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Abstract

Speech enhancement algorithms process the noisy speech signal and try to estimate the clean

speech in order to improve its quality or intelligibility. Restoring the required speech from the

one corrupted by background noise is still a challenging problem in the field of speech processing.

There are a variety of applications for speech enhancement algorithms such as communication,

hearing aids, automatic speech recognition (ASR), speech coding, forensic applications and

restoration of historic recordings.

In this thesis we propose, implement and analyze various speech sound class-specific and

noise-specific enhancement approaches and frame-wise selection methods for class-specific and

noise-specific models. For all the work presented in this thesis, we consider a single channel,

additive noise framework. Experiments are performed with speech data from TIMIT corpus

and noise samples from NOISEX-92 database. As a final, exploratory study, we have recorded

traffic noise from ‘CV Raman road’ and conducted limited experiments on speech corrupted by

this noise.

As the first experiment, we have analyzed the performance of our enhancement scheme,

where we use various speech-sound class-specific dictionaries to enhance noisy speech. Speech

signal is composed of several sounds which can be categorized in various ways, such as manner-

of-articulation, place-of-articulation, or phonemes. Some of these classes, such as fricatives,

might correlate well with certain noise types more than the other classes. Hence the atoms

in a dictionary learned using these classes may represent noise power to varying degrees and

consequently result in poor speech reconstruction. By removing the contribution from atoms of

these classes that correlate well with noise, one could improve the enhancement performance.

One way to achieve this is to learn different dictionaries for different classes and select a par-

ticular dictionary for a segment. We explore a class-specific enhancement approach, where we

use a sparse coding dictionary based approach to learn dictionaries of various speech classes

namely, manner of articulation, place of articulation and phonemes and noises factory2, m109,

leopard, babble and volvo. We found that using class-specific dictionaries for enhancing each

frame would result in better enhancement than using class-independent dictionaries for all the
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Abstract

frames. Initially, a set of labels are obtained by recognizing the speech, enhanced using a

class-independent dictionary. Using these approximate labels, the corresponding class-specific

dictionaries are used to enhance each frame of the original noisy speech. We use dictionary

learning method using approximate KSVD with LARC coding. We have evaluated the SSNR

and PESQ measures of the proposed approach using ground truth phoneme labels and found

only marginal improvements in most of the cases over class-independent enhancement. However,

when we analyze the performance of our various class-specific approaches in terms of phoneme

recognition, we obtain performances superior to the class-independent case, even when we use

estimated (approximate) labels for enhancement. We have analyzed the performance using

manner of articulation (MOA), place of articulation (POA) and phoneme-specific dictionaries.

The phoneme-specific dictionary based enhancement outperforms the MOA and POA based

schemes in most of the cases.

An error in the estimated class labels in the class-specific approach results in the selection

of an erroneous dictionary for enhancement. The joint enhancement-decoding (JED) algorithm

that we propose tries to overcome this issue by jointly optimizing the labels for all the frames and

the decoding path to improve the phoneme recognition accuracy. The algorithm optimizes over

multiple enhanced versions of each frame using different phoneme specific dictionaries and gives

the maximum likelihood path of state sequences as well as the best (in the maximum likelihood

sense) choice for the enhanced observation sequence as its output. The current noisy speech

frame is enhanced by multiple (N) phoneme-specific dictionaries close to the approximate label

of that frame. These N enhanced frames are then fed into the JED algorithm. The algorithm

accepts these N observations and chooses the best for each frame such that the overall likelihood

is maximized to obtain the final recognized labels. The Viterbi decoding algorithm used in

speech recognition is integrated with the class label selection to develop the JED algorithm.

Experiments are conducted by varying N from 1 to 5 based on the phoneme confusion matrix

to find the best value of N that gives the maximum recognition performance for various noises

and SNRs. Our experiments show that the recognition performance varies with the number of

dictionaries, and in most of the cases, is the best when two or three dictionaries are employed.

We also propose a method of picking the best DNN model in the scenario where multiple

noise-specific DNN models are available for enhancement, using the Monte Carlo (MC) dropout

proposed by Gal and Ghahramani. MC dropout is a tool for modeling the uncertainty in a

DNN, using dropout during inference stage. The conventional dropout of these multiple DNN

models is replaced with MC dropout and a measure of the model uncertainty is used for the

selection of DNN models. The trace of the covariance matrix (Var) of the output signal vectors,

resulting from different MC dropout trials, is used as a measure of the model precision to select

iii



Abstract

one out of multiple models for each frame, using this variance as a proxy for squared error. We

find this method to be particularly useful for unseen noisy scenario, where the noise corrupting

the test speech is different from those with which the available DNN models are trained. The

method performs better than the approach of using a DNN classifier for the selection of noise-

specific models for unseen noisy scenario. We observe some promising results in enhancement

performance of the algorithm on speech corrupted with a mixture of multiple noises and for

the case where random segments of speech are corrupted by different unseen noises. In another

significant experiment, we evaluate the performance of our algorithm on real world, traffic

noise recorded by us. Our algorithm gives performances superior to classifier-based noise-

specific model selection scheme in this case as well. We also explore the use of MC dropout in

improving the generalizability of a single DNN model for enhancement when the conventional

dropout is replaced by MC dropout. We show that in the case of noisy speech corrupted with

unseen noises, MC dropout models can give a better denoised output than conventional dropout

models.
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Notations

A active set of dictionary atoms

a the inner product vector using Gram matrix and w for updating residual coherence

b scalar used for computing the unit vector w in LARC

C sparse coefficient matrix

c total number of dictionaries in each class categories

c∗ selected class label

ccon sparse coefficient vectors of concatenated dictionary Ds and Dx

cI sparse coefficient for I th iteration of KSVD

cx sparse coefficient vector of noise dictionary

c∗o sparse coefficient solution of any general sparse coding problem

cs sparse coefficient vector of speech dictionary

D dictionary matrix concatenating Ds and Dx

D0 composite dictionary of Dind and Dx

D1 composite dictionary of DMOA
c∗ and Dx

D2 composite dictionary of DPOA
c∗ and Dx

D3 composite dictionary of DPHN
c∗ and Dx

Ds overcomplete dictionary of speech

Dx overcomplete dictionary of noise

D(0) initial dictionary for KSVD

DI dictionary for I th iteration of KSVD

Dind class independent speech dictionary

DMOA
c manner of articulation-specific speech dictionary

DPOA
c place of articulation-specific speech dictionary

DPHN
c phoneme-specific speech dictionary

D∗i ; 1 ≤ i ≤ N N best dictionaries corresponding to the obtained class labels in best-N scheme

D(:,A), G(:,A) D and Gram matrices defined for set A

El KSVD estimation error for the N examples when lth atom is removed
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ER
l KSVD error involving samples using atom D(:, l)

Elg Mean square logarithmic error for DNN training

F The total number of frames

G Gram matrix for LARC

g vector obtained using Gram matrix and sign vector for computing the unit vector w

g1 updated elements C(l,N) in approximate KSVD

h updated atom D(:, l) in approximate KSVD

j∗ index of atom most coherent to the residue in sparse coding

J number of forward passes in MC dropout scheme

k frequency index

L number of dictionary atoms

l each atom index of D

M total number of noise-specific DNN models

N number of best labels considered for enhancement in each frame for best-N scheme

ob(·|qj) observation probability given state qj

Q = q∗1, q
∗
2 . . . q

∗
F state sequence in JED

L(X) vector space spanned by vectors x1 and x2

N location of the nonzero coefficients in the coding row C(l,n)

R number of frequency bins

S(ωk) STFT of the clean speech

S magnitude STFT of clean speech

Sf magnitude STFT of a frame of clean speech

Ŝk, Sk the estimated and reference spectral features, at frequency index k

Ŝf estimate of the STFT of a frame of enhanced speech

ŝ estimate of enhanced speech in time domain

s(m) mth sample of the time domain clean speech

sgn sign of µA

t cardinality constraint for sparse coding problem with l0 norm

t1 cardinality constraint for LASSO

tr(qk → qj) transition probability from states qk to qj

U , V T , Σ orthonormal matrices and sigma matrix of SVD decomposition

u equiangular vector in LARC

u2 unit bisector for LARS

X(ωk) STFT of the noise signal

X magnitude STFT of noise
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Xf magnitude STFT of a frame of noise

x(m) mth sample of the time domain noise signal

x1, x2 basis vectors of L(X) space

Y (ωk) STFT of the noisy speech

Y magnitude STFT of noisy speech

Yf magnitude STFT of a frame of noisy speech

Ymat data matrix including N samples of Yf

y(m) mth sample of the time domain noisy speech

Ŷf estimate of the STFT of a frame of noisy speech

ȳ2 projection of vector Yf into L(X) space spanned by vectors x1 and x2 in LARS

z LARC estimate of the vector Yf input

φ(f, qj) maximum likelihood of observing speech vectors θ1 to θf being in state qj at instant f

Ψ(f, qj) partial path with maximum likelihood in state qj at time instant f

θif enhanced observation at the f th frame using class-specific dictionary with ith label

for JED

Θ = {θif ; 1 ≤ f ≤ F, 1 ≤ i ≤ N}
σ error constraint for sparse coding problem

γ step size for LARC

γ̂1, γ̂2 step factor for LARS

µA residual coherence corresponding to active set in LARC

µ̂0, µ̂1 vectors in L(X) space for LARS

µcoh residual coherence threshold of LARC

µj, µk jth and kth element of residual coherence in LARC

µ(Yf ), µ(z) constant and variable part of the residual coherence in LARC
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Chapter 1

Introduction

One of the unique features that differentiates humans from other species in the animal kingdom

is their ability to produce properly articulated sounds defined as speech. The ability of humans

to communicate through speech in various languages is truly astonishing. It is a very efficient

means as well. It not only conveys linguistic information but also other important aspects like

the mood of the speaker.

Unless the speaker is in a perfectly quiet environment like an anechoic chamber [1], the

speech recorded is affected by the background noise present. As the noise increases, the in-

formation extracted from the recorded speech becomes less accurate. Hence the quality and

intelligibility of speech is an important factor. The performance of speech processing systems

used for communication or storage degrades due to these background noises, which results in

information loss and hence, the removal of noise from speech is of great relevance.

Speech enhancement processes the noisy speech signal in order to improve its quality or

intelligibility. Enhancement algorithms try to estimate the clean speech from the noisy record-

ings. Over the years, a vast number of methods have been developed to enhance speech [2].

But the complexity of the speech signals makes it rather difficult. Thus restoring the required

speech from the one corrupted with background noise is still a challenging problem in the field

of speech processing. The affected noise can be additive or convolutive. Most existing en-

hancement algorithms assume the noise to be additive. The additive noise problem, despite

appearing to be rather simple, considerably reduces the quality and intelligibility of speech and

is a challenging one even today. For the present work, we assume an additive noise framework.

Figure 1.1 shows a basic block diagram of speech enhancement framework for additive noise.

The noise affecting the speech could be from several sources like traffic, vehicle engine, train,

nearby speakers, party and factory. There are a variety of applications for speech enhancement

algorithms. One such application is in the field of communication [3–5]. The invention of mobile

1



phones for personal communication was a giant leap in the field. At the same time, reliable

communication is a real challenge in today’s world due to the surrounding noise. Speech

enhancement is applied here to reduce this interfering noise for an efficient communication. In

intercom systems such as the one used by pilots, aircraft crew, rescue personnel etc, where the

noise level is quite high, efficient noise free communication is of utmost importance. A similar

application is in communication over Internet such as via Skype, Google talk etc. Another

Figure 1.1: Enhancement framework for speech with additive noise

important application of enhancement algorithms is in hearing aids. A person with good hearing

ability is able to understand the speech even in a noisy environment due to the redundancy

of speech [6]. But for a person with hearing loss, most part of the speech is inaudible or

distorted. Thus even a small background noise can heavily affect the intelligibility for such a

person. A person with hearing loss requires a higher SNR range for better hearing compared

to others. A hearing aid helps to achieve this by amplifying the speech. This might also result

in the amplification of the background noise [7]. Hence speech enhancement algorithms are an

integral part of hearing aids [6–8].

Speech recognition is a process of converting speech signal into a sequence of meaningful

symbols such as words or phonemes [9]. The performance of an Automatic Speech Recognition

(ASR) system degrades significantly in the presence of noise due to the mismatch between

training and testing environments. Several techniques have been proposed to address this

problem of which one of the most popular method is to employ a speech enhancement algorithm
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as the front-end processing [10, 11]. The enhancement algorithms employed for an ASR system

has to ensure that the noise is reduced while ensuring that it is still suitable for machine

recognition.

Speech enhancement algorithms also find other applications such as speech coding, forensic

applications, restoration of historic recordings etc.

1.1 Enhancement of single channel speech with additive

noise

Speech enhancement algorithms can be broadly classified into single channel and multi channel

based on the number of input channels. For single channel enhancement only one input channel

is available whereas multi channel case take the advantage of the availability of multiple signal

inputs using microphone arrays. For the present work we have considered a single channel case

with additive noise.

Framing

Yf

Analysis Synthesis
enhanced

speech

noisy

speech

Enhancement

algorithm

Ŝ(Yf)

6 Yf

OLA

Figure 1.2: Single channel speech enhancement framework. The input noisy speech y(m) is
divided into frames. This is followed by an analysis stage to obtain the transform Yf for a

particular frame. The enhancement algorithm is applied on this transform which gives Ŝ(Yf ).

A synthesis stage transforms the enhanced frames Ŝ(Yf ) back to time domain, usually using
the noisy phase ∠Yf , which is followed by an overlap add (OLA) stage to get the enhanced
speech samples.

Figure 1.2 shows the general block diagram of a single channel speech enhancement frame-

work under additive noise. Let s(m) be the mth sample of clean speech and x(m) be the additive

noise. The noisy speech is given as;

y(m) = s(m) + x(m) (1.1)
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The aim of single channel speech enhancement is to obtain an estimate of the clean speech

ŝ(m). The noisy speech is first divided into overlapping frames and then a transform such

as discrete Fourier transform (DFT) is applied at the analysis stage to obtain Y (ωk), where

ωk = 2πk
R

, k = 0, 1, 2...R − 1 , R is the number of frequency bins and k is the index. It is a

common practice to apply the enhancement algorithm on the magnitude term Yk and combine

it with the noisy phase ∠Y (ωk). A synthesis stage is used to apply the inverse transform on

this enhanced transform coefficients to convert it back to time domain. Finally overlap add

method is applied to obtain the enhanced speech ŝ(m).

1.2 Classification of speech enhancement algorithms

Speech enhancement algorithms can be generally classified as 1) spectral subtraction methods

2) Wiener Filtering 3) statistical model based algorithms 4) subspace methods 5) supervised

learning approaches [2].

1.2.1 Spectral subtraction methods

Early work on enhancement using spectral subtraction was proposed in [12, 13]. Spectral sub-

traction methods assume that the noise affecting the speech is additive. The basic idea is to

obtain an estimate of the clean speech spectrum by subtracting an estimate of the noise spec-

trum from the spectrum of noisy speech. The operation is usually performed in the magnitude

spectral domain. Multiplying the noisy magnitude spectrum Yk by a gain function Hk we get;

Ŝk = Hk × Yk (1.2)

where Ŝk is the enhanced speech magnitude spectrum at the kth frequency index.

Hk is computed from the magnitude spectrum of the noisy speech Y and an estimate of the

noise Xk as;

Hk = 1− Xk

Yk
(1.3)

The clean speech estimate is obtained by taking the inverse transform of Ŝk with the phase of

the noisy speech ∠Y (ωk). Thus this technique largely depends on the noise estimate, which

is obtained from the non-speech sections and hence is highly dependent on the voice activity

detector (VAD) [14] used. This in effect causes errors in the estimation of magnitude spectrum

Ŝk. Several techniques have been proposed to address this problem [2, 13, 15]. The noise
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estimation errors also produce a new randomly fluctuating type of noise referred to as musical

noise. Many present day research in this field tries to address this problem as well [16–19].

1.2.2 Wiener filtering

Wiener filtering technique enhances the speech signal by minimising the mean squared error

(MSE) [20]. In this case also, the enhanced magnitude spectrum Ŝk is obtained as;

Ŝk = Hk × Yk (1.4)

To obtain the gain function Hk, the mean square error (MSE) between the clean speech Sk

and estimated speech signal Ŝk is minimized. Assuming additive noise, the gain function is

computed as;

Hk =
S2
k

Y 2
k

= 1− X2
k

Y 2
k

(1.5)

The clean speech estimate is obtained by taking the inverse transform of Ŝk using the phase

of the noisy speech ∠Y (ωk). Alternative methods of computing the gain function include an

a-priori SNR based approach [21]. An iterative Weiner filter approach was proposed by Lim

and Oppenheim [22]. Sreenivas and Kirnapure [23] developed a codebook constrained, iterative

Wiener filter for enhancement. Several techniques have been proposed for the reduction of

distortion introduced by this technique [24, 25]. An enhancement technique was used in [26] to

deal with the musical noise introduced during Wiener filtering. Chen and Loizou [27] developed

a new frequency-specific composite gain function for Wiener filtering.

1.2.3 Statistical model based algorithms

Statistical model based methods are defined as a statistical estimation problem with a well

defined optimality criterion and statistical assumptions. These methods derive the noise sup-

pression filter response based on a statistical model of the desired signal and noise. The pa-

rameter estimation based on maximum likelihood principle was applied to speech enhancement

by McAulay and Malpass [28]. They performed a spectral decomposition of a frame of noisy

speech and attenuated specific spectral lines depending on the proportion in which the mea-

sured speech plus noise power exceeded an estimate of the background noise power. Minimum

mean square error (MMSE) method of speech enhancement uses mean square error for esti-

mation. This method uses non-linear Bayesian estimation techniques. MMSE requires prior

knowledge of the probability density functions (pdfs) of the speech and noise. Ephraim and
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Malah proposed an MMSE estimator of the short time spectral amplitude (STSA) [29]. The

MMSE-STSA method models speech and noise spectral components as statistically independent

Gaussian random variables. Ephraim and Malah also proposed an estimator that minimizes

the mean square error of the log spectra for enhacing noisy speech [30]. A power spectral

density MMSE (PSD-MMSE) estimation was used in [31] for enhancement. Srinivasan et.al.

proposed a codebook based Bayesian MMSE approach for speech enhancement in non station-

ary noise [32]. An analysis of the musical noise generated by MMSE-STSA estimator was done

in [33]. Enhancement techniques have also been developed assuming a non-Gaussian pdf for

MMSE estimation [34, 35]. Maximum a posteriori (MAP) methods estimate the parameters by

maximizing the posterior pdf. Lotter and Vary [36] proposed a maximum a posteriori (MAP)

estimator on spectral amplitude assuming a super-Gaussian prior. Loizou [37] proposed many

Bayesian estimators in the magnitude spectrum using perceptually relevant distortion metrics

as cost functions. Several techniques have also been developed [38, 39] to improve the estima-

tion of a priori SNR. I. Cohen [38] proposed a non-causal estimator for the a priori SNR, and a

corresponding non-causal speech enhancement algorithm. A two-step noise reduction (TSNR)

approach was proposed in [39] to refine the estimation of the a priori SNR.

