 4.4 (¢). The solid signal shown in Fig. 4.4(d) is the signal estimated using
W-RBFN and the dotted line shows the signal estimated using U-RBFN. It can be seen from
Fig. 4.4 that the component latencies are well preserved in the W-RBFN method whereas the
U-RBFN method fails to estimate some of the significant components. A comparison of the
latencies of the important components estimated by both the methods is presented in Table
I, along with the true values. As mentioned in chapter 1, in BSAEP signals, wave IIT and V
are the most important ones from the clinical angle. The failure of the U-RBFN in estimating
some of the components may lead to misleading diagnosis. In comparison, the signal estimated
using W-RBFN agrees closely with the original signal used in the simulation of BSAEP-Sim.

In Fig. 4.5, we present the signals estimated from the noisy CEA of different number of
sweeps. In this figure, the first row shows the noisy CEA for different ensemble lengths. Second

row shows the outputs of the U-RBFN estimator. The outputs of the W-RBFN estimator are
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Figure 4.4: Signal estimation using GRBF network. (a) Simulated BSAEP signal (EA of 100
sweeps). (b) Binary mask vector in the wavelet domain. (c) The corresponding Gaussian kernels.
(d) Signals estimated using W-RBFN (solid line) and U-RBFN (dashed line).



CHAPTER 4. GRBF NETWORK FOR EP ESTIMATION 7

Table 4.1: Comparison of estimated latencies (ms) for BSAEP-Siml

Peak component 1 II I | 1v A%
True latency 1.7 | 28 | 39 | 5.0 | 5.9

W-RBF estimate || 1.65 | 2.75 | 3.81 | 4.98 | 5.95

U-RBF estimate || 1.92 - 3.7 - 6.12

illustrated in the third row and in the fourth row, the original signal used for the simulations is
presented for comparison. It can be seen that the W-RBFN is able to estimate the components
well, whereas the U-RBFN is unable to estimate some of the components. This is because in
an evoked potential signal, the component peaks are not equally spaced on the temporal scale,
whereas the U-RBFN uses kernels with centers uniformly placed along the time axis and in the
adaptation algorithm, only the weights of the basis functions are changed. It can be seen from
the figure that although we use the same number of hidden nodes in both the methods, U-RBFN
fails to estimate some of the components and their latencies correctly.

A comparison of the outputs of W-RBFN is also carried out with those of U-RBFN
in terms of MSE and CC, and the values of these performance metrics are plotted against the
number of sweeps. In Fig. 4.6(a), the values of MSE for different lengths of the ensemble are
plotted and in Fig. 4.6(b), the values of the correlation coefficient are plotted. In both the
figures, the solid line shows the respective performance index with the proposed method and
the dashed line, that for U-RBFN method. The dotted line shows the values for the signals
estimated using simple ensemble averaging. Both the quantities are computed with reference to
the actual signal used in synthesizing BSAEP-Sim. It can be seen that the estimation using EA
is inferior to both the methods because both methods attempt to remove the residual noise in
the EA. The plots illustrate that for any given ensemble length, the GRBF performs an excellent
approximation of the underlying signal from noisy observations and that wavelet preprocessing
results in a more accurate approximation of the component peaks with fewer number of hidden
nodes.

A similar study has been carried out for the case of MLR data too. These signals do
not have as many components of importance as the BSAEP signals. Thus, the number of edges
detected in the wavelet domain is 10. The signals estimated for different length EAs are shown

in Fig. 4.7. In this figure too, the first row shows the noisy CEA and the second row shows the
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Figure 4.5: Signals estimated from BSAEP simulated with different lengths of the ensemble.
Row(a): Current ensemble averages of 50, 200 and 400 sweeps, respectively. Row (b): Signals
estimated using U-RBFN. Row (c): Signals estimated using W-RBFN. (d) Original signal.
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Figure 4.6: Comparison of performance of U-RBF and W-RBF estimators on BSAEP-Sim signal.
(a) MSE Vs. No. of sweeps. (b) Correlation coefficient Vs. No. of sweeps.

Table 4.2: Comparison of estimated latencies (msec) of MLR-Sim1l

Peak Component | Na | Pa

True latency 18.5 | 33
U-RBFN estimate | 22 | 30
W-RBFN estimate | 19 | 33

signals estimated using U-RBFN and the third row shows the outputs of W-RBFN estimator.

For comparison, the original signal used for the simulation is shown in the fourth row.

In Fig. 4.8, we compare the results of the two networks in terms of MSE and CC. Here

too, both the methods outperform the EA estimator. Component latencies from the signals

estimated using both the methods are listed in Table -II along with their true values from the

original signal. It can be seen that in the case of MLR signals also, the latency estimation of

components is better using W-RBFN.

