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Synopsis

In MR imaging, techniques for acquisition of reduced data (Rapid MR imaging) are

being explored to obtain high-quality images to satisfy the conflicting requirements of

simultaneous high spatial and temporal resolution, required for functional studies. The

term “rapid” is used because reduction in the volume of data acquisition leads to faster

scans. The objective is to obtain high acceleration factors, since it indicates the ability of

the technique to yield high-quality images with reduced data (in turn, reduced acquisition

time). Reduced data acquisition in conventional (sequential) MR scanners, where a single

receiver coil is used, can be achieved either by acquiring only certain k-space regions or

by regularly undersampling the entire data in k-space. In parallel MR scanners, where

multiple receiver coils are used to acquire high-SNR data, reduced data acquisition is

typically accomplished using regular undersampling.

Optimal region selection in the 3D k-space (restricted to ky− kz plane, since kx is the

readout direction) needs to satisfy “maximum energy compaction” and “minimum acqui-

sition” requirements. In this thesis, a novel star-shaped truncation window is proposed

to increase the achievable acceleration factor. The proposed window monotonically cuts

down the acquisition of the number of k-space samples with lesser energy. The truncation

window samples data within a star-shaped region centered around the origin in the ky−kz

plane. The missing values are extrapolated using generalized series modeling-based meth-

ods. The proposed method is applied to several real and synthetic data sets. The superior

performance of the proposed method is illustrated using the standard measures of error

images and uptake curve comparisons. Average values of slope error in estimating the

enhancement curve are obtained over 5 real data sets of breast and abdomen images, for

an acceleration factor of 8. The proposed method results in a slope error of 5%, while the

values obtained using rectangular and elliptical windows are 12% and 10%, respectively.

k-t BLAST , a popular method used in cardiac and functional brain imaging, involves

regular undersampling. However, the method suffers from drawbacks such as separate
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training scan, blurred training estimates and aliased phase maps. In this thesis, vari-

ations to k-t BLAST have been proposed to overcome the drawbacks. The proposed

improved k-t BLAST incorporates variable-density sampling scheme, phase information

from the training map and utilization of generalized-series extrapolated training map.

The advantage of using a variable density sampling scheme is that the training map is

obtained from the actual acquisition instead of a separate pilot scan. Besides, phase infor-

mation from the training map is used, in place of phase from the aliased map; generalized

series extrapolated training map is used instead of the zero-padded training map, leading

to better estimation of the unacquired values. The existing technique and the proposed

variations are applied on real fMRI data volumes. Improvement in PSNR of activation

maps of up to 10 dB. Besides, a reduction of 10% in RMSE is obtained over the entire

time series of fMRI images. The peak improvement of the proposed method over k-t

BLAST is 35%, averaged over 5 data sets.

Most image reconstruction techniques in parallel MR imaging utilize the knowledge of

coil sensitivities for image reconstruction, along with assumptions of image reconstruction

functions. The thesis proposes an image reconstruction technique that neither needs to

estimate coil sensitivities nor makes any assumptions on the image reconstruction func-

tion. The proposed cartesian parallel imaging using neural networks, called “Composite

image Reconstruction And Unaliasing using Neural Networks” (CRAUNN), is a novel ap-

proach based on the observation that the aliasing patterns remain the same irrespective

of whether the k-space acquisition consists of only low frequencies or the entire range

of k-space frequencies. In the proposed approach, image reconstruction is obtained us-

ing the neural network framework. Data acquisition follows a variable-density sampling

scheme, where low k-space frequencies are densely sampled, while the rest of the k-space

is sparsely sampled. The blurred, unaliased images obtained using the densely sampled

low k-space data are used to train the neural network. Image is reconstructed by feeding

to the trained network, the aliased images, obtained using the regularly undersampled

k-space containing the entire range of k-space frequencies. The proposed approach has

been applied to the Shepp-Logan phantom as well as real brain MRI data sets. A visual
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error measure for estimating the image quality used in compression literature, called SSIM

(Structural SIMilarity) index is employed. The average SSIM for the noisy Shepp-Logan

phantom (SNR = 10 dB) using the proposed method is 0.68, while those obtained using

GRAPPA and SENSE are 0.6 and 0.42, respectively. For the case of the phantom super-

imposed with fine grid-like structure, the average SSIM index obtained with the proposed

method is 0.7, while those for GRAPPA and SENSE are 0.5 and 0.37, respectively.