1.2.4 Subspace methods

The subspace methods for speech enhancement are derived using the principles of linear algebra.

These methods assume that speech occupies a small subspace of the entire noisy speech space

whereas noise occupies the entire space. In other words, the covariance matrix of the clean

speech is rank deficient, while that of noise is full rank. Thus in this technique, the noisy speech

signal is decomposed into two subspaces; the signal plus noise subspace and the noise subspace.

The noise subspace is then removed from the signal plus noise subspace to estimate the clean

speech signal. One approach in this method is to use the singular value decomposition (SVD)

of time domain signals ordered in either Toeplitz or Hankel matrices [2]. Dendrinos et. al. [40]

proposed an SVD based enhancement method by neglecting the eigenvectors corresponding to

the smallest singular values, where the most of the noise information is contained and retaining

the ones corresponding to the largest singular values where signal information is contained.

There are several modifications of the SVD based method for speech enhancement [41–43].

Another similar approach is to use the eigenvalue decomposition (EVD) on the covariance

matrix of the signal. Ephraim and Van Trees [44] proposed a Karhunen Loeve transform

(KLT) based decomposition approach for speech enhancement. The main limitation of these

methods is the assumption that the noise affecting speech is white. Several extensions have
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also been suggested [45–49] to enhance speech signal corrupted with colored noise .

1.2.5 Supervised learning approaches

Supervised learning approaches are different from the methods discussed above. The unsu-

pervised methods discussed above are based on certain assumptions on the speech and noise

signal and in general require the estimation of certain unknown quantities such as a priori SNR.

Supervised approaches for enhancement, on the other hand, make use of representative data to

learn the task. Certain models are considered for speech and noise signals and the parameters

are learned from the set of training data available.

Ephraim developed a Bayesian estimation approach for enhancing speech signals where

MMSE and MAP estimators were learned using hidden Markov models (HMM) [50]. Another

HMM based enhancement method using MMSE principle for nonstationary noise was proposed

in [51]. Kundu et. al. [52] proposed a GMM based approach for modeling the pdf of clean

speech. Several codebook-driven approaches have also been developed [32, 53]. Dictionary

learning approach for speech enhancement is also widely popular due to the effectiveness of the

method. Non-negative matrix factorization (NMF) based methods [54–58] have been proposed

where speech and noise dictionaries are learned from their respective training data using NMF.

Thus the noisy speech spectrogram can be represented as a linear combination of basis vectors

from clean speech and noise. Sparse coding based dictionary learning [59] is also widely used

for speech enhancement, in which the general assumption is that the structured signals like

speech can be sparsely represented as a linear combination of dictionary atoms. In some of

the early works using artificial neural networks (ANN) [60–62], the authors have developed

shallow networks to directly learn the mapping between a noisy speech frame and the clean

speech frame. Recently, with the development of highly efficient computational resources and

availability of huge amount of learning data, deep neural networks (DNN) have been widely

used to learn the complex non-linear mapping between noisy and clean speech [63–68].

1.3 Performance measures

Evaluation of a speech enhancement algorithm is needed to analyze the effectiveness of the

algorithm by measuring the degradation of the estimated speech from the clean speech. This

can be achieved by subjective (human listeners) or objective methods. Some of the objective

evaluation scores used for the present work are given below [69],
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1.3.1 Perceptual evaluation of speech quality (PESQ)

The perceptual evaluation of speech quality is one of the most widely used measure [70, 71].

It was mainly designed for voice quality testing under real network conditions such as voice

over IP (VoIP) [2]. PESQ approximates the mean opinion score (MOS), which is a listening

test procedure used for evaluating speech. MOS ranges from 1 to 5, where 5 represents the

best quality. The PESQ algorithm is quite complex, since it tries to approximate MOS. The

first stage is a preprocessing stage in which the clean and the enhanced speech are equalized

to a standard listening level and time aligned. The signals are then filtered with a filter having

an impulse response similar to that of a standard telephone handset. The signals are then

divided into frames and Bark scale filter banks are applied on the power spectra to obtain the

loudness spectra after frequency and gain equalization stages. The difference between the clean

and estimated signal is then computed considering positive and negative differences differently.

Positive difference indicates noise addition and negative difference indicates attenuation. The

negative difference is not as easily perceived due to masking. Hence different weights are applied

to the positive and negative differences, also termed as disturbance values. These disturbance

values are then averaged over time and frequency. The final PESQ score is computed as a linear

combination of the average disturbance values and ranges between 1 and 4.5 to approximate

MOS.

1.3.2 Segmental signal to noise ratio (SSNR)

Segmental SNR is the average of frame-wise SNRs. To evaluate SSNR, the speech signal is first

divided into F frames and the SNR of each frame is computed. The mean of SNRs of all the

frames gives the final SSNR value.

SSNR =
10

F

F∑
f=1

log10

∑M
m=1 s(m, f)2∑M

m=1(s(m, f)− ŝ(m, f))2
(1.6)

where s(m, f) and ŝ(m, f) indicate the mth sample of clean and the estimated speech in

frame f and M indicates the total number of samples in any frame. This method provides an

accurate measure of SNR for speech enhancement methods, provided the original and estimated

signals are aligned in time.
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1.3.3 Squared error (SE) metric

The squared error metric is frequently used in signal processing and is defined as

SE =
R∑
k=1

(Sk − Ŝk)2 (1.7)

where Sk and Ŝk indicate the spectra of clean and estimated speech , k indicates the fre-

quency index and R is the total number of frequency bins.

1.3.4 Itakura-Saito (IS) distance measure

The Itakura-Saito distance proposed by Fumitada Itakura and Shuzo Saito in the 1960s [2]

is a measure of the perceptual difference between an original power spectrum, P (ω) and an

estimation, P̂ (ω) of that spectrum.

IS(P (ω), P̂ (ω)) =
1

2π

∫ π

−π

(
P (ω)

P̂ (ω)
− logP (ω)

P̂ (ω)
− 1

)
(1.8)

In short time power spectral domain, IS distortion at the kth frequency bin is defined as;

IS(S2
k , Ŝ

2
k) =

S2
k

Ŝ2
k

− logS
2
k

Ŝ2
k

− 1 (1.9)

where Sk is the clean speech spectra and Ŝk is the estimated spectra at the kth frequency bin.

Itakura-Saito distance is not a symmetric measure and it gives more emphasis to spectral peaks

than spectral valleys.

1.4 Contributions of the thesis

We analyze various speech-sound class-specific and noise-specific model-based enhancement

algorithms and frame-wise selection methods of these models. Experiments are performed with

speech data from TIMIT corpus and noise samples from NOISEX-92 database. In our final

experiment, we have also recorded traffic noise from ‘CV Raman road’ and conducted limited

experiments on speech corrupted by this noise. The proposed algorithms does not specifically

distinguish between indoor or outdoor environments. The noises used includes both indoor

noises such as factory, babble and volvo as well as outdoor noises such as m109, leopard (tank

noises) and traffic noise. We also evaluate the performance on white and pink noises as well.
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1.4.1 A class-specific speech enhancement and its application for

phoneme recognition: a dictionary learning approach

In Chapter 2, we explore class-specific enhancement approach. We use a sparse coding dictio-

nary based approach to learn dictionaries of various speech classes, namely manner of articu-

lation, place of articulation and phonemes. We found that using class-specific dictionaries for

enhancing each frame would result in better enhancement than using class-independent dictio-

naries for all the frames. Some of these classes might be correlated well with noise compared

to the other and hence by removing the contribution of these classes from those frames, where

it is not required, we could expect a better enhancement than using a single generic dictionary

in all the frames. To select the appropriate class dictionary for a particular frame, we use

approximate labels obtained from an ASR system, whose input is the speech enhanced using a

class-independent dictionary.

We use dictionary learning method using approximate KSVD with LARC coding. In the

analysis section, we have evaluated the SSNR and PESQ measures of the proposed approach

using ground truth phoneme labels and found only marginal improvements in most of the cases

over class-independent scheme. However, when we analyze the performance of our various

class-specific approaches in terms of phoneme recognition, we obtain superior performances

compared to class-independent case, even when we use estimated labels for enhancement.

1.4.1.1 Speech sound classes

A phoneme is defined as the unit of sound that differentiates one word from another in a

particular language. The sounds produced in each language can be classified into groups based

on the phonetic properties they share. In the present study, we use the classification of phonemes

based on manner and place of articulation to learn our class-specific dictionaries. We also use

phoneme-specific dictionaries. Manner of articulation classification is based on the ways in

which different articulators such as lips, tongue and velum are positioned to produce different

sounds [72]. Place of articulation class on the other hand is based on the point at which

airstream can be modified to produce a different sound [73, 74].

1.4.1.2 Sparse coding and dictionary learning

A dictionary is a matrix D ∈ RR×L, which is composed of a set of prototype vectors of the data

matrix. Here, R is the dimension of the data vector and L is the number of columns or atoms

in the dictionary. Usually the dictionaries are overcomplete, ie; L > R. The dictionary atoms
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are normalized to unit `2 norm. The idea of sparse coding is to sparsely represent any feature

vector Yf ∈ RR×1 as a linear combination of the dictionary atoms. Thus Yf = D× co where co

∈ RL×1 is the sparse coefficient vector. To ensure that the coefficient vector co is sparse, usually

a constraint is set on the `0 or `1 norm of co. Thus any sparse coding technique tries to find

the solution of the optimization problem

argmin
c

dist(Yf , D × co) (1.10)

subject to a sparsity constraint on `0 or `1 norm of co. Here dist(Yf , D × co) is the distance

measure between Yf and D×co. Some of the widely used sparse coding algorithms are matching

pursuit [75], orthogonal matching pursuit (OMP) [76], focal underdetermined system solver

(FOCUSS) [77], basis pursuit [78], Least angle regression (LARS) [79] and batch LARS with

coherence criterion (LARC) [59].

The dictionary matrix D is learned form the data matrix such that the data vector Yf can

be represented as the linear combination of the dictionary atoms using the coefficient vector co.

A probabilistic method for the construction of dictionaries was proposed in [80, 81]. Coates and

Andrew Y. Ng [82] proposed a k-means based feature representation approach. Relationship

between sparse coding and vector quantization is discussed in [83, 84]. A generalization of k-

means based approach, KSVD was proposed in [85]. An approximate KSVD dictionary update

step was proposed by Rubinstein et.al. in [86].

For the present work, we use the approximate KSVD based dictionary learning with LARC

sparse coding [59, 85, 86], the details of which are given in Chapter 2.

1.4.2 A joint enhancement-decoding formulation for noise robust

phoneme recognition

In Chapter 3, we propose an algorithm, which aims to overcome the selection of erroneous

dictionaries due to the error in the estimated class labels in the class-specific approach for

improving the recognition performance. The joint enhancement-decoding (JED) algorithm

jointly optimizes these class labels and the final recognized phoneme labels. The current noisy

speech frame is enhanced by multiple N phoneme-specific dictionaries close to the approximate

label of that frame. These multiple enhanced frames are then fed into the JED algorithm.

The algorithm accepts these N observations and chooses the best in each frame such that the

overall likelihood is maximized to obtain the final recognized labels. The Viterbi decoding

algorithm used in speech recognition is integrated with the class label selection to develop the
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JED algorithm. Experiments are conducted by varying N from 1 to 5 to find the best value of

N that gives the maximum recognition performance for various noises and SNRs.

1.4.3 Monte Carlo dropout for low SNR, non-stationary noise re-

duction from speech

In Chapter 4, we propose a method of picking the best DNN model in the scenario where

multiple noise-specific DNN models are available for enhancement, using the Monte Carlo (MC)

dropout proposed by Gal and Ghahramani [87]. MC dropout is a tool for modeling uncertainty

in DNN, using dropout during inference stage. The conventional dropout of these multiple

DNN models is replaced with MC dropout and a measure of the model uncertainty is used

for the selection of DNN models. We find this method to be particularly useful for unseen

noisy scenario, where the noise corrupting the test speech is different from that with which the

available DNN models are trained. This method performs better than the method of using a

DNN classifier for the selection, in the case of unseen noises. In order to compensate for the

poor performance of the above algorithm in the case of seen noises compared to classifier-based

selection scheme, we propose a threshold-based algorithm to switch between model uncertainty-

based selection scheme and classifier-based model selection scheme. This algorithm is found

to be useful for unseen noises at the same time giving comparable performance to that of

classifier-based scheme for seen noises. Some promising results in enhancement performance of

the algorithms on speech corrupted with a mixture of multiple noises and for a time varying

scenario where different segments of speech are corrupted by different noises are given. The

algorithms also give performances superior to classifier-based model selection scheme in a real

world scenario where speech is corrupted with real world, traffic noise. We also explore the

use of MC dropout in improving the generalizability of a single DNN model for enhancement,

when the conventional dropout is replaced by MC dropout. We show that in the case of noisy

speech corrupted with unseen noises, MC dropout models can give a better denoised output

than conventional dropout models.
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Chapter 2

A class-specific speech enhancement

and its application for phoneme

recognition: a dictionary learning

approach

We study the advantage of class-specific dictionaries over class-independent dictionary for en-

hancement of noisy speech. We hypothesize that, using class-specific dictionaries would remove

the noise more than a class-independent dictionary, thereby resulting in better phoneme recog-

nition. Experiments are performed with speech data from TIMIT corpus and noise samples

from NOISEX-92 database. Using KSVD, four types of dictionaries have been learned: class-

independent, manner-of-articulation-class, place-of-articulation-class and 39 phoneme-class.

Initially, a set of labels are obtained by recognizing the speech enhanced using a class-independent

dictionary. Using these approximate labels, the corresponding class-specific dictionaries are used

to enhance each frame of the original noisy speech, and this enhanced speech is then recognized.

Compared to the results obtained using the class-independent dictionary, the 39 phoneme-class

based dictionaries provide a relative phoneme recognition accuracy improvement of 5.5%, 3.7%,

2.4% and 2.2%, respectively for factory2, m109, leopard and babble noises, when averaged over

0, 5 and 10 dB SNRs.
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2.1 Introduction

The aim of speech enhancement is to improve the quality of speech by attenuating the noise

associated with it, without degrading the actual speech. The challenge in speech enhancement

is mainly because of the non-stationary nature of the noise associated. For applications such

as speech recognition, speaker recognition and hearing aids, speech enhancement is employed

as a front end processing.

Recently, sparse coding techniques have gained popularity. A speech enhancement scheme

based on sparse coding has been proposed by Sigg et al. [59], who show that it performs better

than techniques like geometric spectral subtraction [19]. Several exemplar-based techniques

[88, 89] have also been proposed in the past for robust speech recognition. In sparse coding,

the basic assumption is that we can represent structured signals like speech as sparse linear

combinations of prototype vectors or atoms.

The performance of various speech enhancement algorithms can be evaluated by certain

objective measures [69]. In this chapter, we analyze the usefulness of our class-specific en-

hancement method for phoneme recognition. We observe that even though we did not find

any significant improvement over class-independent method in terms of objective measures,

our algorithms give superior performance for phoneme recognition [11]. Enhancing the speech

signal as a front-end processing before it is fed into a recognizer is fairly popular because of the

simplicity of the approach and also since it obviates the need to retrain the ASR systems for

different types of noisy inputs and the same ASR trained on clean speech can be used.

2.1.1 Motivation

Speech signal is composed of several sounds which can be categorized in various ways, like

manner-of-articulation (MOA) [72], place-of-articulation (POA) [73, 74] or phonemes (PHN).

Some of these classes might correlate well with certain noise types more than the other classes.

Hence the atoms in a dictionary learned using these classes may represent noise power to varying

degrees and consequently result in poor speech reconstruction. By removing the contribution

from atoms of the classes that correlate well with noise, one can improve the enhancement

performance. One way to achieve this is to learn different dictionaries for different classes and

intelligently select a particular dictionary for a segment. Raj et al. [90] propose a similar

approach, where they use phoneme-dependent non-negative matrix factorization (NMF) for

separation of music from speech. However, no quantitative analysis has been performed in that

work. In this work, we extend their idea to sparse coding to analyze how, using class-specific

dictionaries, the performance of an ASR system could be improved over that obtained using a
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dictionary learned in a class-independent manner. Wang et al [91] investigated the use of class-

specific, ideal ratio mask estimation for speech enhancement using DNN. But the recognizer

used as well as the mask estimator were trained using noisy speech. However, we consider a

more realistic scenario where the noise level is not known a-priori and a recognizer trained on

clean speech is used.

2.2 Enhancement using learned dictionary

We consider a single channel speech enhancement framework. This can be modeled as an

additive mixture of clean speech and noise.

Under additive model, noisy speech can be represented as,

y(m) = s(m) + x(m) (2.1)

where y(m), s(m) and x(m) are the mth samples of the time domain noisy speech, clean

speech and noise signal, respectively.

Considering the short time Fourier transform (STFT),

Y (ωk) = S(ωk) +X(ωk) (2.2)

where ωk = 2πk
R

, k = 0, 1, 2...R− 1 , R is the number of frequency bins and k is the index.

Taking the magnitude STFT, the noisy speech can be approximated as

Y ≈ S +X ∈ RR×1 (2.3)

where S and X represent the spectra of the clean speech signal and the noise signal, respectively.

In order to recover clean speech from this noisy speech using dictionary learning approach,

models of both clean speech and noise are learned, which result in a collection of prototype

vectors called dictionaries.

Let Ds ∈ RR×L and Dx ∈RR×L , L > R, be the overcomplete dictionaries of L atoms each,

learned using speech and noise data. Given an input noisy speech vector for a frame Yf , the two

dictionaries could be concatenated to form D = [Ds Dx]. The corresponding sparse coefficient

vectors learned using this dictionary D can be represented as ccon = [cs cx]. Using D and ccon

an estimate of the STFT of the noisy speech is given by

Ŷf = D × ccon = Ds × cs +Dx × cx (2.4)
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The sparse coefficients ccon can be separated to cs and cx to estimate the enhanced speech

Ŝf ;

Ŝf = Ds × cs . (2.5)

2.2.1 Sparse coding

The aim of sparse coding is to sparsely represent any given vector Yf ∈ RR×1 as a linear

combination of representative vectors obtained from dictionary D ∈RR×L [59]. The dictionary

considered is usually over-complete, i.e., L > R

For a given dictionary D and the spectrum Yf of a given noisy speech frame, the sparse

coefficients can be obtained by solving the formulation using a cardinality constraint;

c∗o = argmin
co

‖Yf −Dco‖2; s.t. ‖co‖0 ≤ t; t� R (2.6)

Using an error constraint, the problem can be formulated as;

c∗o = argmin
co

‖co‖0; s.t. ‖Yf −Dco‖2 ≤ σ; (2.7)

The above problem can be solved by various schemes like orthogonal matching pursuit [76],

which is a greedy iterative approach which computes an approximate solution to the sparse

coding problem (2.6) or (2.7).