4.4.2 Results for real data

The proposed technique has been tried on clinically recorded brainstem auditory evoked

potentials. Figure 4.9(a) presents the average of 500 sweeps of a BSAEP signal and the signal
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Figure 4.7: Signals estimated from MLR simulated with different lengths of ensemble. Row
(a): Current ensemble averages. Row (b): Signals estimated using U-RBFN. Row (c): Signals
estimated using W-RBFN. Row (d): Original signal.
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Figure 4.8: Comparison of performance of U-RBFN and W-RBFN on simulated MLR signals.
(a) MSE Vs. No. of sweeps. (b) Correlation coefficient Vs. No. of sweeps.

estimated using the proposed method from an ensemble average of 150 sweeps is shown in
Fig. 4.9(b). It can be seen that the measurements such as the component latencies and their
amplitudes can easily be made from the estimated signal, and this is not easily possible using
the CEA of 500 sweeps shown in Fig. 4.9(a). The signal estimated using U-RBFN is shown in
Fig. 4.9(c), wherein the components are not clearly visible.

The results for a real MLR input signal is shown in Fig. 4.10. This figure illustrates
the estimation using both the methods for a specific EA. Figure 4.10(a) shows the CEA of 200
sweeps of MLR signal and in 4.10 (b & c), the signals estimated using W-RBFN and U-RBFN,
respectively, are shown. Although both methods succeed in removing the residual noise in the
EA, the U-RBFN estimator has a wavy appearance in comparison with the W-RBFN estimator,
which shows well defined components. This is because, although both the methods use the same
number of basis functions (10 in this case), the U-RBFN places them at equal distances over the
analysis time. Hence, even though the network converges, it still has few additional peaks. Since
the MLR signal is of low frequency, these additional components are visible. In the W-RBFN
output shown in the third row of Fig. 4.10, the components are better defined, facilitating easy

measurement of their latencies.
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Figure 4.9: BSAEP signal estimated from real data. (a) EA of 500 sweeps. (b) Signal estimated
using W-RBFN. (c) Signal estimated using U-RBFN.
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Figure 4.10: MLR signal estimated from real data. (a) EA of 200 sweeps. (b) Signal estimated

using W-RBFN. (c) Signal estimated using U-RBFN.
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4.5 Conclusion

The signal singularities are identified in a noisy background and then a signal is reconstructed
that is better suited for the identification of the relevant peaks. The method uses the properties
of the evolution of the wavelet transform maxima across scales and an RBF network in order to
identify the signal singularities. The proposed method uses the correlation of wavelet coefficients
across scales. The local characteristics of RBF training assure that the signal representation
learned from the network approximates the interesting peaks well. The Inverse Discrete Wavelet
Transform (IDWT) provides (at least theoretically) a signal that resembles more closely the
original. The IDW'T is computationally more effective than the training of an RBF network.
However, the fact that the RBF network provides only the interesting peaks can be a significant
advantage to the later processing tasks.

The powerful modeling capability of RBF networks is used to model the non-stationary
characteristics of evoked potentials. The network with parameters derived from the signal itself
entails a more accurate model and captures the essential features of the components of the EP.
On the other hand, kernels with equally spaced centers and constant variance do not faithfully
capture the underlying signal as the network cannot adapt to the individual components which
convey diagnostically valuable information. Normally, the selection of the number of kernels is
a difficult problem since a smaller number of basis functions results in poorer approximation
and a larger number may cause overfitting of the data with a poorer generalization. In our
case, using the characteristics of the edges detected in the wavelet domain for the RBF network
design effectively solves the problem. The number of hidden nodes and the kernel parameters
such as centers and widths are derived from the signal behaviour in the wavelet domain. The
special treatment of the edges by the wavelet transform has been exploited in this. As the sig-
nal knowledge is incorporated into the network design, convergence becomes fast. A Gaussian
function is chosen as the kernel as it is an universal approximator, bounded and therefore more
stable in adaptive processing. Results obtained from simulated and real EP data demonstrate
the estimator’s ability to suppress the noise even at low SNR. The advantages of using signal de-
pendent kernel parameters for the GRBFNN are in terms of model accuracy, and fewer nodes in
hidden layer, and thus, in the speed of convergence of the network too. The proposed technique

leads to enhanced signal components.
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Conclusion

There has been a recognized need to obtain evoked potentials with minimum number of stimulus
repetitions. This need stems from the fact that use of fewer repetitions will allow tracking of
physiological changes in the central nervous system, thereby providing useful information in
neurosurgery, intensive care, anaesthesia monitoring, and other similar applications. In this
thesis, we have proposed three different estimators based on wavelet transform. Any of these
estimators can be incorporated into commercially available evoked potential equipment as a post
processing module after ensemble averaging.