Image reconstruction is more challenging with reduced data acquired using non-cartesian

trajectories since aliasing introduced is not localized. Popular technique for non-cartesian

parallel imaging CGSENSE suffers from drawbacks like sensitivity to noise and require-

ment of good coil estimates, while radial/spiral GRAPPA requires complete identical

scans to obtain reconstruction kernels for specific trajectories. In our work, the proposed

neural network based reconstruction method, CRAUNN, has been shown to work for gen-

eral non-cartesian acquisitions such as spiral and radial too. In addition, the proposed

method does not require coil estimates, or trajectory-specific customized reconstruction

kernels. Experiments are performed using radial and spiral trajectories on real and syn-

thetic data, and compared with CGSENSE. Comparison of error images shows that the

proposed method has far lesser residual aliasing compared to CGSENSE. The average

SSIM index for reconstructions using CRAUNN with spirally and radially undersampled

data, are comparable at 0.83 and 0.87, respectively. The same measure for reconstructions

using CGSENSE are 0.67 and 0.69, respectively. The average RMSE for reconstructions

using CRAUNN with spirally and radially undersampled data, are comparable at 11.1

and 6.1, respectively. The same measure for reconstructions using CGSENSE are 16 and

9.18, respectively.
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Chapter 1

Introduction

1.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a noninvasive imaging modality which has come to

be widely used in clinical practice over the past decade, for imaging the central nervous

and the musculo-skeletal systems. Early MR imaging focus only on imaging the structural

details of the anatomy of interest. Later on, techniques for dynamic imaging emerged to

study the continuous changes in the imaged organ, as in functioning of brain, using func-

tional MR imaging (fMRI). Of late, techniques based on diffusion of water molecules such

as diffusion weighted imaging and diffusion tensor imaging have also been used to study

the orientation of fine structures in the brain. Diffusion-based imaging is useful to diag-

nose vascular strokes, study diseases of the white matter and determine the connectivity

in the brain.

MR Imaging utilizes the phenomenon of nuclear magnetic resonance (NMR) to gener-

ate 2D/3D images of the distribution of the Hydrogen protons in the subject. A typical

MR scanner consists of the following :

• A large cylindrical superconducting electro-magnet that generates a homogenous

steady magnetic field, whose strength is in the order of a few Tesla.

• RF coils to transmit and receive magnetic fields that oscillate at the prescribed radio

1
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Figure 1.1: A typical clinical MR scanner (Source: [1])

frequency.

• Gradient coils to spatially distinguish the MR signals, by generating spatially vary-

ing magnetic fields.

A typical MR scanner is shown in Fig. 1.1. The subject is slid inside the bore of

the magnet, causing the Hydrogen protons in various molecules such as fat, water and

muscle to align with the strong field and exhibit NMR phenomenon. MRI offers rich

soft-tissue contrast, unlike other medical imaging modalities such as x-ray and computed

tomography. It offers great flexibility to the imaging technician, since there are a number

of parameters that can be controlled, enabling selective enhancement or suppression of

tissues. It also offers the flexibility of choosing arbitrary imaging planes. The main

drawback of MRI is the expensive hardware, especially the superconductor magnet. Also,

MRI involves scan times of several minutes, at times requiring the already suffering patient

to hold breath. Due to the high strength of the magnetic field involved, subjects with

metallic implants, rods and pacemakers cannot be imaged using MRI.
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1.2 Nuclear magnetic resonance

MR imaging is based on the NMR phenomenon, exhibited by atoms with odd number

of protons (such as Hydrogen) that possess nuclear spin angular momentum. MR tech-

nique is chiefly used to image the distribution of Hydrogen protons in the water molecules,

which is abundant in living beings. The phenomenon of NMR occurs when protons such

as Hydrogen (other protons that exhibit NMR are 19F, 13C and 31P) are subjected to a

strong magnetic field. The acronym NMR can be explained as :

• Nuclear (N): The spin inherent in the nucleus of elements such as 1H, 19F, 13C and

31P

• Magnetic (M): The applied strong magnetic field, typically of the order of a few

Tesla

• Resonance (R): Matching the (radio) frequency of the oscillating magnetic field with

the frequency of the precessing protons.