Applying a convex relaxation of `0 norm to `1 norm, the problem (2.6) becomes

c∗o = argmin
co

‖Yf −Dco‖2; s.t. ‖co‖1 ≤ t1; t1 � R (2.8)

This formulation is known as least absolute shrinkage and selection operator (LASSO) [92].

Since the objective function and the constraint in eq. (2.8) are convex the solution is unique

and can be found using quadratic optimization techniques. Least angle regression (LARS) [79]

is a very efficient iterative algorithm, which gives a solution very close to LASSO.

2.2.1.1 Least angle regression (LARS)

LARS involves an atom selection stage based on maximum correlation with the residue. The

algorithm proceeds in an equiangular direction to the current set of atoms until a new atom,

which is equally correlated with the current residue as the atoms in the active set, finds its way

to the active set. LARS then proceeds in a direction equiangular to the new set of atoms and

this process repeats [59, 79]. A cardinality or error based stopping criterion can be used.

16



Let ȳ2 be the projection of Yf into L(X) which is spanned by the bases x1 and x2. The

algorithm begins at µ̂0 = 0 and proceeds in the direction of x1, as ȳ2− µ̂0 has greater correlation

with x1 than x2. LARS then estimates µ̂1 = µ̂0 + γ̂1x1; where γ̂1 is chosen such that ȳ2 − µ̂1

bisects the angle between x1 and x2. Finally the algorithm estimates µ̂2 = µ̂1 + γ̂2u2; where u2

is the unit bisector and µ̂2 = ȳ2 for the case where the number of bases vectors is two.

Figure 2.1: The LARS algorithm; x1 and x2 are the bases vectors: Initialize µ̂0 = 0 and proceed
in the direction of x1. µ̂1 = µ̂0 + γ̂1x1; γ̂1 is chosen such that ȳ2 − µ̂1 bisects the angle between
x1 and x2. Estimate µ̂2 = µ̂1 + γ̂2u2; where u2 is the unit bisector and µ̂2 = ȳ2.

2.2.1.2 Batch LARS with coherence criterion (LARC)

Sigg et.al. [59] proposed a two way modification to LARS called batch LARS with coherence

criterion (LARC). For the present work we use the batch LARC algorithm for sparse coding. In

LARC , the Gram matrix G = DTD is precomputed. The matrix inverse G−1A,A corresponding

to the active set of atoms A is computed iteratively using an update scheme based on Cholesky

factorization [86].

The algorithm also proposes a new stopping criterion based on a threshold µcoh on the

residual coherence. the steps involved in LARC are given in Algorithm 1.

2.2.2 Dictionary learning

A dictionary D is a matrix with each column consisting of atoms whose linear combination

can be used to represent a given signal. Usually the dictionary is chosen to be over-complete.

An ideal dictionary is considered as the one which can sparsely represent the given signal with

minimum representation error. M. Aharon et.al. introduced a novel algorithm [85] for adapting

dictionaries, which is a generalization of K-means algorithm.
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Algorithm 1: Batch LARC

1 A: The active set of atoms and any variable with subscript A indicates the one
corresponding to this active set.

2 µcoh: residual coherence threshold; G: Gram matrix; co: sparse coefficient solution; z:

LARC approximation of the input vector; µ(Yf ), µ(z): constant and variable part of
the residual coherence

Input : Yf ∈ RR×1; D ∈ RR×L; µcoh; G = DTD
Output: co ∈ RL×1

3 co ← 0 ; A← {}; z ← 0

4 µ(Yf ) ← DTYf ; µ(z) ← 0
5 while |A| < R do
6 µ← µ(Yf ) − µ(z)

7 j∗ ← argmaxj |µj|, j ∈ Ac

8 A← A ∪ {j∗}
9 if |µj∗|/‖Yf − z‖2 < µcoh then

10 break

11 sgn← sign(µA)
12 g ← G−1(A,A)sgn

13 b← (gT sgn)−1/2

14 w ← bg
15 u← D(:,A)w
16 a← G(:,A)w
17 γ ← min+

q∈Ac [(|µj∗| − µq)/(b− aq), (|µj∗|+ µq)/(b+ aq)]

18 z ← z + γu
19 coA ← coA + γw

20 µ(z) ← µ(z) + γa

18



2.2.2.1 KSVD based dictionary learning

KSVD is an iterative algorithm which tries to sparsely represent a given data matrix Ymat

∈RR×N in terms of the dictionary D ∈RR×L and the sparse coding matrix C ∈RL×N . It

involves both sparse coding and dictionary update stages. The algorithm tries to solve the

problem,

min
D,C
‖Ymat −DC‖2F (2.9)

subject to a sparsity constraint on C and ∀l ; ‖D(:, l)||2 = 1

The algorithm involves the following steps;

Step1 : Dictionary initialization

Usually the dictionary D(0) is initialized either by choosing at random on a unit hypershere or

by randomly sampling from the training data Ymat itself. The atoms are then rescaled to unit

length.

Step2 : Sparse coding

At each iteration I, the sparse coefficients are obtained by the LARC algorithm as;

cI(:, l) = LARC(Ymat(:, l), D
I−1, µcoh) (2.10)

Step3 : Dictionary update

For each column in the dictionary l = 1, 2, ....L, the penalty term in (2.9) can be rewritten as,

‖Ymat −DC‖2F = ‖Ymat −
L∑
j=1

D(:, j)C(j, :)‖2F

= ‖
(
Ymat −

∑
j 6=l

D(:, j)C(j, :)

)
−D(:, l)C(l, :)‖2F

= ‖El −D(:, l)C(l, :)‖2F (2.11)

Thus DC is decomposed into the sum of L rank 1 matrices. For updating the lth column,

the rest of L−1 terms are assumed to be fixed. Thus El stands for the error for the N examples

when lth atom is removed.

In order to ensure that the updated D(:, l) enforces the sparsity constraint, the error matrix

El is restricted as ER
l representing the error involving samples of Ymat which only use atom
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D(:, l)

Applying SVD decomposition to this matrix ER
l we get;

ER
l = UΣV T (2.12)

The solution of D(:, l) is defined as the first column of U while the first column of V multiplied

by Σ(1, 1) gives the coefficient vector C(l, :).

Steps 2 and 3 is repeated until convergence.

For the present work, we use the approximate KSVD dictionary update step proposed by

Rubinstein et.al. [86] with reduced complexity (algorithm 2).

Algorithm 2: Approximate KSVD dictionary update

Input : Ymat ∈RR×N ; D ∈ RR×L; C ∈RL×N

Output: Updated D
1 for l← L do
2 D(:, l)← 0
3 N← {n|C(l, n) 6= 0, 1 ≤ n ≤ N}
4 ER

l ← Ymat(:,N)−DC(:,N)
5 g1 ← CT (l,N)
6 h← ER

l g1
7 h← h/‖h‖2
8 g1 ← (ER

l )Th
9 D(:, l)← h

10 C(l,N)← gT1

2.3 Speech enhancement with class-specific dictionaries

In this work we try to explore the enhancement performance of using class-specific dictionaries

rather than a class-independent one. We explore the objective measures as well as the ASR

performance of our algorithm. For our experiments, three different categories of dictionaries

are considered. Let there be c dictionaries in each category. In the first category, separate

dictionaries are learned based on manner-of-articulation (MOA) of speech where c = 5, de-

noted by DMOA
1 , ...DMOA

5 . In the second category, dictionaries are learned based on place-of-

articulation (POA) of speech where c = 14, denoted by DPOA
1 , ...DPOA

14 . In the third case,

separate dictionaries are learned for 39 different phonemes (PHN) [93, 94] with c = 39, denoted

by DPHN
1 , ...DPHN

39 .
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2.3.1 Experimental setup

All the experiments are conducted on the TIMIT [95] speech corpus consisting of 6300 sentences

from 630 speakers with train and test sets containing 4620 and 1680 utterances, respectively.

The sampling frequency is 16 kHz. The sa utterances are not used, since they are common to

both training and testing sets. The ASR is trained on the entire clean TIMIT training data

and its performance is obtained on the entire TIMIT test set after adding various noises. Thus

training is done on clean speech and testing on noisy data. We use factory2, m109, leopard,

babble and volvo noises from the NOISEX-92 [96] database after downsampling to 16 kHz,

to synthesize noisy test speech signals. For the recognition experiments, HTK [97] is used.

The size of analysis frame is chosen to be 30 ms with 10 ms frame shift. 39-dimensional mel

frequency cepstral coefficients (MFCC) [98] are used, together with zeroth coefficient, delta

and delta-delta coefficients. Cepstral mean normalization (CMN) is applied. A three-state

monophone HMM model with diagonal covariance matrix is used for the recognizer. The

number of Gaussian mixtures per state is set to 32, since increasing it further does not improve

the recognition performance significantly. A bigram phoneme language model is used. For

phoneme recognizer, the 61 phonemes in TIMIT are mapped to a reduced set of 39 phonemes

[93, 94] and the results are reported on this reduced set.

The dictionaries are learned on the magnitude STFT computed using a frame size of 30

ms with 10 ms frame shift. A 512-point FFT is taken and we use only the first 257 points

for learning the dictionary because of symmetry in the spectrum. We use approximate KSVD

algorithm with LARC coding [59] for learning the dictionaries. The number of iterations for

KSVD is set to 30. The dictionaries are speaker independent and each dictionary is trained

to have 512 atoms. The class-independent dictionary is learned on a subset of 2 × 105 frames

which are randomly sampled from the training data. For learning class-specific dictionaries,

the training frames are classified into different classes, using the TIMIT labels. MOA, POA,

as well as PHN specific dictionaries are learned from the spectra of corresponding training

frames. For MOA class, vowels, diphthongs and semivowels are grouped together [72]. For

POA class, consonants and vowels are classified as per [73] and [74], respectively. For PHN

specific dictionary, we learn only 39 dictionaries based on the reduced phoneme set.

2.3.2 Preliminary experiments using ground truth phoneme labels

As a preliminary set of experiments, we try to analyze the enhancement performance when 39

phoneme (PHN) based dictionaries are used instead of a single class-independent dictionary.

Figure 2.2 shows the basic block diagram of the approach. We use the ground truth labels
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obtained from TIMIT [95] for our experiment.

Noise
dictionary dictionaries

D1;D2; ::::Di; :::Dc

Phoneme-specific

Pick dictionary Dc∗ based on phoneme

Perform class specific enhancement

Enhanced

signal

Noisy

signal

label ;

ground truth

phoneme labels

Figure 2.2: Speech enhancement with phoneme specific dictionaries using ground truth phoneme
labels.

Let the magnitude spectrum of the fth frame of noisy speech input be Yf ∈ RR×1 and

the ground truth phoneme label for that frame be c∗ where 1 ≤ c∗ ≤ 39. Using the composite

dictionary D3 = [DPHN
c∗ Dx], the sparse coefficients and the clean speech are estimated as,

[cPHNs cPHNx ] = LARC(Yf , D3, µcoh) (2.13)

ŜPHNf = DPHN
c∗ × cPHNs (2.14)

where cPHNs is the sparse coefficient vector corresponding to DPHN
c∗ and µcoh is the threshold

on residual coherence.

2.3.2.1 Results and discussion

Table 2.1 shows the performance of this approach in terms of PESQ and segmental SNR (SSNR)

[69] for speech corrupted with noises factory2, m109, leopard, babble and volvo at 0, 5 and 10

dB SNRs. The results are averaged over 10 files randomly selected from TIMIT[95] test set.

Only 10 files are considered as this is a preliminary experiment to evaluate the performance in

terms of objective quality measures [37, 99]. The random selection ensures that there is no bias

in the selected files.

It can be inferred from the Table that not much improvement is observed in terms of PESQ,

for PHN-gnd compared to the method where a single class-independent (class-ind) dictionary

is used for enhancement. In terms of SSNR, the method gives marginal improvement over

class-ind scheme in most of the cases. For babble noise case, better improvement is observed
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for PHN-gnd over class-ind scheme in terms of SSNR.

An analysis of the phoneme recognition performance of the speech enhanced by PHN-gnd

method for factory2, m109, leopard, babble and volvo noises for SNRs 0, 5 and 10 dB is shown

in Figs. 2.3 (a-e). In this case, the accuracy is computed for the entire TIMIT [95] test set.

It can be inferred that even though not much improvement is observed in terms of the quality

measures like PESQ and SSNR, in terms of phoneme recognition accuracy, PHN-gnd scheme

gives really good improvement in performance over class-ind scheme. This is expected, as for

many enhancement methods, improvements in terms of quality measures does not necessarily

translate to improvements in terms of machine recognition and vice versa. This has been

explored in [10], where they give a comparative evaluation of various enhancement approaches

in terms of quality measures and ASR performance (in terms of phoneme correctness) and show

that there might not be a one to one correspondence between the two.

For factory2 noise case, the relative accuracy improvement (RAI) of PHN-gnd method over

class-ind method for phoneme recognition are 28.0 %, 20.9 % and 15.4 %, respectively for 0, 5

and 10 dB SNRs. For m109 noise , the RAI values are 23.3 %, 17.0 % and 12.5 %. For leopard

and babble noise cases, the RAI values are 15.2 %, 11.5 % , 9.5 % and 35.1 %, 29.8 % 22.6 %,

respectively.

In the case of volvo noise, it is observed that after CMN, the recognition accuracy using

noisy speech outperforms the class-independent case. Still PHN-gnd outperforms both noisy

and clas-ind cases. For volvo noise, The RAI values of PHN-gnd over class-ind case are 10.8%,

9.3% and 7.8%. RAI values over noisy case are 7.8%, 5.2% and 4.6%.

Figures 2.3 (a-e) show the potential application of class-specific enhancement scheme in

phoneme recognition. From the preliminary experiments using ground truth labels obtained

from TIMIT [95], we have inferred that, using class-specific dictionaries for enhancement rather

than a class-independent dictionary improves the phoneme recognition performance though no

improvement is observed in terms of measures like PESQ over class-independent enhancement

scheme.
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Table 2.1: Performance evaluation in terms of PESQ and Segmental SNR (SSNR) of enhance-
ment using class-specific dictionaries using phoneme ground (PHN-gnd) truth labels for input
SNRs of 0, 5 and 10 dB for five different noises. The results are averaged over 10 files randomly
selected from TIMIT test set. Training set: entire TIMIT training set excluding sa utterances.
Noise signals from NOISEX-92 database. class-ind: class-independent dictionary used.

SNR (dB) PESQ SSNR
Noisy class-ind PHN-gnd Noisy class-ind PHN-gnd

Factory2
0 1.2 1.7 1.7 -4.3 2.1 2.2
5 1.5 2.1 2.1 -1.2 4.1 4.2
10 1.8 2.5 2.6 2.1 6.1 6.2

Leopard
0 1.2 1.8 1.8 -4.4 3.9 4.0
5 1.3 2.1 2.1 -1.4 5.5 5.6
10 1.5 2.5 2.5 2.0 7.1 7.2

M109
0 1.1 1.7 1.7 -4.3 2.6 2.7
5 1.4 2.1 2.1 -1.3 4.5 4.7
10 1.7 2.6 2.6 2.1 6.4 6.6

Babble
0 1.1 1.3 1.3 -4.2 -0.8 -0.4
5 1.3 1.5 1.6 -1.9 1.2 1.7
10 1.6 1.9 2.0 2.2 3.3 3.8

Volvo
0 1.7 2.7 2.7 -3.7 7.5 7.8
5 2.0 3.1 3.1 -0.6 9.0 9.2
10 2.4 3.4 3.4 2.8 10.4 10.4
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Figure 2.3: Comparison of phoneme recognition accuracies for (a) Factory2, (b) M109 noises
for PHN-gnd enhancement over class-ind enhancement for 0, 5 and 10 dB input SNRs. Noisy
indicates the recognition performance for the noisy input speech itself. The ASR is trained on
the entire clean TIMIT training data and its performance is obtained on the entire TIMIT test
set excluding sa utterances after adding various noises from NOISEX-92 database.
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Figure 2.3: Comparison of phoneme recognition accuracies for (c) Leopard, (d) Babble noises
for PHN-gnd enhancement over class-ind enhancement for 0, 5 and 10 dB input SNRs. Noisy
indicates the recognition performance for the noisy input speech itself. The ASR is trained on
the entire clean TIMIT training data and its performance is obtained on the entire TIMIT test
set excluding sa utterances after adding various noises from NOISEX-92 database.
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Figure 2.3: Comparison of phoneme recognition accuracies for (e) Volvo noise for PHN-gnd
enhancement over class-ind enhancement for 0, 5 and 10 dB input SNRs. Noisy indicates the
recognition performance for the noisy input speech itself. The ASR is trained on the entire clean
TIMIT training data and its performance is obtained on the entire TIMIT test set excluding
sa utterances after adding various noises from NOISEX-92 database.
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2.3.3 Phoneme recognition performance on speech enhanced with

class-specific dictionaries using estimated class labels

In this section, we estimate MOA, POA and PHN class labels from noisy speech and use

it to perform class-specific enhancement and explore its usefulness in phoneme recognition.

Figure 2.4 shows the block diagram summarizing the steps of class-specific dictionary based

enhancement for phoneme recognition proposed in the present study. At first, the class label

of each frame is obtained by recognizing the speech enhanced using the class-independent

dictionary. Using this approximate label, the corresponding class-specific dictionary, which was

learned from the training data, is used to enhance the input noisy speech in each frame, and this

newly enhanced speech is recognized. The enhancement and recognition stages are explained

in Algorithm 3.

Class
independent
dictionary

Noise
dictionary

dictionaries
D1;D2; ::::Di; :::Dc

Class-specific

Class
independent
enhancement

PHN
recognizer

Pick dictionary Dc∗ based on class label ;

Perform class-specific enhancement

Class label

PHN
recognizerEnhanced

signal

Recognition

accuracy

PHN recog.

accuracy

PHNNoisy

signal

Figure 2.4: Phoneme recognition on speech enhanced with class-specific dictionaries

Algorithm 3

1. Enhance the noisy data using a class-independent dictionary:

Let Yf ∈ RR×1 be the noisy speech spectrum of a frame. Dind ∈RR×L and Dx ∈RR×L be the

dictionaries for class-independent speech and the noise, respectively. Using the composite

dictionary D0 = [Dind Dx] , the sparse coefficients of the noisy speech are obtained as

[cinds cx] = LARC(Yf , D0, µcoh) (2.15)

where µcoh is the threshold on residual coherence and cinds represents the sparse coefficient

vector corresponding to Dind. Clean speech is estimated as

Ŝf = Dind × cinds (2.16)
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2. Get the phoneme labels using a phoneme recognizer on this enhanced speech. From the

phoneme labels, obtain both the MOA and POA class labels of each frame.