The wavelet domain Gaussian filter has edge and feature-sensitive selectivity in pass-
ing and scaling the wavelet coefficients. The filtering around the identified edges is smooth, thus
enhancing the signal component regions, without introducing distortions like the ones caused
by the binary masks. Temporally varying the threshold using local estimation of noise variance
can handle slow transition regions better. The features with the same strength as the noise
are distinguished by using the change in variance around the identified edges. By using this
additional check, false detection of sharp noisy edges as signal featurs is avoided. Although the
filter does not possess any optimality property, it is simple and efficient for the case of EPs. The
proposed method is most suited as a post-processing tool for EP signal enhancement when the
signal is non-stationary and a proper noise model is not available.

In our second approach, we propose a two level Wiener filtering scheme exploiting the
inter-scale correlation in the wavelet domain. Enhancement of signal to noise ratio is obtained
in the wavelet domain by comparing data at any scale to its correlation with the data at larger

scales. Signal features are identified and retained because they are strongly correlated across
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scales in the

transform domain. Noise is identified and removed since it is poorly correlated across scales
in the wavelet domain. Signal features remain relatively undistorted because they are very well
localized in space in the wavelet domain. The spurious fluctuations normally caused near the
end points of the thresholding windows in hard thresholding schemes, and the smearing of the
high frequency data due to Wiener filtering are both avoided by using a combination of these
two approaches, resulting in an estimated signal superior to that obtainable by either of them
alone.

In the third proposed technique, the powerful modeling capability of RBF networks
is used to model the non-stationary characteristics of evoked potentials. The design of the
network to achieve best generalization performance in a specific data processing task, involves
the selection of the basis functions, their number, and determination of their parameters such
as the centers and the radial dilation factors. We propose a method using which the GRBF
network parameters are deduced from the wavelet transform of the noisy signal to enable the
network to learn the functional form of the underlying EP signal more effectively. The GRBF
network is determined using the characteristics of the significant signal features detected using
the correlation in the wavelet domain. We show that this yields better results in terms of
reduction in the order of the network and a more accurate signal model. The results are compared
with a network whose kernel centers are evenly distributed over the entire length of the signal
with equal spreads. We used the number of edges detected in the space-scale domain as the
number of GRBF kernels to be used and their centers are determined as the mid points of the
signal regions identified. The intervals between adjacent edges are taken as the variances of the
kernels. Results demonstrate the superiority of determining the network parameters based on
signal knowledge rather than using uniformly spaced Gaussian kernels of fixed variance.

This has ensured that the component latencies are well preserved in the W-RBFN
method whereas the U-RBFN method fails to estimate some of the significant components. It
can be seen that the W-RBFN is able to estimate the components. This is because in an evoked
potential signal, the component peaks are not equally spaced on the temporal scale, whereas the
U-RBFN uses kernels with centers uniformly placed along the time axis and in the adaptation
algorithm, only the weights of the basis functions are changed. It is observed that although we

use the same number of hidden nodes in both the methods, U-RBFN fails to estimate some of
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the components and their latencies correctly.

5.1 Significant contributions of the thesis

e One of the chief contributions of the thesis lies in the exploitation of the persistence
property of the wavelet coefficients to identify signal dominant regions in the time-scale
domain. As per this property, large/small wavelet coefficients tend to propagate across
scales. This motivated us to study the possibility of obtaining a cross-scale correlation

based method for identifying signal features.

e A new spatially selective Gaussian (SSG) filtering method which is better suited for the
case of signals corrupted with colored noise. In addition to the inter-scale correlation of
the decomposed noisy signal in the wavelet domain, it also exploits the distribution of the
wavelet coefficients in small localised regions. The proposed Gaussian filter in the wavelet
domain possesses edge and feature-sensitive selectivity in passing and scaling the wavelet

coeflicients.

e We have proposed a combination of the principles of hard thresholding and Wiener filtering,
resulting in an estimated signal superior to that obtainable individually by either of them.
The spurious fluctuations normally caused near the end points of the thresholding windows
in the hard thresholding schemes, and the smearing of the high frequency data due to

Wiener filtering, are both minimized by using a judicious fusion of the two.

e The choice of the number of basis functions in the hidden layer and their parameters
is a key problem in designing a radial basis function network. By deriving the kernel
parameters from the signal, we have improved both the effectiveness of the model and

tracking property of the network.

5.2 Directions for future research

All the methods proposed in this thesis assume that there is no major variation between sweeps in
the morphological or temporal characteristics of the evoked potentials being recorded. One could
explore the necessary modifications that may be necessary if one assumes dynamic modifications

of one or more of the attributes of the signal during the session of recording. Such modifications
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may be caused due to, say, surgery, innate jitter in the biological system, or pathology of the
neural pathway such as fatigue due to conditions such as, myesthenia gravis.
The problem of single evoked potential estimation can be addressed.

Other methods of estimation, such as those based on neural networks, can be at-

tempted for this problem.
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