The following explanation is based on the material in [44]. A nucleus with spin can be

visualized as a charged sphere that rotates about its axis, resulting in a magnetic field.

Under ordinary circumstances, there is no resulting net magnetic field because the spins

are randomly oriented. In the presence of a strong external magnetic field (B0 = B0ẑ, say

magnitude B0 applied along Z-axis), the spins begin to precess about the external field,

with frequency that directly varies with the strength of the applied magnetic field. The

spins can be shown to precess about B0 with a characteristic frequency ω0 = γB0, called

Larmor frequency, where γ is the gyromagnetic constant that depends on the nucleus

type. For instance, when the applied magnetic field B0 is 1.5T, then the Hydrogen

protons have a precessional frequency of 63 MHz. A phenomenon called Zeeman effect is

observed, wherein some of the spins align along the applied magnetic field B0, whereas

the remaining spins align against it. The split in the number of spins aligning along and

against the applied field is governed by Boltzmann’s distribution. The spins aligned along
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the applied field are slightly more in population and at a lower energy level compared to

those aligned against. The energy gap between the two levels is given by ∆E = hγB0

2π
,

where h is Planck’s constant.

The difference in energy levels corresponds to the Larmor frequency of the precessing

protons. The difference in the population of spins gives rise to a net magnetic field M

along the direction of the applied magnetic field (which happens to be along Z-axis here).

This is the NMR signal, which depends on the strength of the applied magnetic field B0

as well as the proton density. At equilibrium, it is given by, M = Nγ2h2Iz(Iz+1)
3kT

, where N is

the number of nuclear spins per unit volume and Iz is the spin operator. The evolution of

M(t) in the presence of a time-varying magnetic field B(t) is given by the Bloch equation,

dM(t)
dt

= γM(t)×B.

1.2.1 RF perturbation

A second applied magnetic field B1 = B1x̂, that oscillates at the Larmor frequency

ω0, brings about resonance in the system, tipping the net magnetization M away from

its equilibrium position, towards the XY plane. According to the Bloch equation, M(t)

precesses around (B1 + B0) (see Fig. 1.2). An easier way to conceptualize this is to use

a rotating reference frame that rotates about the Z-axis at the Larmor frequency. In this

frame, M(t) executes a precession about B1 which is essentially a simple rotation. This

results in a net magnetization in the XY plane. The phenomenon is that of resonance;

the energy required to be applied to bring about a change in the system is the same as the

energy difference between the states. An RF coil placed in the XY plane will be induced

with a voltage due to the rotating magnetic field. As per the principles of quantum

mechanics, the application of the RF field results in equalizing the population of spins in

the two directions resulting in zero net field along Z-axis. The RF field is applied only for a

short duration and hence often referred to as a RF pulse. The net magnetization M along

the XY plane can be modified both spatially and temporally using external time-varying
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magnetic fields and is the basis of MRI. Hence M(r,t) is a more appropriate notation,

where r is either a two-dimensional vector for planar imaging, or a three-dimensional

vector for volumetric imaging. M(r,t) can be resolved into two components, longitudinal

magnetization Mz(t) and the transverse magnetization Mxy(t). After the application of

the oscillating magnetic field B1(t), it can be seen that the longitudinal component Mz(t)

vanishes and only the rotating field Mxy(t) remains. In Fig. 1.2, the rotation of M(t) is

shown about the Z-axis. The angle of rotation is called the tip or flip angle, which depends

on the strength and the duration of B1(t). The RF coil, which can be used for excitation

as well as reception, will record a signal oscillating at the Larmor frequency, induced by

M(t) precessing in XY -plane. This phase of perturbation is followed by relaxation after

the RF magnetic field is switched off. As time goes by, the signal strength begins to decay,

due to the inherent relaxation mechanisms. This decaying signal, called Free Induction

Decay (FID) signal, is collected by the MR scanner. The following section describes how

the system relaxes in two different ways in order to restore equilibrium.