3. Perform class-specific enhancement of the original noisy data using the dictionary corre-

sponding to the obtained class label: Three different enhancements are carried out based

on the MOA, POA and PHN labels of the frame obtained from step 2.

Method 1: In this method, depending on the MOA class label the enhanced speech

observation Ŝf is assigned to, the corresponding dictionary is chosen for enhancing the

original noisy speech observation Yf . Let the class label be c∗; 1 ≤ c∗ ≤ 5. Thus, the

sparse coefficients and the clean speech estimate obtained using composite dictionary D1 =

[DMOA
c∗ Dx] are

[cMOA
s cMOA

x ] = LARC(Yf , D1, µcoh) (2.17)

ŜMOA
f = DMOA

c∗ × cMOA
s (2.18)

where cMOA
s corresponds to DMOA

c∗

Method 2: In this method, we use dictionaries based on POA, depending on the assigned

label c∗; 1 ≤ c∗ ≤ 14, of Ŝf . The sparse coefficients and the clean speech estimate obtained

using the composite dictionary D2 = [DPOA
c∗ Dx] are

[cPOAs cPOAx ] = LARC(Yf , D2, µcoh) (2.19)

ŜPOAf = DPOA
c∗ × cPOAs (2.20)

where cPOAs corresponds to DPOA
c∗

Method 3: This method employs dictionaries based on the assigned PHN labels; 1 ≤
c∗ ≤ 39, of Ŝf . Using the composite dictionary D3 = [DPHN

c∗ Dx], the sparse coefficients

and the clean speech are estimated as

[cPHNs cPHNx ] = LARC(Yf , D3, µcoh) (2.21)

ŜPHNf = DPHN
c∗ × cPHNs (2.22)

where cPHNs corresponds to DPHN
c∗
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4. Find the performance of the phoneme (PHN) recognizer on the enhanced speech in each

case; (2.18), (2.20) and (2.22).

ss

2.3.3.1 Results and discussion

Improvements in the phoneme recognition accuracies are compared across the three enhance-

ment methods for 0, 5 and 10 dB SNRs. Figures 2.5 (a-e) show the phoneme recognition

accuracies for factory2, m109, leopard, babble and volvo noises, respectively. We compare

the recognition accuracies of our method with class-independent enhancement scheme and also

with four other enhancement schemes available in the literature; multi-band spectral subtrac-

tion (MBSS) [18], non causal apriori SNR estimator (NC) [38], harmonic regeneration noise

reduction (HRNR) [39] and geometric spectral subtraction (GA) [19]. Our method achieves su-

perior performance over all the other methods. Results are reported for MOA, POA and PHN

enhancement using estimated labels and MOA, POA and PHN enhancement using ground truth

labels.

Figure 2.5 shows that enhancement using class-specific dictionaries outperforms the class-

independent enhancement in terms of phoneme recognition accuracies. This is true not only

when we use class labels from the ground truth but also from the recognition of speech enhanced

using class-independent dictionary (referred to as approximate labels).

For phoneme recognition, PHN based enhancement using approximate labels gives a relative

accuracy improvement (RAI) of 5.5%, 3.7%, 2.4% and 2.2%, respectively for factory2, m109,

leopard and babble noise over class-independent enhancement method, when averaged over

SNRs 0, 5 and 10 dB. MOA based enhancement gives average RAI of 2.7%, 2.3%, 1.6% and

2.2%, respectively. Similarly for POA based enhancement, the average RAIs are 4.3%, 2.5%,

1.8% and 2.1%, respectively.

The recognition accuracies obtained from the speech enhanced using ground truth labels

(2.5), show that we get higher performance as the number of classes c increases. It is to be

noted that cs in Eq. (2.4) need not be zero even if the speech component in Yf is zero. We

refer this contribution of speech atoms for representing noise as noise confusion. We observe

that, as we increase the number of classes and use only one class dictionary per frame the noise

confusion reduces.

A small experiment was conducted with a total of 300 Factory2 noise frames to evaluate the

noise energy contribution by the speech dictionary. Let Xf be the input noise frame with no
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Figure 2.5: Comparison of phoneme recognition accuracies for (a) Factory2 noise. In each fig-
ure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are
given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class independent en-
hancement scheme and various class dependent enhancement schemes. In the legend, class-ind,
MOA-est, POA-est, PHN-est, MOA-gnd, POA-gnd and PHN-gnd refer to class-independent
case, MOA, POA, PHN enhancement using estimated labels , MOA, POA and PHN enhance-
ment using ground truth labels, respectively. The ASR is trained on the entire clean TIMIT
training data and its performance is obtained on the entire TIMIT test set excluding sa utter-
ances after adding the noise from NOISEX-92 database.
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Figure 2.5: Comparison of phoneme recognition accuracies for (b)M109 noise. In each figure, re-
sults are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are given for
noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class independent enhancement
scheme and various class dependent enhancement schemes. In the legend, class-ind, MOA-est,
POA-est, PHN-est, MOA-gnd, POA-gnd and PHN-gnd refer to class-independent case, MOA,
POA, PHN enhancement using estimated labels , MOA, POA and PHN enhancement using
ground truth labels, respectively. The ASR is trained on the entire clean TIMIT training data
and its performance is obtained on the entire TIMIT test set excluding sa utterances after
adding the noise from NOISEX-92 database.

32



0 5 10 clean
30

35

40

45

50

55

60

65

SNR(dB)

A
cc

u
ra

cy
(%

)

Leopard

(c)

 

 

noisy MBSS NC HRNR GA class−ind MOA−est POA−est PHN−est MOA−gnd POA−gnd PHN−gnd clean

Figure 2.5: Comparison of phoneme recognition accuracies for (c) Leopard noise. In each fig-
ure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are
given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class independent en-
hancement scheme and various class dependent enhancement schemes. In the legend, class-ind,
MOA-est, POA-est, PHN-est, MOA-gnd, POA-gnd and PHN-gnd refer to class-independent
case, MOA, POA, PHN enhancement using estimated labels , MOA, POA and PHN enhance-
ment using ground truth labels, respectively. The ASR is trained on the entire clean TIMIT
training data and its performance is obtained on the entire TIMIT test set excluding sa utter-
ances after adding the noise from NOISEX-92 database.
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Figure 2.5: Comparison of phoneme recognition accuracies for (d) Babble noise. In each figure,
results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are
given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class independent en-
hancement scheme and various class dependent enhancement schemes. In the legend, class-ind,
MOA-est, POA-est, PHN-est, MOA-gnd, POA-gnd and PHN-gnd refer to class-independent
case, MOA, POA, PHN enhancement using estimated labels , MOA, POA and PHN enhance-
ment using ground truth labels, respectively. The ASR is trained on the entire clean TIMIT
training data and its performance is obtained on the entire TIMIT test set, excluding sa utter-
ances, after adding the noise from NOISEX-92 database.
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Figure 2.5: Comparison of phoneme recognition accuracies for (e) Volvo noise. In each figure, re-
sults are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are given for
noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class independent enhancement
scheme and various class dependent enhancement schemes. In the legend, class-ind, MOA-est,
POA-est, PHN-est, MOA-gnd, POA-gnd and PHN-gnd refer to class-independent case, MOA,
POA, PHN enhancement using estimated labels , MOA, POA and PHN enhancement using
ground truth labels, respectively. The ASR is trained on the entire clean TIMIT training data
and its performance is obtained on the entire TIMIT test set, excluding sa utterances, after
adding the noise from NOISEX-92 database.
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speech content. The class independent dictionary Dind and noise dictionary are concatenated

to form the composite dictionary D0 = [Dind Dx]

The sparse coefficients of the noise input are obtained as

[cinds cx] = LARC(Xf , D0, µcoh) (2.23)

where cinds and cx indicates the noise contribution by the speech dictionary Dind and the

noise dictionary Dx, respectively.

The experiment was repeated using the 39 phoneme based dictionaries. In this case, the

composite dictionary is D3 = [DPHN
c∗ Dx], 1 ≤ c∗ ≤ 39 and the corresponding sparse coefficients

are

[cPHNs cPHNx ] = LARC(Xf , D3, µcoh) (2.24)

In our experiment, we found that the fraction of the energy of the coefficients for class-

independent dictionary energy(cind
s )

energy(cx)
is 0.025. However, the fraction energy(cPHN

s )
energy(cPHN

x )
is only 0.0184

(averaged over all the phoneme classes), when the phoneme-specific dictionaries are used in

place of a class-independent dictionary.

When we use approximate labels, the performance improvement also depends on the accu-

racy of ASR, which usually goes down as the number of classes increases. Hence to achieve the

best recognition performance, one needs to choose an optimal number of classes by trading off

ASR accuracy and noise confusion. It is observed that, PHN based enhancement outperforms

MOA and POA based enhancements in most cases. This indicates that the approximate PHN

labels obtained from the ASR are good enough to get a performance better than that from the

MOA and POA labels.

For babble noise, at 0 dB SNR, no significant improvement is observed when we use the

approximate labels. This could be due to the very low recognition accuracy we obtain after

the enhancement using class-independent dictionary resulting in a poor choice of dictionary for

most frames.

In the case of volvo noise, it is observed that after CMN, the recognition accuracy using

noisy speech outperforms the class-independent and class-dependent schemes. For phoneme

recognition, our PHN based enhancement using approximate labels shows an average relative

degradation of -0.8% over the noisy performance. However, it is to be noted that the results

for class-dependent scheme are still better than the class independent scheme. For phoneme

recognition, the average RAIs over the class-independent scheme are 2.2%, 1.6% and 1.6% for

PHN, MOA and POA based enhancements using approximate labels, respectively.

For volvo noise, we also did an experiment using the labels obtained after recognizing the
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Figure 2.6: Comparison of phoneme recognition accuracies for volvo noise at 0, 5, and 10 dB
SNRs after MOA, POA and PHN enhancement using approximate noisy labels.

noisy speech itself. Figure 2.6 shows the performance improvement we obtain for speech cor-

rupted with volvo noise for MOA, POA and PHN enhancement using approximate noisy labels

over both class-independent and noisy cases. It can be inferred that PHN based enhancement

using approximate labels gives an average RAI of 2.1% over the noisy case whereas POA based

enhancement gives an average RAI of 0.7 % over noisy case when averaged over 0, 5 and 10

dB SNRs. For MOA we do not get any improvement when averaged over the 3 SNRs. Thus

it could be inferred that, for phoneme recognition of speech corrupted by highly band-limited,

predictable and strictly stationary noises like volvo, most enhancement techniques distorts the

speech, causing a performance degradation and hence noisy speech after CMN itself could give

a better recognition performance.

Figure 2.7 shows the log magnitude spectral plots of a few exemplary frames which are

correctly recognized after PHN based enhancement using ground truth labels (PHN-gnd) but

wrongly recognized after class independent enhancement, one each for the noises factory2,

m109, leopard, babble and volvo at 0 dB SNR. The phoneme label of the frame is mentioned in

the figures. The corresponding Itakura-Saito (IS) distortion measures (computed in the power

spectral domain) with the clean spectrum is also shown in each figure. From the spectral plots it

can be inferred that the spectrum recovered after PHN-gnd enhancement matches more closely

with the clean speech spectrum than that after the class-independent enhancement.
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Figure 2.7: Log magnitude spectra of an example frame correctly recognized after PHN based
enhancement using ground truth labels (PHN-gnd) but misclassified after class-independent
(class-ind) enhancement, for (a) speech with factory2 noise at 0 dB SNR. Corresponding clean
and noisy speech spectra is also shown. IS: Itakura-Saito distance computed in the power
spectral domain.
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and noisy speech spectra is also shown. IS: Itakura-Saito distance computed in the power
spectral domain.
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domain.
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2.3.4 Phoneme recognition performance of multi-stage class-specific

enhancement-recognition scheme

Instead of performing enhancement followed by recognition only once, one can think of a multi-

stage enhancement-recognition scheme, where class-specific enhancement is performed in each

stage and the required class labels are taken from the recognition outputs of the previous stage.

Figure 2.8 shows the block diagram of a two stage scheme. In this case, the enhanced output of

the class-specific enhancement scheme is fed to the phoneme recognizer and the label obtained

from this recognizer is used to perform a second stage class-specific enhancement. The phoneme

recognition performance of this enhanced output is then analyzed.

Noise
dictionary

dictionaries
D1;D2; ::::Di; :::Dc

Class-specific

Class-specific
enhancement

PHN
recognizer

Pick dictionary Dc∗ based on class label ;

Perform stage2 class-specific enhancement

Class label

PHN
recognizer

Enhanced

signal

Recognition

accuracy

PHN recog.

accuracy

PHNNoisy

signal Stage1

Figure 2.8: Two stage class-specific enhancement-recognition scheme

2.3.4.1 Results and discussion

Figure 2.9 shows the phoneme recognition performance of a two stage class-specific enhancement-

recognition scheme. The performance improvement over the single stage scheme is analyzed.

The results show that, the two stage scheme, with PHN enhancement using estimated labels

from stage 1 gives a relative accuracy improvement of 1.0%, 0.8%, 1.0% and 0.7% (averaged over

0, 5, and 10 dB SNRs) for factory2, m109, leopard and babble noises, respectively, for phoneme

recognition over the single stage scheme. For MOA enhancement, the two stage scheme gives

average RAI of 0.6%, 0.8%, 0.7% and 1.4% for factory2, m109, leopard and babble noises,

respectively. For POA enhancement, the average RAI values are 0.8%, 0.8%, 0.8% and 1.5%,

respectively, for factory2, m109, leopard and babble noises. It can be observed that the two

stage scheme gives only marginal improvement over single stage scheme.
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Figure 2.9: Comparison of phoneme recognition accuracies of a two stage class-specific
enhancement-recognition scheme over single stage scheme. In the legend, S1 indicates sin-
gle stage scheme and S2 indicates two-stage scheme. The ASR is trained on the entire clean
TIMIT training data and its performance is obtained on the entire TIMIT test set, excluding
sa utterances, after adding the noise from NOISEX-92 database.
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Figure 2.9: Comparison of phoneme recognition accuracies of a two stage class-specific
enhancement-recognition scheme over single stage scheme. In the legend, S1 indicates sin-
gle stage scheme and S2 indicates two-stage scheme. The ASR is trained on the entire clean
TIMIT training data and its performance is obtained on the entire TIMIT test set, excluding
sa utterances, after adding the noise from NOISEX-92 database.
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2.3.5 Manner and place of articulation recognition performance on

speech enhanced with class-specific dictionaries using estimated

class labels

We also analyze the performance improvements for MOA and POA recognizers for the single-

stage scheme. Figure 2.10 shows the block diagram summarizing the steps. The class-specific

enhanced outputs are fed into MOA and POA recognizers and the results are compared to

MOA and POA recognizer outputs after class-independent enhancement.

Class
independent
dictionary

Noise
dictionary

dictionaries
D1;D2; ::::Di; :::Dc

Class-specific

Class
independent
enhancement

PHN
recognizer

Pick dictionary Dc∗ based on class label ;

Perform class specific enhancement

Class label

POA
recognizerEnhanced

signal

POA recog.
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MOA
recognizer

MOA recog.

accuracy

Noisy
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Figure 2.10: MOA and POA recognition on speech enhanced with class-specific dictionaries

2.3.5.1 Results and discussion

MOA recognition results

Figure 2.11 shows the performance of MOA recognizer for various class-specific enhancement

schemes. In the case of MOA recognition, PHN based enhancement gives average relative recog-

nition accuracy improvements of 2.4%, 2.1%, 2.3% and 2.8% for factory2, m109, leopard and

babble noises, respectively, over class-independent enhancement, while MOA based enhance-

ment gives improvements of 1.3%, 1.1%, 1.7% and 2.1%. For POA based enhancement, the

average RAIs are 1.7%, 0.8%, 1.3% and 2.4%, respectively.

POA recognition results

The POA recognition performance of various class-specific enhancement schemes are shown in

Fig. 2.12. For POA recognition, PHN based enhancement gives average RAIs of 2.9%, 2.1%,

2.4% and 0.7%. MOA based enhancement achieves improvements of 2.3%, 1.8%, 1.9% and

0.9%. For POA based enhancement, we get improvements of 3.3%, 2.2%, 2.7% and 0.8%.
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Figure 2.11: Comparison of manner of articulation recognition performance on speech enhanced
with class-specific dictionaries using estimated class labels with the one with class-independent
enhancement for (a) Factory2 and (b) M109 noises.
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Figure 2.11: Comparison of manner of articulation recognition performance on speech enhanced
with class-specific dictionaries using estimated class labels with the one with class-independent
enhancement for (c) Leopard and (d) Babble noises.
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Figure 2.12: Comparison of place of articulation recognition performance on speech enhanced
with class-specific dictionaries using estimated class labels with the one with class-independent
enhancement for (a) Factory2 and (b) M109 noises.
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Figure 2.12: Comparison of place of articulation recognition performance on speech enhanced
with class-specific dictionaries using estimated class labels with the one with class-independent
enhancement for (c) Leopard and (d) Babble noises.
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2.4 Conclusions

We have analyzed how the performance of the enhancement schemes vary when we use class-

specific dictionaries for enhancement rather than a class-independent dictionary in terms of

objective quality measures like PESQ, SSNR as well as in terms of recognition accuracy. The

experiments are carried out in a speaker independent scenario. With the ground truth class

labels, there is significant improvement in recognition accuracy for class-specific enhancement

over the class-independent scheme but not much improvement was found in terms of objective

quality measures. When ground truth labels are used, the 39-PHN based enhancement gives

average RAI in phoneme recognition of 21.5%, 17.6%, 12.1%, 29.2% and 9.3% for factory2,

m109, leopard, babble and volvo noises, respectively, over class-independent enhancement.

The 39-PHN based enhancement outperforms the MOA and POA based schemes in most

of the cases. Using the approximate labels obtained from the ASR gives better recognition

accuracy than the class-independent enhancement, although it is lower than that using the

ground truth labels. Future work could employ a DNN framework with other features like

multistream features [100] for recognition and examine the benefit of class-specific enhancement,

since it has been shown to perform significantly better than GMM-HMM framework with MFCC

features. Also we would like to examine the usefulness of our algorithms on a more realistic

scenario involving real world speech mixed with noise.
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Chapter 3

A joint enhancement-decoding

formulation for noise robust phoneme

recognition

We consider a dictionary based speech enhancement in the context of automatic recognition of

noisy speech. Speech in each analysis frame is denoised as a front-end processing using a class-

specific (e.g. phoneme) dictionary selected based on the estimated class label. However, when

the estimated label is erroneous, a wrong class model is chosen for many frames. We propose

a joint enhancement-decoding (JED) algorithm to overcome this issue by jointly optimizing for

labels of all the frames and the decoding path. The algorithm optimizes over multiple enhanced

versions of each frame using different phoneme-specific dictionaries and gives the maximum

likelihood path of state sequences as well as the best (in the maximum likelihood sense) choice of

the enhanced observation sequence as its output. The number of phoneme-specific dictionaries

used for enhancement in an analysis frame is varied from 1 to 5 based on the phoneme con-

fusion matrix and the recognition results are reported for each case. Experiments with TIMIT

corpus and five different noises at 0, 5 and 10 dB SNRs show that the recognition performance

varies with the number of dictionaries, and in most of the cases, is the best when two or three

dictionaries are employed.

3.1 Introduction

In the past decade, there has been tremendous improvements in the field of automatic speech

recognition (ASR). Despite these, the performance of an ASR system degrades significantly
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in the presence of noise due to the mismatch between the training and test environments, for

example, when training is done on clean speech and testing is performed on noisy speech. The

presence of noise distorts the spectrum of speech and hence degrades the performance.

Several techniques have been proposed to address this problem, and improve the recognition

performance in noisy environments. One such approach is to employ model adaptation schemes,

like parallel model combination [101] and HMM adaptation [102–104]. Another approach is to

analyze the existing features and enhance them to make them more noise-robust, like cepstral

mean subtraction [105], RASTA filtering [106] and vector Taylor series [107]. A third approach is

to enhance the speech as a front-end processing, using methods such as spectral subtraction [108]

or Wiener filtering [109] before it is fed into a recognizer. This obviates the need to retrain the

ASR systems for different types of noisy inputs since the same ASR trained on clean speech can

be used. A comparative study [10] has also been reported on the performance of ASR systems

with various enhancement approaches. In Chapter 2, we explored the enhancement performance

of using class-specific dictionaries and found it to be particularly useful for phoneme recognition

in noisy environment [11].

3.1.1 Motivation

All the class specific enhancement schemes mentioned so far [11, 90, 91] depend on the esti-

mated class label for each frame, which may be erroneous. This leads to the selection of wrong

class model for the enhancement in the respective frames. To overcome this, we propose a joint

enhancement-decoding (JED) algorithm that jointly optimizes these class labels and the final

recognized speech labels [110]. By this approach, we aim to find the best possible frame-wise

model for enhancement and the recognition labels together for an input speech signal in a single

optimization framework. We develop this algorithm by integrating the class label estimation

into the Viterbi decoder [111] typically used for speech recognition. We implement the same

using the HTK toolkit. The proposed algorithm accepts multiple enhanced observations and

chooses the best in each frame such that the overall likelihood is maximized. Multiple obser-

vations are obtained by enhancing every noisy frame using multiple class-specific dictionaries.

The best sequence of observations is chosen to maximize the likelihood. Thus we do not sepa-

rately choose a class label and consequently the class model for frame-wise enhancement as in

[11] [90] or [91].

We analyze the performance of our algorithm on TIMIT database. We use the confusion

matrix obtained from the recognition output of clean speech to select the pool of dictionaries.

This results in an improvement in the performance in most of the cases over the enhancement
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using a class-independent dictionary. It is to be noted that when the number of dictionaries is

set to 1, the algorithm becomes the same as class-specific enhancement explained in chapter 2

[11].

3.2 Class - specific enhancement combined with joint en-

hancement - decoding algorithm for phoneme recog-

nition

Figure 3.1 shows a generic class-specific enhancement-recognition framework. This scheme

depends on the estimated frame labels of noisy speech. Once the class labels of the frames are

obtained, the corresponding class-specific dictionaries are used for enhancement. This estimate

of class labels is often erroneous, which results in the selection of wrong class dictionary resulting

in poor enhancement of the respective frames and subsequent performance reduction in phoneme

recognition.

speech dictionaries
Noise and Class-specific

PHN

recognizer

Recognition

accuracy
PHN

Noisy
signal Class-specific

speech enhancement

Obtain
frame-wise
class label

Figure 3.1: Class-specific enhancement framework

We propose a joint enhancement-decoding (JED) formulation to compensate for this error

and to improve the phoneme recognition accuracy. The block diagram of class-specific en-

hancement combined with the proposed JED algorithm is shown in Fig. 3.2. We use multiple

class-specific dictionaries for enhancing a single frame and these different denoised versions of

a frame are fed into the JED algorithm. The algorithm accepts multiple enhanced observa-

tions for each frame and selects the best observation for each frame as well as the best state
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Figure 3.2: Class-specific enhancement framework using JED

sequence that maximizes the likelihood of the chosen observations. We use sparse coding based

dictionary learning approach for obtaining the enhanced speech observations. This approach

involves learning of speech and noise dictionaries as well as a sparse coding stage for learning

the coefficients. The sparse coding and dictionary learning parts are explained in detail in

Chapter 2.

3.2.1 Speech enhancement using dictionary learning

For this work we use KSVD based dictionary learning as mentioned in Chapter 2 [85]. Batch

least angle regression with coherence criterion (LARC) [59] is used for sparse coding for which

a residual coherence threshold is applied as a stopping criterion.

Let s(m) and x(m) be the mth samples of the clean speech and noise signal corrupting the

speech. Considering additive noise model, the mth sample of the noisy speech, y(m) is given

as;

y(m) = s(m) + x(m). (3.1)

The short time Fourier transform (STFT) of the above is given as;

Y (ωk) = S(ωk) +X(ωk) (3.2)
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Here ωk = 2πk
R

, k = 0, 1, 2...R− 1 , R is the number of frequency bins and k is the frequency

index.

For learning the dictionary, we consider only the magnitude spectra. The phase of the noisy

speech is retained to be used for reconstruction of the estimated speech signal.

Considering only the magnitude spectra, we can write,

Y ≈ S +X ∈ RR×1 (3.3)

where S and X represent the magnitude spectra of the clean speech and the noise, respec-

tively.

Using the learned overcomplete dictionaries Ds and Dx ∈RR×L , L > R, learned from the

speech and noise training set and their corresponding sparse coefficient vectors cs and cx, an

estimate of the magnitude STFT of noisy speech for a frame f is given as,

Ŷf = Ds × cs +Dx × cx (3.4)

The enhanced speech is estimated as;

Ŝf = Ds × cs (3.5)

3.2.2 Viterbi algorithm

The Viterbi algorithm is a dynamical programming algorithm that is used to find the most

likely sequence of labels or hidden states, given a set of observations Θ = {θf ; 1 ≤ f ≤ F} ,

where F denotes the total number of frames, in hidden Markov model (HMM) based recognition

systems. The algorithm is given in Algorithm 4.

3.2.3 JED algorithm

The JED algorithm accepts multiple enhanced observations for each frame and finds a path

that maximizes the likelihood of the chosen observations. Thus we could use multiple class-

specific dictionaries for enhancing a single frame and these frames can be fed into the phoneme

recognizer using JED to obtain the maximum likelihood path.

Let the enhanced observation at the f th frame using class-specific dictionary with ith label

be denoted by θif . If F denotes the total number of frames and N denotes the number of best

labels considered for enhancement in each frame, Θ = {θif ; 1 ≤ f ≤ F, 1 ≤ i ≤ N}. The JED

algorithm optimizes the observation sequence θ
i∗(f)
f , 1 ≤ f ≤ F as well as the state sequence
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Algorithm 4: Viterbi Algorithm

1 Θ = {θf ; 1 ≤ f ≤ F}: observation sequence
2 ob(·|qj) :observation probability given state qj
3 tr(qk → qj) :transition probability from qk to qj
55 for each state q! =Starting state do
6 φ(1, q) = 1

88 for f ← 1 to F do
9 for each state qj do

10 φ(f, qj)← maxkφ(f − 1, qk)ob(θf |qj)tr(qk → qj)
11 Ψ(f, qj) = argmaxk φ(f − 1, qk)ob(θf |qj)tr(qk → qj)

1313 P (Θ,Q) = maxj φ(F, qj)
1515 Backtrack

q∗1, q
∗
2, . . . , q

∗
F to maximize the likelihood of the observation as follows :

{θi
∗(f)
f , q∗f , 1 ≤ f ≤ F} = argmax

θif ,qf

P (q1, q2, . . . qF |Θ) (3.6)

Assuming each enhanced observations per frame to be equally likely;

{θi
∗(f)
f , q∗f , 1 ≤ f ≤ F} = argmax

θif ,qf

P (Θ|q1, q2, . . . qF )P (q1, q2, . . . qF )

= argmax
qf

{
max
θif

P (Θ|q1, q2, . . . qF )
}
P (q1, q2, . . . qF )

(3.7)

Assuming independence among observations, given the state sequence, we write

{q∗1, q∗2, . . . q∗F} = argmax
qf

{ F∏
f=1

max
1≤i≤N

P (θif |qf )
}
P (q1, q2, . . . qF )

= argmax
qf

{ F∏
f=1

P (θ
i∗(f)
f |qf )

}
P (q1, q2, . . . qF )

(3.8)

where i∗(f) = argmax1≤i≤N P (θif |qf ).
Thus the JED algorithm could be considered as the modified version of Viterbi decoding

algorithm, which incorporates N observations instead of a single observation per time instant.

The steps of the algorithm are given in Algorithm 5.
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Algorithm 5: Joint Enhancement-Decoding Algorithm

1 Θ = {θif ; 1 ≤ f ≤ F, 1 ≤ i ≤ N}: observation sequence

2 ob(·|qj) :observation probability given state qj
3 tr(qk → qj) :transition probability from qk to qj
55 for each state q! =Starting state do
6 φ(1, q) = 1

88 for f ← 1 to F do
9 for each state qj do

10 θ
i∗(f)
f = argmaxθif ob(θ

i
f |qj)

11 for each state qj do

12 φ(f, qj)← maxkφ(f − 1, qk)ob(θ
i∗(f)
f |qj)tr(qk → qj)

13 Ψ(f, qj) = argmaxk φ(f − 1, qk)ob(θ
i∗(f)
f |qj)tr(qk → qj)

1515 P (Θ,Q) = maxj φ(F, qj)
1717 Backtrack

3.2.4 Best-N class-specific dictionary based enhancement-recognition

using JED

JED algorithm does not require the knowledge of frame labels to do the class-specific enhance-

ment and decoding. In fact, all the phoneme dictionaries can be used for the enhancement

of each frame and these multiple enhanced observations can be given as the input. The algo-

rithm then jointly optimizes the class label in each frame and the decoding path. However, we

observed that the use of all the phoneme dictionaries for frame-wise enhancement is not only

computationally expensive, but also results in a performance drop. Hence we choose a subset

of labels such that the chance of actual label belonging to this subset is high.

We use the confusion matrix obtained by running the recognizer on a subset of the clean

TIMIT test sentences to choose this subset of labels. Selecting a small set of labels with high

likelihood from the matrix for a given recognized label, ensures that the likelihood of the actual

label being in this set is high. Hence we use this set of labels in class specific enhancement for

enhancing each frame of a noisy test speech.

The block diagram summarizing the steps of the best-N class-specific dictionary based

enhancement for phoneme recognition using the proposed JED algorithm is shown in Fig. 3.3.

At first, noisy speech is enhanced using a class-independent dictionary and the phoneme label

of each frame is estimated by recognizing this enhanced speech. The confusion matrix of ASR

output for clean speech is used to obtain the next N − 1 best labels. These labels are then
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used to obtain N enhanced observations for each frame using the respective dictionaries. The

enhanced observations are then fed into the JED algorithm, which gives the decoded output by

maximizing the likelihood.

Class
independent
dictionary

Noise
dictionary

dictionaries
D1;D2; ::::Di; :::D39

Class-specific

Class
independent
enhancement

PHN
recognizer

Pick dictionary D∗

i
;1 ≤ i ≤ N ≤ 5 ;

Perform best-N class-specific

labels

signals

Recognition

accuracy

PHN recognition

accuracy

PHNNoisy

signal

based on the best N labels for a frame.

enhancement

JED

Algorithm

Class

Enhanced

Obtain the next N-1 labels
from clean phoneme confusion matrix

Figure 3.3: Phoneme recognition of noisy speech using best-N class-specific dictionaries using
JED

The enhancement and recognition stages are explained in Algorithm 6.

Algorithm 6

1. Enhance noisy data using class-independent dictionary:

Let Yf ∈ RR×1 be the noisy speech spectrum of a frame. Dind ∈RR×L and Dx ∈RR×L be the

dictionaries for class-independent speech and the noise, respectively. Using the composite

dictionary D = [Dind Dx] , the sparse coefficients of the noisy speech are obtained as[
cinds

cx

]
= LARC(Yf , D, µcoh) (3.9)

where µcoh is the threshold on mutual coherence and cinds represents the sparse coefficient

vector corresponding to Dind.

Clean speech is estimated as

Ŝf = Dind × cinds (3.10)

2. Find the phoneme labels using a phoneme recognizer on this enhanced speech.
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3. Based on the class label of a frame, obtain the next best N − 1 labels using the confusion

matrix of the recognition performance on a small subset of clean speech data.

4. Using the obtained N labels, perform a best-N-label class-specific enhancement of the orig-

inal noisy data using the dictionaries corresponding to these class labels.

Let the N-best dictionaries corresponding to the obtained class label be D∗i ; 1 ≤ i ≤ N .

Enhance the original noisy speech observation Yf separately using each of these N-best

dictionaries. The sparse coefficients obtained using composite dictionary Di = [D∗i Dx]

are [
c
∗(i)
s

c
∗(i)
x

]
= LARC(Yf , Di, µcoh) (3.11)

The clean speech estimate is given as;

Ŝ
∗(i)
f = D∗i × c∗(i)s (3.12)

where c
∗(i)
s corresponds to D∗i

5. Input these N enhanced speech estimates for each frame to the JED algorithm and evaluate

the recognition performance.

ss

3.3 Experiments and results

Experimental setup is similar to the one explained in chapter 2 sec. 2.3.1, except for the

recognition setup which is modified slightly for the computation of the confusion matrix. The

recognition setup is given below;

3.3.0.1 Recognition setup

The ASR is trained on the entire TIMIT clean training data. The TIMIT test set is randomly

divided into two equal sets. One of them is used to obtain the clean speech confusion matrix

after recognition. The second test set is used to compare the recognition accuracy. The results

are reported on the reduced set of 39 phonemes. The source code of the Viterbi decoding algo-

rithm for recognition in the HTK toolkit [97] is modified to implement our JED algorithm. We

use 39-dimensional mel frequency cepstral coefficients [98] for recognition with 0-th coefficient,
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delta and delta-delta coefficients. Cepstral mean normalization is applied. The analysis frame

is chosen to be 30 ms with 10 ms frame shift. For recognition, we use a three state monophone

HMM model with diagonal covariance matrix. For each state, the number of Gaussian mix-

tures is set to 32, since increasing it further did not result in any significant improvement in

recognition performance. A bigram phoneme language model is used.

3.3.1 Best-N class-specific dictionary based enhancement-recognition

scheme using JED with monogram confusion matrix

Section 3.2.4 explains the steps involved in the proposed method. As explained, after we obtain

the label of a frame, the next best N − 1 labels are obtained using a confusion matrix obtained

by recognizing a subset of the test data. In this section, we show the results of the case when

the considered confusion matrix is mono-gram. Each entry in the matrix can be interpreted as

the likelihood of row label being the actual label given that column label is the obtained label.

Figures 3.4 (a-e) show the improvements in the phoneme recognition accuracies for the pro-

posed best-N class-specific enhancement-recognition scheme using JED with mono-gram con-

fusion matrix for N varying from 1 through 5. The phoneme recognition accuracies for speech

corrupted with noises (a) factory 2, (b) m109, (c) leopard, (d) babble and (e) volvo are shown.

We compare the recognition accuracies of the proposed method with that of class-independent

enhancement scheme and also with four other enhancement schemes: multi-band spectral sub-

traction (MBSS) [18], non-causal apriori SNR estimator (NC) [38], harmonic regeneration noise

reduction (HRNR) [39] and geometric spectral subtraction (GA) [19].

It can be observed from figure 3.4 that the best-N enhancement scheme yields performance

superior to all the other schemes for all noise types.

For speech corrupted with factory2 noise, best-N enhancement scheme gives an average

relative accuracy improvement (RAI) of 5.6%, 6.2%, 6.9%, 6.0% and 5.4%, respectively, for

values of N = 1 to 5, over class-independent enhancement scheme, when averaged over SNRs

0, 5, and 10 dB. For M109 noise, the average RAI values are 3.9%, 4.3%, 5.4%, 4.9% and 4.8%,

respectively. The average RAI values for speech corrupted with leopard noise are 2.3%, 3.6%,

3.9%, 3.2% and 3.2%.

In the case of speech corrupted with babble noise, the proposed scheme gives superior

performance only when N = 1. The average RAI values over class-independent scheme are

2.3%, -1.0%, 0.8%, -1.1% and -1.3% for values of N = 1 to 5.

For the case of volvo noise, it is observed that after cepstral mean normalization, the

recognition accuracy using noisy speech outperforms the class-independent and class-dependent
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Figure 3.4: Performance of JED in terms of phoneme recognition accuracies for (a) Factory2
noise. In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition
accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class-
independent scheme and best-N class-specific enhancement (best-N) schemes with mono-gram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground
truth phoneme labels are used for enhancement.
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Figure 3.4: Performance of JED in terms of phoneme recognition accuracies for (b) M109 noise.
In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition
accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class-
independent scheme and best-N class-specific enhancement (best-N) schemes with mono-gram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground
truth phoneme labels are used for enhancement.
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Figure 3.4: Performance of JED in terms of phoneme recognition accuracies for (c) Leopard
noise. In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition
accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class-
independent scheme and best-N class-specific enhancement (best-N) schemes with mono-gram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground
truth phoneme labels are used for enhancement.
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Figure 3.4: Performance of JED in terms of phoneme recognition accuracies for (d) Babble noise.
In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition
accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class-
independent scheme and best-N class-specific enhancement (best-N) schemes with mono-gram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground
truth phoneme labels are used for enhancement.
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Figure 3.4: Performance of JED in terms of phoneme recognition accuracies for (e) Volvo noise.
In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition
accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class-
independent scheme and best-N class-specific enhancement (best-N) schemes with mono-gram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground
truth phoneme labels are used for enhancement.

66



schemes in most cases. Thus the proposed scheme shows average RAI values of -0.2%, 0.1%,

-0.02%, -0.4% and -0.8% respectively, for N varying from 1 to 5, over the performance of noisy

speech. However, it is to be noted that the accuracies from the proposed scheme are still better

than those of the class independent scheme. For phoneme recognition, the average RAIs over

class-independent scheme are 2.0%, 2.3%, 2.2%, 1.8% and 1.4%, respectively, for N varying

from 1 to 5.

From figure 3.4 it is observed that the recognition performance varies as N varies from 1 to

5. The best performance is obtained with two or three dictionaries in most of the cases. The

motivation for using multiple enhanced observations based on best-N class-specific dictionaries

is the fact that the set of labels employed for enhancing a frame has more chance of having the

correct label when N=5 than when N=1.

Table 3.1: Percentage of frames for which none of the estimated N labels include the ground
truth labels. The three columns for each noise correspond to N=1, N=3 and N=5. When
N=5 on the average, the correct label percentage increases by about 20%

SNR
(dB)

Factory2 M109 Leopard Babble Volvo
N = 1 N = 3 N = 5 N = 1 N = 3 N = 5 N = 1 N = 3 N = 5 N = 1 N = 3 N = 5 N = 1 N = 3 N = 5

0 52 38 30 49 36 28 42 29 24 69 53 43 37 25 20
5 45 31 25 43 30 23 39 26 21 57 42 33 35 24 19
10 40 27 21 38 26 21 37 25 20 47 34 27 34 23 18

This is illustrated in Table 3.1, where we show the percentage of frames in the entire test

set where the estimated labels do not include the ground truth class label for N=1, N=3 and

N=5 for different noise and SNR conditions. It is clear that the percentage of such frames

reduces when N=5 compared to when N=1.

The JED algorithm accepts multiple inputs per time instant and maximizes the overall

likelihood of the output utterance. To evaluate this, we obtain the log likelihood values of a

few utterances from the test set for the best-N class-specific schemes for factory2 noise at 0 dB

SNR as shown in Table 3.2.The likelihood increases monotonically from N = 1 to 5. However,

as observed from figure 3.4 (a-e), this does not always translate to a monotonic increase in

recognition accuracy.
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Table 3.2: Log likelihood values of a few utterances from TIMIT test set for best-N class-
dependent schemes (best-N) for N varying from 1 to 5 for factory2 noise at 0 dB SNR.

mnjm0/sx410 fpas0/sx404 mtaa0/sx115 fcal1/sx143
best-1 -21820 -21494 -23795 -19125
best-2 -20853 -20885 -22755 -18644
best-3 -20299 -20380 -22139 -18187
best-4 -20078 -20040 -21985 -18121
best-5 -19909 -19781 -21876 -18074

3.3.2 Best-N class-specific dictionary based enhancement-recognition

scheme using JED with bigram confusion matrix

Instead of using a mono-gram confusion matrix to select the best-N labels to enhance a partic-

ular frame as described in section 3.3.1, we can consider a bigram or trigram confusion matrix

to explore the effect of dependence of phonemes. The block diagram of the scheme is shown in

figure 3.5.
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Figure 3.5: Best-N class-specific dictionary based enhancement-recognition scheme using JED
with bigram confusion matrix

As shown in figure 3.5, all the steps involved are the same as those explained in section

3.2.4 except the confusion matrix used. In the bigram case, the best-N phonemes for each

frame are selected based on a bigram confusion matrix. This matrix is populated by computing
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the occurrence of each phoneme for a given combination of estimated phonemes at the current

and previous time instants.

3.3.2.1 Results and discussion

Figure 3.6 (a-e) shows the improvements in the phoneme recognition accuracies for the best-N

class-specific enhancement-recognition scheme using JED with bigram confusion matrix for N

varying from 1 through 5. The phoneme recognition accuracies for speech corrupted with noises

(a) factory 2, (b) m109, (c) leopard, (d) babble and (e) volvo are shown. The figure also shows

the recognition accuracies for the other five enhancement schemes class-independent, MBSS

[18], NC [38], HRNR [39] and GA [19] for comparison.

The average RAI values for this scheme using bigram confusion matrix over class-independent

scheme for N varying from 2 to 5 in the case of speech corrupted with factory 2 noise are, 6.2%,

6.6%, 6.4% and 6.2%. For m109 noise, the values are 4.6%, 4.7%, 4.9% and 4.6%. The values

for speech corrupted with leopard noise are 3.5%, 4.1%, 4.3% and 4.0%.

For babble noise, just like the previous cases of using mono-gram confusion matrix, the

improvement is not much for N = 2 to 5. The average RAI values in this case are 0.2%, 1.2%,

0.6% and 0.9% .

In the case of volvo noise, just like the case of using monogram matrix, the recognition

accuracy using noisy speech outperforms the class-independent and class-dependent schemes in

most cases after CMN. The average RAI values of the proposed scheme over the performance

for noisy speech for N = 2 to 5 are 0.4%, 0.3%, -0.3% and -0.4%. But just like the previous

scheme, here also we get better accuracies than those of the class independent scheme. For

phoneme recognition, the average RAIs over class-independent scheme are 2.7%, 2.5%, 1.8%

and 1.8% respectively, for N varying from 2 to 5.

3.3.3 Best-N class-specific dictionary based enhancement-recognition

scheme using JED with trigram confusion matrix

In this scheme, we use a trigram confusion matrix to select the best-N labels to enhance a

particular frame. The block diagram of the scheme is shown in figure 3.7.

In the trigram case, the best-N phonemes for each frame are selected based on a trigram

confusion matrix. The trigram confusion matrix uses the current, previous and next frames for

computing the frequency of occurrence of a phoneme.
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Figure 3.6: Performance of JED in terms of phoneme recognition accuracies for (a) Factory2
noise. In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recognition
accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA, class-
independent scheme, and best-N class-specific enhancement (best-N) schemes with bigram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the
ground truth phoneme labels are used for enhancement.
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Figure 3.6: Performance of JED in terms of phoneme recognition accuracies for (b) M109
noise. In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recog-
nition accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA,
class-independent scheme and best-N class-specific enhancement (best-N) schemes with bigram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground
truth phoneme labels are used for enhancement.

71



0 5 10 clean
30

35

40

45

50

55

60

65

SNR(dB)

A
cc

u
ra

cy
(%

)

Leopard

(c)

 

 

noisy MBSS NC HRNR GA class−ind best−1 best−2 best−3 best−4 best−5 PHN−gnd clean

Figure 3.6: Performance of JED in terms of phoneme recognition accuracies for (c) Leopard
noise. In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recog-
nition accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA,
class-independent scheme and best-N class-specific enhancement (best-N) schemes with bigram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground
truth phoneme labels are used for enhancement.
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Figure 3.6: Performance of JED in terms of phoneme recognition accuracies for (d) Babble
noise. In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recog-
nition accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA,
class-independent scheme and best-N class-specific enhancement (best-N) schemes with bigram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground
truth phoneme labels are used for enhancement.
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Figure 3.6: Performance of JED in terms of phoneme recognition accuracies for (e) Volvo
noise. In each figure, results are given for SNRs of 0, 5 and 10 dB. For each SNR, the recog-
nition accuracies are given for noisy speech, speech enhanced using MBSS, NC, HRNR, GA,
class-independent scheme and best-N class-specific enhancement (best-N) schemes with bigram
confusion matrix, for N varying from 1 to 5. PHN-gnd refers to the ideal case, when the ground
truth phoneme labels are used for enhancement.
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Figure 3.7: Best-N class-specific dictionary based enhancement-recognition scheme using JED
with trigram confusion matrix

3.3.3.1 Results and discussion

Figure 3.8 (a-e) shows the improvements in the phoneme recognition accuracies for the best-N

class-specific enhancement-recognition scheme using JED using trigram confusion matrix for N

varying from 1 through 5. The results for speech corrupted with noises (a) factory 2, (b) m109,

(c) leopard, (d) babble and (e) volvo are shown. Similar to the previous cases, the recognition

accuracies are compared with class-independent scheme, MBSS [18], NC [38], HRNR [39] and

GA [19].

For speech corrupted with factory 2 noise the average RAI values (when averaged over 0, 5

and 10 dB SNRs) over class-independent case, for the scheme using trigram confusion matrix

are 6.0%, 6.3%, 6.3% and 6.3% for N = 2 to 5. For m109 case, the values are 4.8%, 5.1%,

5.2% and 4.8 %. For leopard noise, the values are 3.8%, 4.5%, 4.4% and 4.4%. The RAI values

for babble noise are 0.6%, 0.8%, 0.7% and 0.6%. For volvo noise case, the RAI values over

noisy case are 0.4%, 0.3%, -0.2% and -0.3%. However, just like the previous two cases of using

monogram and bigram confusion matrices, the performance is better than class-independent as

well as the other four enhancement techniques MBSS, NC, HRNR and GA. The average RAI

values over class independent scheme are 2.6%, 2.5%, 2.1% and 1.9%.
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Figure 3.8: Performance of JED in terms of phoneme recognition accuracies for (a) Factory2
noise for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are given for noisy
speech, speech enhanced using MBSS, NC, HRNR, GA, class-independent scheme and best-N
class-specific enhancement (best-N) schemes with trigram confusion matrix, for N varying from
1 to 5. PHN-gnd refers to the ideal case, when the ground truth phoneme labels are used for
enhancement.

76



0 5 10 clean
20

25

30

35

40

45

50

55

60

65

SNR(dB)

A
cc

u
ra

cy
(%

)

M109

(b)

 

 

noisy MBSS NC HRNR GA class−ind best−1 best−2 best−3 best−4 best−5 PHN−gnd clean

Figure 3.8: Performance of JED in terms of phoneme recognition accuracies for (b) M109 noise
for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are given for noisy speech,
speech enhanced using MBSS, NC, HRNR, GA, class-independent scheme and best-N class-
specific enhancement (best-N) schemes with trigram confusion matrix, for N varying from 1
to 5. PHN-gnd refers to the ideal case, when the ground truth phoneme labels are used for
enhancement.
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Figure 3.8: Performance of JED in terms of phoneme recognition accuracies for (c) Leopard
noise for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are given for noisy
speech, speech enhanced using MBSS, NC, HRNR, GA, class-independent scheme and best-N
class-specific enhancement (best-N) schemes with trigram confusion matrix, for N varying from
1 to 5. PHN-gnd refers to the ideal case, when the ground truth phoneme labels are used for
enhancement.
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Figure 3.8: Performance of JED in terms of phoneme recognition accuracies for (d) Babble
noise for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are given for noisy
speech, speech enhanced using MBSS, NC, HRNR, GA, class-independent scheme and best-N
class-specific enhancement (best-N) schemes with trigram confusion matrix, for N varying from
1 to 5. PHN-gnd refers to the ideal case, when the ground truth phoneme labels are used for
enhancement.
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Figure 3.8: Performance of JED in terms of phoneme recognition accuracies for (e) Volvo noise
for SNRs of 0, 5 and 10 dB. For each SNR, the recognition accuracies are given for noisy speech,
speech enhanced using MBSS, NC, HRNR, GA, class-independent scheme and best-N class-
specific enhancement (best-N) schemes with trigram confusion matrix, for N varying from 1
to 5. PHN-gnd refers to the ideal case, when the ground truth phoneme labels are used for
enhancement.
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3.3.4 Comparison of phoneme recognition accuracies of best-N en-

hancement - recognition scheme using JED using monogram,

bigram and trigram confusion matrices.

To get a better picture of the phoneme recognition results of the schemes using monogram,

bigram and trigram confusion matrices given in secs. 3.3.1, 3.3.2.1 and 3.3.3.1, we average the

results over all the three SNRs and five noises as shown in Table 3.3. It is observed that over the

case of using a monogram confusion matrix, the bigram and trigram cases give only marginal

improvements.

Table 3.3: Phoneme recognition accuracies for best-N ; N = 2 to 5 using n-gram confusion
matrix (n = 1 to 3 ) averaged over Factory 2, Babble, Leopard, M109 and Volvo noises for 0,
5 and 10 dB SNRs

best-2 best-3 best-4 best-5
Monogram 50.0 50.3 49.9 49.8
Bigram 50.2 50.3 50.2 50.2
Trigram 50.2 50.4 50.3 50.2

3.4 Conclusions

We analyzed the phoneme recognition performance of JED using best-N class-specific dictio-

naries, where the best-N labels could be selected based on a monogram, bigram or trigram

confusion matrix. The recognition performance varies with N , giving the best values at N =

2 or 3 in most cases. The use of bigram and trigram confusion matrices for selection does not

result in any marked improvement in performance compared to the monogram case. Further,

the performance also depends on the type of noise corrupting the speech. Thus, in a real life

scenario, the training data for noise model can be obtained from speech pauses using a voice

activity detector to create the noise dictionary specific to the current environment [59].

The input observations for JED algorithm need not necessarily be enhanced using class-

specific dictionary based approaches. The recognition performance of different enhancement

techniques varies substantially over different noise types and SNRs [10]. Hence one can choose

any other denoising technique depending upon the noise type and SNR. The proposed algorithm

can thus be used to find the best enhancement scheme and recognition label for an input speech

with any noise. We intend to explore in this direction in future.
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Chapter 4

Monte Carlo dropout for low SNR,

non-stationary, unseen noise reduction

from speech

We propose methods to use dropout as a Bayesian estimator to improve the generalizability and

performance of deep neural network (DNN) models for speech enhancement even with unseen

and non-stationary noise. DNN model using Monte Carlo (MC) dropout performs better than

the one using conventional dropout in unseen noisy conditions for low SNRs. A DNN is trained

on speech with Factory2, M109, Babble, Leopard and Volvo noises at SNRs of 0, 5 and 10 dB.

In another experiment, separate DNN models are trained, each on speech with one of the above

noises at the same SNRs, using MC dropout. The trace of the covariance matrix (V ar) of the

output samples, resulting from different MC dropout trials, is used as a measure of the model

precision (as a proxy for squared error) to select one out of these five models for each frame. We

propose another algorithm with a threshold on V ar to choose noise-classifier-based or model-

precision-based selection scheme. Speech with unseen noises of White, Pink and Factory1 and

all the five seen noises is used for testing. We also explore more realistic scenarios, where

speech contains a mixture of noises or random number of segments of speech have different

randomly chosen noises. In another significant experiment, we record real world, traffic noise

and evaluate the performance of speech corrupted with this noise. Our algorithm performs well

on real world, traffic noise from 10 down to -10 dB.
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4.1 Introduction

Speech enhancement algorithms aim at the reduction of the noise associated with it with-

out degrading the quality of speech. Several techniques have been proposed in the past for

speech denoising, whose applications include speech recognition, speaker identification etc. Un-

supervised enhancement techniques such as Wiener filter [109], spectral subtraction [19, 108],

residual-weighting schemes [112–114], minimum mean-square error (MMSE) estimators [29] and

Gaussian prior distribution based estimators [35, 115] are quite popular in the field. But these

methods fail in the case of non-stationary noisy conditions.

Supervised learning techniques such as [50, 51, 53] have gained popularity due to their

improved performance as they make use of prior information. With the introduction of multi

layer perceptron (MLP), the denoising performance improved as they were able to better learn

the complex mapping between noisy and clean speech [60, 62]. Xie and Compernolle [61]

proposed the use of MLPs as nonlinear spectral estimators for noise reduction. But these

networks are shallow and hence the mapping cannot be learned completely.

Deep architectures [63, 64] have revolutionized this field recently as they are able to learn

this complex mapping between noisy and clean speech much better. Mass et.al proposed a

model, which uses a deep recurrent auto encoder neural network for the enhancement of input

features for a noise robust ASR [65].

A major issue encountered by DNN based enhancement is the degradation of enhancement

performance when the characteristics of the noise corrupting the input speech is different from

that of the training set [67, 68]. This kind of noise is referred to as unseen noise. The per-

formance degrades for those noises for which the network is less adapted. Though not dealt

separately, several techniques have been proposed in the past to address this problem. One

intuitive way of doing this is to increase the training data by incorporating a variety of acoustic

conditions. Wang et.al. [66] propose a DNN-SVM (support vector machine) system which is

trained by including different acoustic conditions for a huge amount of time. They use 100

environmental noises to corrupt the training data. Xu et. al. proposed a wide DNN-based re-

gression model with an RBM pre-training scheme. To improve the enhancement performance,

they use more acoustic information and about 100 hours of noisy training data [67]. A noise

aware DNN as a regression is proposed in [68], where noise information of the utterance is also

appended along with the input vector to the DNN. In the above study, they use 104 different

noise types leading to around 2500 hours of training data.

Ouyang et.al. [116] propose a DNN-based harmonic noise model (HNM) parameter estima-

tor to learn the HNM parameters of clean speech from the spectrum of noisy speech. A hybrid
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signal processing/deep learning scheme is proposed in [117], where deep learning is used to

estimate the noise statistics, which is then integrated into the Wiener filter-based enhancement

structure to enhance speech. However, both [116] and [117] have not specifically addressed the

problem of improving the generalizabity of the DNN employed, especially for unseen noises.

The experiments in this study aim at improving the generalizability of an existing DNN

model for enhancement by replacing the conventional dropout [118, 119] by using Monte Carlo

dropout proposed by Gal and Ghahramani in [87], particularly for unseen noisy scenario. In

real life, when a noisy speech is encountered, one is not always sure that one knows the char-

acteristics of the noise. When speech is recorded inside a moving car, for example, one knows

that the constant, stationary noise of the engine is added to the speech. However, when the

characteristics of the noise is unknown, there are two possibilities. The noise belongs to one of

the classes of noise, with which the system (or model) has been trained. In this case of seen

noise, the best way to handle it is to identify the class of the noise and use a model that is best

suited for the same. However, if it is suspected that it does not belong to any of the classes

of noise with which the system has been trained or if the noise is highly non-stationary, then

it is better to use some ad-hoc strategy that is expected to best reduce the noise in the signal

being enhanced. Considering such a scenario, we try to find a way of picking the best DNN

model, where multiple DNN models are available for enhancement of speech corrupted with

unseen noise, utilizing the intrinsic uncertainty of the models. This is the first work utilizing

MC dropout for speech enhancement, to the best of our knowledge. Finally, we attempt at

enhancing speech with time varying, unseen noise as well as real world, traffic noise.

4.2 Related work

The concept of dropout was first introduced to reduce overfitting while training a DNN model

[118, 119]. Even though dropout omits certain neurons during training, all the neurons are

active during the inference stage and contribute to the predicted output.

Gal and Ghahramani [87] propose a tool for modeling uncertainty in DNN using dropout

during the inference stage. They show a probabilistic interpretation of dropout and its math-

ematical equivalence to a Gaussian process. Kendall et al. [120] use dropout as Bayesian

approximation for the problem of camera relocalization and show that by averaging the results

of multiple stochastic forward passes during inference, the performance could be improved.

They use the term MC dropout to refer to this technique, as the output samples could be

considered as Monte Carlo (MC) samples from the model posterior. This can be considered as

a way of obtaining samples from the posterior distribution of models, from which an estimate
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of the uncertainty of the models can be obtained.

In this work, we use MC dropout to improve the generalizability of a DNN enhancement

model and hence improve the performance when the input speech is corrupted by an unseen

noise to which the DNN is less adapted [121]. In an initial set of experiments, we show that in

the case of noisy speech corrupted with unseen noises, MC dropout models can give a better

denoised output than conventional dropout models. To show this, we train two DNN models on

multiple noises and SNRs, one employing MC dropout and another employing the conventional

dropout and compare the performance of the two.

In another set of experiments, we use a measure of the model uncertainty for the selection

of DNN models, where multiple noise-specific models are available for speech enhancement and

compare the results with a DNN classifier-based model selection scheme [122]. The sample

variance due to uncertainty [120] could be used as an estimate of prediction error for an input

and hence this could be used to pick the optimal model for enhancing that particular frame.

Model-specific enhancement techniques [11, 91, 110, 123, 124] have gained popularity recently

which depend on a model selector, which ensures that the model chosen for enhancing each

frame entails an overall improved performance. In practice there are cases where the noise

conditions are known, and such knowledge could be used as addressed in [123]. In such scenarios

a noise-specific approach is shown to be more useful. They employ multiple noise-specific

DNN regression models for robust SNR estimation. On the other hand, in the case of an

unknown noise, they use a DNN-based classifier to find the model matching closest to the

input noise. This technique of using a DNN classifier for model selection is promising, but does

not ameliorate the original problem of mismatch in training and testing conditions. Since our

method uses the uncertainty information from the model output itself, it could be considered a

better representative of the prediction error and also circumvents the issue of training mismatch,

since, according to [87], the model uncertainty itself is an indicator of unseen data. We find

this technique to be particularly useful for the case of unseen noises compared to that of using

a classifier for model selection, since the model uncertainty is more for the case of unseen noise

and hence picking a model out of the available ones which gives the minimum uncertainty could

be promising. However, we find that blindly using uncertainty as a selection criterion could lead

to a poor performance in the case of seen noises compared to classifier-based selection scheme.

To circumvent this issue, we propose a threshold-based algorithm to switch between model

uncertainty-based selection scheme and classifier-based model selection scheme. The algorithm

is found to be useful for unseen noise cases at the same time giving comparable performance

to that of classifier-based scheme for seen noises.

We also show some promising results in the enhancement performance of the above uncertainty-

85



based algorithms on speech corrupted with a mixture of multiple noises. Another set of results

is also shown for the case, where different segments of speech are corrupted by different noises.

In another real world experiment, we record real world, traffic noise and add to clean speech in

order to test our models.

Augmenting the baseline system with MC dropout could learn the distribution over the

weights and give the uncertainty of the outputs. During testing, the input Yf ∈ RR×1, which is

the magnitude STFT of a frame of the noisy speech, is fed into the network using MC dropout.

Multiple passes are made through the network, dropping out different random units each time.

Thus J repetitions are performed by dropping of random units each time during testing. This

results in J different outputs for a given input Yf ; {Ŝj(Yf )}; 1 ≤ j ≤ J . Averaging these

outputs of the forward passes through the network is equivalent to Monte Carlo integration

over a Gaussian process posterior approximation, as shown in [87, 120].

For the uncertainty measurement, we use the trace of the covariance matrix of the output

samples (V ar) [120]. As explained in [120], the trace can be used as an efficient proxy measure

of the model uncertainty.

4.3 Speech enhacement using DNN model

Let y(m) be the mth sample of speech, s(m) corrupted with an additive noise x(m);

y(m) = s(m) + x(m) (4.1)

The short time Fourier transform (STFT) representation of the above is;

Y (ωk) = S(ωk) +X(ωk) (4.2)

where k is the frequency index; k = 0, 1, 2...R− 1 and R is the number of frequency bins.

In our work, only the magnitude STFT is considered to train the DNN model. The phase of

the noisy signal is retained for the reconstruction of the enhanced speech, considering the fact

that the human ear is less sensitive to any phase distortion due to the noise. The magnitude

STFT vector of the noisy speech can be approximated as

Y ≈ S +X ∈ RR×1 (4.3)

where S and X represent the spectra of the clean speech and the noise, respectively.

The DNN based regression models are trained with the magnitude STFT features of the
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noisy speech as input and that of clean speech as target. During the inference stage, the input

noisy test feature Yf ∈ RR×1 of the fth frame is fed into the network to obtain the estimated

enhanced feature vector Ŝf . The inverse Fourier transform of Ŝ (together with the phase of the

noisy speech) gives the enhanced speech signal.

4.3.1 DNN architecture for enhancement

The baseline DNN that we use consists of 3 fully connected layers of 2048 neurons and an

output layer of 257. ReLu activation function is used in all the three layers as well as the

output layer due to the nonnegative nature of magnitude STFT. The mean square logarithmic

error (Elg) between the noisy and clean magnitude spectra is minimized as the loss function:

Elg =
1

R

R∑
k=1

(log(Sk + 1)− log(Ŝk + 1))2 (4.4)

where Ŝk and Sk denote the estimated and reference spectral features, respectively, at frequency

index k. The architecture is based on the best performing DNN configuration in [68]. The

baseline model is trained using conventional dropout. Figure 4.1 shows the basic framework of

a DNN model for speech enhancement.

Figure 4.1: Framework of a DNN model for speech enhancement.
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4.3.1.1 Dropout and MC dropout

Conventional dropout [118, 119] is a technique to prevent overfitting and combines many dif-

ferent neural network architectures efficiently. Dropout involves randomly dropping out units

temporarily from networks along with their input and output connections during each mini-

batch training. Thus training a neural network with dropout is similar to training a collection

of thinned networks with reduced width. During testing time, a single neural network without

dropout is used. If p is the probability with which a unit is retained during training, during

testing, the outgoing weights of that unit are multiplied by p. Thus weights during test time

are scaled down versions of the trained weights.

In Gal and Ghahramani’s work [87], they extend the idea of dropout to approximate

Bayesian inference and propose a method for modeling the uncertainty in DNN. Here dropout

is used in a similar fashion during testing as during the training. Multiple forward passes of the

input through the network during testing by dropping out random units results in empirical

samples from an approximate predictive posterior.

4.4 MC dropout to improve generalization

Our study explores two main approaches. In the first approach, we show that MC dropout

based estimation improves the generalization performance of a single DNN model trained on

multiple noises and SNRs and apply this to speech enhancement.

In the second approach, we use model uncertainty to optimally choose one among multiple

DNN models so that the reconstruction error is minimum in a scenario, where multiple models

are available for enhancement. This analysis involves two sets of frameworks as explained in

Secs. 4.4.2.2 and 4.4.2.3.

4.4.1 Single-MC: Single DNN model using MC dropout, trained

with multiple noises

In this method, we use MC dropout to improve the generalizablity of a baseline DNN model

trained on multiple noises and SNRs. We train a DNN model using MC dropout and evaluate

the performance against the one using conventional dropout.

For this experiment, a single DNN model is trained on the magnitude STFT of speech

corrupted with a set of noises and SNRs. During the inference stage, the test noisy speech

is divided into frames and their magnitude STFT are obtained. The basic block diagram is
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Figure 4.2: Single-MC : Enhancement using a single DNN-MC dropout model. The model is
trained on speech corrupted with five noises and three SNRs. Yf is the magnitude STFT vector
of the f th input frame of noisy speech.

shown in Fig. 4.2. Let Yf ∈ RR×1 denote the magnitude STFT feature for the f th frame.

Given an input frame, J forward passes are carried out by dropping random units each time,

giving J different outputs, {Ŝj(Yf )}; 1 ≤ j ≤ J . The empirical mean of these outputs is taken

as the estimated enhanced frame Ŝ(Yf ). The time-domain enhanced speech signal is obtained

by taking the inverse Fourier transform of this output with the original noisy speech phase,

followed by an overlap-add method.

Ŝ(Yf ) ≈
1

J

J∑
j=1

Ŝj(Yf ) (4.5)

ŝ(yf ) = IDFT (Ŝ(Yf )∠Yf ) (4.6)

where ŝ(yf ) is the enhanced speech estimate for the f th frame of the noisy speech input yf .

4.4.2 Choosing one out of multiple noise-specific MC dropout mod-

els for enhancing each input frame

Several model-specific enhancement techniques have been proposed in the past. The key idea is

to select an appropriate model from a group of models so that there is an overall improvement

in the enhancement performance for a given input [11, 91, 110, 124]. Given a framework of

multiple DNN models for enhancement, one needs to select the appropriate model to enhance

an input noisy speech frame. One possible method is to use a noise classifier [123, 125] to

select the appropriate noise model. However, in scenarios where the input speech is corrupted

with an unseen noise, the noise classifier might fail to pick the optimal model. In these cases,

we need to ensure that the model chosen is the one that gives the lowest error and hence a

better enhancement performance. In our methods proposed in Sec.s 4.4.2.2 and 4.4.2.3, we use
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a measure of the model uncertainty estimated from the output samples of each MC dropout

model (V ar) as an estimate of the prediction error and choose a model based on that. Our

experiments show that higher the correlation between this uncertainty and the squared error,

better is the enhancement performance.

4.4.2.1 Classifier-based model selection for comparison

For evaluating the performance, we compare our algorithms with the one where a classifier is

used to pick the noise model. Here the noise model could be using MC dropout (class-MC) or

conventional dropout (class-C).

4.4.2.2 Var-MC: Multiple models using MC dropout with predictive variance

(model uncertainty) as the model selection criterion

This work explores the idea that a measure of the model uncertainty could be used as an

estimate of the model error. Figure 4.3 shows the block diagram of this Var-MC model for

enhancement.

M different DNN models with MC dropout are trained with speech corrupted with M

distinct noises at various SNRs. The architecture of each model is as mentioned in section

4.3.1. During testing, the input noisy speech is first divided into frames and magnitude STFT

is obtained. The magnitude STFT feature Yf ∈ RR×1 of the f th input frame is fed into each of

these M models. J forward passes, by dropping out random nodes each time, are carried out

and J outputs are obtained: {Ŝij(Yf )}; 1 ≤ j ≤ J ; 1 ≤ i ≤M ; where i is the model index. V ar

values of each of these M output vectors are computed and the output of the model i∗ with the

minimum variance, {Ŝi∗j (Yf )}; 1 ≤ j ≤ J ; 1 ≤ i∗ ≤ M , is selected. The corresponding model is

considered the best for that particular input Yf . The enhanced output Ŝ is estimated as the

empirical mean of the J outputs: {Ŝi∗j (Yf )}; 1 ≤ j ≤ J .

Ŝ(Yf ) ≈
1

J

J∑
j=1

Ŝi
∗

j (Yf ) (4.7)

The enhanced speech signal is obtained as the inverse Fourier transform of Ŝ with the phase

of the noisy speech signal and overlap-add method.
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Figure 4.3: Var-MC : Enhancement using multiple DNN-MC dropout models with V ar as the
model selection criterion. Each model is trained on speech corrupted with a specific noise at
three SNRs.
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4.4.2.3 µ-MC: A V ar threshold (µ) based algorithm to choose either classifier-

based or model-uncertainty-based selection of model

The experimental results of the Var-MC algorithm show superior performance for most of the

unseen noises. However, the performance on seen noise shows significant degradation compared

to classifier-based selection scheme. This can be rectified using a conditional selection criterion

for the noise models. Using this condition, selection of noise models can be switched from model

uncertainty-based to classifier-based.

A threshold is set for the V ar value of all the five models, so that the model for enhancing

a noisy frame could either be selected on the basis of minimum variance scheme or on the basis

of the decision of a noise classifier, as shown in Fig. 4.4.
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ŜC(Yf )
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fŜi∗

j (Yf)g;
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(noise 1)

Figure 4.4: µ-MC : A V ar threshold (µ) based algorithm for enhancement using multiple models
trained on distinct noises. The appropriate model output is selected for each input frame of
noisy speech, using model uncertainty as a selection criterion, or a noise classifier.

The input noisy feature of a frame Yf ∈ RR×1, is fed into all the five MC dropout models. The

input is passed J different times by dropping out random units each time. The corresponding

outputs are {Ŝij(Yf )}; 1 ≤ j ≤ J ; 1 ≤ i ≤ M ; where i is the model index and M = 5. Then

the V ar(Si) of J outputs is computed for each of these M models. If all the M uncertainty

values are above a threshold, say µ, it could be taken as an indication that the noise corrupting

the given input speech belongs to none of these M noise models. In such a case, the model
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which gives the minimum V ar value is considered as the best model to enhance the input noisy

speech feature Yf . The corresponding output, ŜV (Yf ) is obtained as the empirical mean of the

J outputs: {Ŝi∗j (Yf )}; 1 ≤ j ≤ J ; 1 ≤ i∗ ≤M .

ŜV (Yf ) ≈
1

J

J∑
j=1

Ŝi∗j (Yf ) (4.8)

On the other hand, if the uncertainty values are below the threshold µ, the input feature

Yf is fed into a classifier to decide the best model, c∗ for enhancing the frame. Let the outputs

of the corresponding model be; {Ŝc∗j (Yf )}; 1 ≤ j ≤ J ; 1 ≤ c∗ ≤ M . As mentioned previously,

taking the empirical mean of these J different outputs gives the enhanced output ŜC(Yf ).

ŜC(Yf ) ≈
1

J

J∑
j=1

Ŝc∗j (Yf ) (4.9)

Inverse Fourier transform is applied on Ŝ with the noisy phase information to obtain the en-

hanced output.

4.5 Details of the experiments conducted

The speech and noise databases used for the experiments are as explained in sec. 2.3.1. The

entire TIMIT training data is used for training and the test data is randomly chosen from the

TIMIT test utterances. The DNN models are trained on magnitude STFT computed using a

frame size of 30 ms with 10 ms frame shift after applying a Hamming window. Only the first

257 points are used out of the 512-point FFT due to the symmetry of the spectrum.

During the inference stage, the number of repetitions J is chosen as 50. Each DNN based

regression model is trained with the magnitude STFT of noisy speech as input and clean speech

as target. The Adam optimizer [126] is chosen. The dropout rate is set to 20%.

4.5.1 Single-MC experimental setup

For experiments using a single DNN (Sec.4.4.1), a baseline DNN with conventional dropout

(single-C) [118, 119] and a DNN using MC dropout (single-MC) are trained using speech cor-

rupted with factory 2, m109, leopard, babble and volvo noises at 0, 5 and 10 dB SNRs. The

architectures of both the models are as mentioned in section 4.3.1. The DNN is trained using

the entire TIMIT training data after adding five noises at three different SNRs.
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4.5.2 Var-MC and µ-MC experimental setup

For multiple DNN model based experiments, five DNN models are separately trained on speech

corrupted with factory2, m109, leopard, babble and volvo noises, each at SNRs 0, 5 and 10

dB. Each DNN model is trained separately using MC and conventional dropout, using the

entire TIMIT training data after adding noises at SNRs 0, 5 and 10 dB. In this case also, the

architecture of the models are as defined in section 4.3.1.

The testing is done using TIMIT test set corrupted with unseen noises white, pink and

factory1 and seen noises factory2, m109, leopard, babble and volvo at SNRs varying from -10

dB to 10 dB..

4.5.2.1 Experiments with mixed, time-varying and real world, traffic noises

We also evaluate the performance of our Var-MC and µ-MC algorithms by mixing two unseen

noises factory 1 and pink (mix) and corrupting the speech file with this new noise at SNRs

varying from -10 dB to 10 dB. In another time-varying (TV1) noise experiment, the given

speech waveform is divided into three segments and white (unseen), factory2 (seen) and factory

1 (unseen) noise is added to the distinct segments. We also show the evaluation on another

non-stationary scenario where each test utterance of 2 to 3 seconds is divided into a random

number (chosen to lie between 5 and 10) of segments of random lengths. One of the unseen

noises white, factory1 and pink is randomly chosen to be added to these segments (TV2). This,

we believe, is the closest one can simulate non-stationary time-varying noise, while still having

access to the ground truth clean speech, for evaluating the enhancement performance of the

algorithm in question.

We also have performed a real world experiment, where we record real world, traffic noise

and add to clean speech to evaluate the performance of our algorithm. The noise is recorded

from ‘CV Raman road’ for the experiments. We believe this experiment is significant, since in

most cases DNN models for speech enhancement might be untrained on these real world noises,

consequently giving poor performances on the same.

4.5.3 Noise classifier

For those experiments, where a DNN classifier is used to pick the model (class-MC and class-

C), the classifier consists of 3 fully connected layers of 2048 neurons and an output layer of 5

neurons for the five noises. ReLu activation function is used in all the three layers and softmax

activation function is used in the output layer. Categorical cross entropy is used as the loss
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function. The classifier is trained on the entire TIMIT training data, corrupted with factory2,

babble, leopard, m109 and volvo noises at SNRs 0, 5 and 10 dB.

4.6 Results and discussion

4.6.1 Performance of single-MC model for unseen and seen noises

Table 4.1 shows the results obtained in terms of sum squared error (SSE), and segmental SNR

(SSNR) [69] for the single DNN-MC dropout model (single-MC) over the baseline (single-C)

for unseen and seen noises. For comparison, the SSE and the SSNR values of the input noisy

speech are also shown in the first column of the Table. SSE is computed in the magnitude

STFT domain. We use white, pink and factory 1 noises as unseen noises and factory2 as a

seen noise. The results are averaged over 50 files randomly selected from TIMIT [95] test set.

Table 4.1 shows the superior performance of the single-MC over single-C, for unseen noises

at lower SNRs. It could be observed that the performance is similar to single-C at higher

SNRs, though in terms of SSE, the model performs better than single-C. We believe that the

improvements in terms of SSE could be significant for the potential use of this enhancement

approach in applications like speech recognition [11]. For seen noise Factory2 , the performance

of the MC dropout model is comparable to that of single-C. Thus the conventional dropout of

any DNN model for speech enhancement could be replaced with MC dropout to improve the

enhancement performance in unseen noise case without degrading the seen noise performance.

These observations are in line with our aim of improving the generalizability of a DNN model

for enhancement of speech corrupted with unseen noises.
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4.6.2 Performance of Var-MC model for unseen noises

Tables 4.2 show the performance of our Var-MC algorithm in terms of SSNR for unseen noises.

The corresponding SSE comparisons for unseen noises are given as bar charts in Fig. 4.5.

It can be inferred from the Table and the Figure that, Var-MC gives superior performance

over class-C and class-MC algorithms especially at lower SNRs for most of the unseen noise

cases. For unseen noises, the performance of Var-MC drops as SNR increases. This drop in

performance could be explained by the correlation plots illustrated in Fig. 4.6, which show

the correlation between V ar and the frame-wise squared error (SE) of the output frames for

the five MC dropout models. The plots are for input speech corrupted with white noise at

SNRs varying from -10 dB to 10 dB. From these plots, it could be seen that the correlation

is stronger for lower SNRs, -10 dB and -5 dB, but weakens as SNR increases. This peculiar

pattern needs further exploration. The observation also matches with that in [120], that the

uncertainty increases for the case where the properties of test set are far from those of training

set. This is reflected in our Var-MC results as well (Table 4.2, Fig. 4.5), since there is not much

improvement over the class-C and class-MC as the SNR increases. The values at higher SNRs

are still comparable to class-C and class-MC values for most unseen noise cases.

Table 4.2: Results on unseen noises: Performance comparison (in terms of SSNR: seg-
mental SNR) of Var-MC and µ-MC algorithms with class-C and class-MC for speech corrupted
with white, pink and factory1 noises at SNRs -10, -5, 0, 5 and 10 dB averaged over 50 files
randomly selected from TIMIT test set. Improvement could be noticed especially for low SNRs.

White (Unseen) Pink (Unseen) Factory1 (Unseen)

SNR (dB)
Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

10 2.0 2.6 2.6 2.7 2.7 2.2 4.8 4.8 4.5 4.7 2.3 4.9 4.9 4.8 4.9
5 -1.6 -0.8 -0.8 -0.7 -0.7 -1.4 1.7 1.7 1.6 1.7 -1.3 2.0 2.0 2.0 2.0
0 -4.6 -4.1 -4.0 -3.8 -4.0 -4.5 -1.6 -1.6 -1.3 -1.6 -4.4 -1.1 -1.1 -0.83 -1.1
-5 -7.2 -6.7 -6.6 -6.5 -6.6 -7.1 -4.5 -4.5 -3.7 -4.5 -6.9 -4.1 -4.1 -3.3 -4.0
-10 -8.9 -8.7 -8.6 -8.4 -8.5 -8.8 -7.1 -7.1 -5.4 -6.9 -8.7 -6.6 -6.6 -5.3 -6.3

4.6.3 Observations on the performance of Var-MC model for seen

noises

Tables 4.3 and 4.4 and Fig. 4.7 for seen noises show that Var-MC performs really poorly

compared to class-C and class-MC for seen noises like factory2, m109, leopard, babble and
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Figure 4.5: Performance comparison in terms of SSE (sum squared error) of Var-MC and µ-MC
algorithms with class-C and class-MC for speech corrupted with unseen noises white, pink and
factory1 at SNRs (a) -10 dB (b) -5 dB (c) 0 dB (d) 5 dB and (e) 10 dB averaged over 50
files randomly selected from TIMIT test set. The noisy speech SSE values averaged over all
the three noises for (a) -10 dB: 376 × 102 (b) -5 dB: 115 × 102 (c) 0 dB: 35.1 × 102 (d) 5 dB:
10.5× 102 (e) 10 dB: 3.19× 102 (These noisy speech SSE values are also shown along with each
SNR in the plots; the scaling factor of ×102 is omitted. The noisy speech SSE bar is omitted
as the values are too high in comparison to the rest).
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volvo. µ-MC algorithm compensates for this performance drop by using per frame threshold µ

to select between the Var-MC and class-MC schemes.

The threshold is selected based on the experiments on a validation set of 30 files from TIMIT

corrupted with seen noises factory 2, m109, leopard, babble and volvo and unseen pink noise

at SNRs -10, -5 , 0, 5 and 10 dB. For our experiments, this threshold is set at µ = 0.16.

In the case of volvo noise, the performance of Var-MC over class-C and class-MC is too poor

compared to its performance on other seen noises. This could be explained by the highly band-

limited and predictable nature of volvo noise resulting in the poor performance of uncertainty

based selection.

Table 4.3: Results on seen noises: Performance evaluation (in terms of SSNR: segmental
SNR) of Var-MC and µ-MC algorithms compared to class-C and class-MC for speech corrupted
with seen noises, namely, factory2, leopard and m109, at SNRs -10, -5, 0, 5 and 10 dB averaged
over 50 files randomly selected from TIMIT test set.

Factory 2 (Seen) Leopard (Seen) M109 (Seen)

SNR (dB)
Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

10 2.6 9.5 9.5 8.1 9.5 2.5 8.9 8.9 8.5 8.9 2.5 9.1 9.1 8.1 9.1
5 -0.9 7.7 7.7 5.8 7.6 -1.1 7.4 7.4 7.0 7.4 -1.1 7.3 7.3 6.3 7.3
0 -4.1 5.8 5.8 3.3 5.8 -4.3 5.9 5.9 5.6 5.9 -4.2 5.3 5.3 4.3 5.3
-5 -6.7 4.0 4.0 1.3 3.9 -6.8 4.3 4.4 4.2 4.3 -6.8 3.5 3.5 2.5 3.5
-10 -8.5 2.1 2.1 0.5 2.1 -8.6 2.7 2.9 2.7 2.8 -8..6 1.9 1.9 1.0 1.9

Table 4.4: Results on seen noises: Performance evaluation (in terms of SSNR: segmental
SNR) of class-C, class-MC, Var-MC and µ-MC algorithms, for speech corrupted with seen
noises, babble and volvo at SNRs -10, -5, 0, 5 and 10 dB averaged over 50 files randomly
selected from TIMIT test set.

Babble (seen) Volvo (seen)

SNR (dB)
Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

10 2.6 7.5 7.5 7.0 7.5 3.3 12.9 12.9 7.5 12.8
5 -1.0 5.8 5.8 5.3 5.8 -0.3 12.1 12.1 4.6 12.0
0 -4.1 4.2 4.2 3.8 4.2 -3.6 10.8 10.8 2.1 10.8
-5 -6.7 2.7 2.7 2.4 2.7 -6.3 9.1 9.1 0.8 9.1
-10 -8.5 1.5 1.5 1.3 1.5 -8.2 6.7 6.7 0.2 6.7
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Figure 4.7: Performance comparison in terms of SSE (sum squared error) of Var-MC and µ-
MC algorithms with class-C and class-MC for speech corrupted with seen noises babble, m109,
leopard, factory2 and volvo at SNRs (a) -10 dB (b) -5 dB (c) 0 dB (d) 5 dB and (e) 10 dB
averaged over 50 files randomly selected from TIMIT test set. The noisy speech SSE values
averaged over all the five noises for (a) -10 dB: 406×102 (b) -5 dB: 125×102 (c) 0 dB: 38.7×102

(d) 5 dB: 11.9× 102 (e) 10 dB: 3.61× 102 (These noisy speech SSE values are also shown along
with each SNR in the plots; the scaling factor of ×102 is omitted.)
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4.6.4 Results of µ-MC model on unseen and seen noises

Table 4.2 shows the performance improvements of µ-MC algorithm over class-C and class-MC

in terms of SSNR for unseen noises pink, white and factory 1. The comparison plot for SSE

for unseen noises can be seen in Fig 4.5. Tables 4.3 and 4.4 and Fig 4.7 show the same for seen

noises factory 2, m109, leopard, babble and volvo. µ−MC gives better performance than class-

C and class-MC in most of the unseen noise cases, especially at lower SNRs, though Var-MC

gives the best performance of all. The algorithm also compensates for the poor performance of

Var-MC algorithm for seen noises and gives performance comparable to class-C and class-MC.

The variation of SSE with the threshold µ, for the test data of 50 random files corrupted

with all the five seen and three unseen noises for -10 dB SNR is shown in Fig. 4.8. It is seen

that as the threshold increases, the performance on unseen noises degrades, while that on seen

noises improves. Thus, the threshold µ can be used to trade-off between the performance on

seen and unseen noise cases for the µ-MC algorithm.

4.6.5 Observations on mixed and time-varying noises

Table 4.5 and Fig. 4.9 show the performance evaluation of mix and TV1 experiments in terms

of SSNR and SSE, respectively. It can be observed that µ-MC algorithm gives performance

superior or comparable to Class-C and Class-MC in all the cases. The algorithm Var-MC gives

the best performance of all, for those cases for which the DNN is less adapted and hence where

the correlation between squared error and variance is strong.

Table 4.6 shows the SSNR performance evaluation for the TV2 experiment. The perfor-

mance in terms of SSE is shown in Fig. 4.9. Here also we can see that, µ-MC algorithm gives

better performance for low SNRs -10 and -5 dB than Class-C and Class-MC and comparable

performance for higher SNRs. The performance of Var-MC algorithm is the best at low SNRs

and degrades at higher SNRs, as expected.

4.6.6 Observations on real world, traffic noise

Results reported in Table 4.7 show the SSNR performances of Var-MC and µ-MC algorithms

on speech corrupted with real world, traffic noise that we have recorded. Figure 4.10 shows

the performance evaluation in terms of SSE. It can be observed that both Var-MC and µ-MC

algorithms give performances superior to class-MC and class-C at all SNRs varying from -10

dB to 10 dB for this case.
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Figure 4.8: Variation of SSE with µ averaged over the test data of 50 random files corrupted with
three unseen and five seen noises at -10dB SNR. As the threshold increases, the performance
on unseen noises degrades, while that on seen noises improves. Thus, the threshold µ can be
used to trade-off between the performance of seen and unseen noise cases.

Table 4.5: Mixed or time varying noise experiments: Performance evaluation (in terms
of SSNR: segmental SNR) of Var-MC and µ-MC algorithms for two cases. In the first case,
speech is corrupted with a mixture of unseen noises, factory1 and pink. In the second case, the
given speech waveform is divided into three segments and white, factory2 and factory 1 noises
are added to the different segments. The results averaged over 50 files randomly selected from
TIMIT test set show improvement for low SNRs of -5 and -10 dB.

mix: Additive noise Factory1+Pink ( unseen) TV1: White-Factory2-Factory1 noises added segment-wise

SNR (dB)
Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

10 2.2 4.8 4.8 4.6 4.8 4.4 6.8 6.8 6.3 6.9
5 -1.3 1.8 1.8 1.8 1.8 0.7 4.5 4.5 3.8 4.5
0 -4.5 -1.3 -1.3 -1.0 -1.3 -2.5 1.9 1.9 1.2 1.9
-5 -7.0 -4.3 -4.3 -3.5 -4.1 -5.2 -0.9 -0.9 -1.0 -0.8
-10 -8.8 -6.8 -6.8 -5.5 -6.5 -7.2 -3.5 -3.5 -2.8 -3.4
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Table 4.6: Non-stationary unseen noise experiments: Performance comparison (in terms
of SSNR: segmental SNR) of Var-MC and µ-MC algorithms with class-C and class-MC for
simulated nonstationary noise. Each test utterance of duration 2 to 3 sec. is divided into a
random number (5 to 10) of segments of random length and unseen noises white, factory1 and
pink are added randomly to these segments. The results are averaged over 50 files randomly
selected from TIMIT test set.

TV2: White-Factory1-Pink noises (unseen) added randomly to speech
segments of random length

SNR (dB)
Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

10 3.0 4.9 4.9 4.7 4.9
5 -0.6 1.9 1.9 1.9 1.9
0 -3.9 -1.4 -1.4 -1.2 -1.4
-5 -6.5 -4.3 -4.3 -3.7 -4.2
-10 -8.4 -6.9 -6.9 -5.6 -6.7

Table 4.7: Real world, traffic noise experiments: Performance comparison (in terms of
SSNR: segmental SNR) of Var-MC and µ-MC algorithms with class-C and class-MC for
speech corrupted with real world, traffic noise. The results are averaged over 50 files randomly
selected from TIMIT test set.

Traffic: Speech corrupted with real world, traffic noise (unseen)

SNR (dB)
Noisy
input

Class-C Class-MC Var-MC
µ-MC
µ = 0.16

10 3.4 4.9 4.9 5.0 5.0
5 -0.2 2.0 2.0 2.2 2.0
0 -3.4 -1.1 -1.1 -0.8 -1.0
-5 -6.0 -4.1 -4.1 -3.6 -3.9
-10 -7.9 -6.6 -6.6 -6.1 -6.2
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Figure 4.9: Results on non-stationary, time-varying noises: Performance comparison in
terms of SSE (sum squared error) of Var-MC and µ-MC algorithms with class-C and class-MC
for mix, TV1 and TV2 cases at SNRs (a) -10 dB (b) -5 dB (c) 0 dB (d) 5 dB and (e) 10 dB
averaged over 50 files randomly selected from TIMIT test set. The noisy speech SSE values
averaged over all the three noises for (a) -10 dB: 387 × 102 (b) -5 dB: 118 × 102 (c) 0 dB:
36.4× 102 (d) 5 dB: 11.0× 102 (e) 10 dB: 3.33× 102 (These noisy speech SSE values are also
shown along with each SNR in the plots; the scaling factor of ×102 is omitted).
mix: mixture of unseen noises, factory1 and pink; TV1: the given speech waveform is divided
into three segments and white, factory2 and factory 1 noises are added to the different segments;
TV2: each test utterance of duration 2 to 3 sec. is divided into a random number (5 to 10) of
segments of random length and unseen noises white, factory1 and pink are added randomly to
these segments
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Figure 4.10: Results on real world, traffic noise: Performance comparison in terms of SSE
(sum squared error) of Var-MC and µ-MC algorithms with class-C and class-MC for speech
corrupted with real world, traffic noise at SNRs (a) -10 dB (b) -5 dB (c) 0 dB (d) 5 dB and
(e) 10 dB averaged over 50 files randomly selected from TIMIT test set. The noisy speech SSE
values are (a) -10 dB: 352× 102 (b) -5 dB: 107× 102 (c) 0 dB: 32.2× 102 (d) 5 dB: 9.60× 102

(e) 10 dB: 2.85 × 102 (These noisy speech SSE values are also shown along with each SNR in
the plots; the scaling factor of ×102 is omitted).
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4.6.7 Impact on computational complexity

We conducted experiments by adding MC dropout between various layers of the DNN. Our

experiments show that the addition of MC dropout just before the final layer improves the

enhancement performance [120]. Hence the computational impact of using MC dropout is

restricted to the time required for forward passes for the final layer alone as the rest of the

layers are deterministic and can be shared. Consequently, the net impact on computational

complexity of using MC dropout is minimal, since the additional time required for drawing the

stochastic samples is marginal compared to the baseline model with conventional dropout.

4.7 Conclusions

We have proposed different techniques that use dropout as a Bayesian estimator for DNN models

for speech enhancement, to improve their generalizability. In an initial set of experiment, we

show that replacing a single DNN with conventional dropout, trained on multiple noises, with

MC dropout helps in improving the enhancement performance of the model on speech with

unseen noises. We also propose the application of the inherent uncertainty (predictive variance)

of MC dropout models as an estimate of squared error, for frame-wise selection of one out of

multiple noise-specific DNN models (Var-MC). The algorithm shows performances superior to

a classifier-based model selection scheme for unseen noise cases.

We devise a method based on a threshold µ to switch between a noise classifier-based model

selection and predictive variance-based model selection (µ-MC) to compensate for the poor

performance of Var-MC compared to classifier-based model selection schemes for seen noises.

We find that this method gives better enhancement performance than the classifier-based model

selection for unseen noises at the same time giving comparable performances for the case of

seen noises. The algorithms are also observed to be useful for scenarios where the speech signal

is corrupted with non-stationary noises. This includes the case, where the speech is corrupted

with a mixture of various noises and also where random number of segments of random lengths

of speech get corrupted by different randomly chosen noises. This is the closest we can go in

testing a model for its effectiveness on non-stationary noise, while still having the ability to

evaluate its effectiveness, due to the availability of ground truth. In another significant result,

we show the performance of the algorithms on speech corrupted by real world, traffic noise. This

points towards the potential application of the algorithm in realistic scenarios. This work shows

the effectiveness of MC dropout over standard dropout models and hence could be implemented

on any state of the art system employing dropout.
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Chapter 5

Conclusion and future work

In this thesis, we analyzed various speech-sound class-specific and noise-specific enhancement

approaches and frame-wise selection methods for class-specific and noise-specific models.

5.1 Conclusion

In Chapter 2, we have analyzed the performance of our enhancement scheme, where we use

various speech-sound class-specific dictionaries to enhance noisy speech. We have observed that

even though in terms of objective quality measures such as PESQ and SSNR, the performance is

not so promising in most noise cases compared to class-independent case, we obtain significant

performance improvements in terms of phoneme recognition accuracy. To select the appropriate

class dictionary for a frame, we have used the approximate labels obtained from an ASR, whose

input is the speech enhanced using a class-independent dictionary. We have analyzed the perfor-

mance using manner of articulation (MOA), place of articulation (POA) and phoneme-specific

dictionaries. The phoneme-specific dictionary based enhancement outperforms the MOA and

POA based schemes in most of the cases.

In Chapter 3, we have proposed a joint enhancement-decoding (JED) algorithm to overcome

the dictionary selection errors in our class-specific scheme due to the errors in the estimated

labels. N enhanced observations for each frame can be fed into the JED algorithm which then

chooses the best observation that maximizes the overall likelihood to obtain the recognized

labels. We have analyzed the phoneme recognition performance of JED for N varying from 1

to 5. The recognition performance varies with N , giving the best values at N = 2 or 3 in most

cases. The best-N labels could be selected based on a monogram, bigram or trigram confusion

matrix though we found that the use of bigram and trigram confusion matrices does not result
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in any marked improvement over monogram case.

In Chapter 4, we have proposed different techniques that use dropout as a Bayesian estimator

for DNN models for speech enhancement, to improve their generalizability. The inherent uncer-

tainty (predictive variance) of Monte Carlo dropout models is used as an estimate of squared

error, for frame-wise selection of one out of multiple DNN models. For unseen noise scenar-

ios, the above scheme of noise model selection (Var-MC) gives superior performance compared

to a DNN classifier-based noise model selection scheme. However, the performance dropped

for the case of seen noises compared to classifier-based selection scheme. To compensate for

this performance drop, we have devised a method based on a threshold µ to switch between

a noise-classifier-based model selection and predictive variance-based model selection (µ-MC).

The µ-MC algorithm is found to be useful for unseen noises at the same time giving comparable

performance to that of classifier-based scheme for seen noises. The algorithms are also observed

to be useful for scenarios where the speech signal is corrupted with non-stationary noises. This

includes the case, where the speech is corrupted with a mixture of various noises and also where

random number of segments of random lengths of speech get corrupted by different randomly

chosen noises. We also show that the algorithms give performances superior to classifier-based

scheme in a real world, traffic noise scenario. We have also shown that replacing a single DNN

with conventional dropout, trained on multiple noises, with MC dropout helps in improving

the enhancement performance of the model on speech with unseen noises.

5.2 Future scope

In future we would like to extend our class-specific scheme using a DNN framework and explore

the usefulness of other features such as multi-stream features [100]. In the case of JED algorithm

we would like to explore the scenario where the multiple inputs to the algorithm are enhanced

using techniques other than dictionary-based. Depending on the noise type and SNR, any

other enhancement scheme can be used. We would also like to implement the JED algorithm

in a DNN-based recognition framework. Even though the µ-MC algorithm compensates for the

performance drop of Var-MC algorithm for seen noise cases, the algorithm does not perform as

good as Var-MC, for unseen noise case. We would like to address this issue in future and find

a selection criterion to further optimize the µ-MC algorithm.
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