1.2.2 Relaxation

Of the relaxation mechanisms, the longitudinal or spin-lattice relaxation is responsible

for the restoration of longitudinal magnetization Mz(t) to its equilibrium value. The

recovery can be modeled as an exponential with time constant T1. The equation governing

this behavior as a function of time is given by, Mz(t) = M0(1−e
−t
T1 ), where M0 is the initial

magnetization. In other words, T1 is the time taken by the longitudinal magnetization

(Mz) to change by the factor e. The second relaxation mechanism is due to the dephasing

of the spins caused by non-uniformities in the main magnetic field. The received signal

decays exponentially whose time constant is denoted as T2 . This relaxation mechanism

is called transverse or spin-spin relaxation. This time constant describes the return to

equilibrium of the transverse magnetization, Mxy, and is given by Mxy = Mxy0
e(−t

T2
).

However, in real situations, the parameter encountered is T2
∗, which includes dephasing
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Figure 1.2: Illustration of tipping of the longitudinal magnetization vector M by the
oscillating magnetic field B1. B0 is the static strong magnetic field

caused by both magnetic field inhomogeneities and susceptibility effects. This also causes

variations in the magnetic field experienced by nuclear spins. This changes their frequency

of precession even more, and they move out of phase much faster leading to faster loss of

signal, and hence T2
∗ < T2.

Thus, a magnet with good field homogeneity will allow T2
∗ values to be closer to the

true T2 values of tissues. A magnet with poor field homogeneity will cause T2
∗ to be much

shorter than T2, causing faster-decaying signal intensity and affecting image contrast.

Besides, it also turns out that T2 is always less than or equal to T1, since the T2 relaxation

process also depends on the z-component field fluctuations. The net magnetization in

the XY -plane goes to zero and then the longitudinal magnetization grows till it reaches

M0 along Z-axis. Both T1 and T2 are different for various types of tissues and are both

manipulated, along with proton density, to generate contrast in MR images. Typical

values of these parameters are tabulated in Table 1.1 [3].

1.3 Imaging
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Table 1.1: Values of mean proton density, T1 and T2 relaxation times for different tissues
(Source: [3])

Tissue Proton density T1(ms) T2(ms)
CSF 1.0 2400 500

Gray Matter 0.85 920 100
White Matter 0.7 780 90
Adipose Head 1.23 260 85

Adipose Abdomen 1.54 260 85
Spleen 1.15 780 62
Kidney 0.99 650 58
Liver 1.0 490 43

Tumor 1.0 500 100

In MR imaging, spatial localization is achieved by applying linear magnetic field gra-

dients. To select a slice of interest along the Z direction, a gradient called slice selection

gradient is applied, which varies linearly as a function of position along Z. Since the Lar-

mor frequency is a function of the local B(z) field, this will result in a linear distribution

of Larmor frequencies of the spins which are extracted using a simple Fourier transform

(FT). The RF excitation pulses are also tailored to excite this precise frequency range

(which is dependent on the slice thickness). This is the basis of 1D localization. Similarly,

to localize in 2D (i.e. plane) gradients are applied along X and Y axes usually referred

to as readout and phase encoding gradients, respectively. The pre-FT raw signal is often

referred to as k-space signal, since it is in the k-domain (space of Fourier transform of the

image). The sequence in Fig. 1.3 illustrates the accumulation of k-space samples and the

subsequent processing to obtain the desired image.

1.3.1 Image contrast

The MR physical parameters such as proton density, T1 and T2 values that distinguish

between tissues have previously been discussed. These differences can be accentuated

using imaging sequences, the principal parameters of which are briefed below.
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k−space signals k−space image Reconstructed image

Figure 1.3: 1D k-space signals accumulated and Fourier transformed to result in the
desired image. (Source : [62])

• θ : This is the excitation tip angle, and refers to the angle by which the longitudinal

magnetization vector tips towards the XY -plane. RF pulses are designed to create

specific values of tip-angles depending on the application.

• TE : TE stands for the gradient echo time. This is the time taken by the spins in

the XY -plane to reverse in direction. Typically, the resulting image represents the

magnitude of the transverse magnetization at the time of the gradient echo when

the origin of k-space is sampled.

• TR : TR is the repetition time. The time taken from the start of the RF pulse to

the end of data acquisition (i.e. time to read the FID) is called TR. Typical readout

durations vary from 5 -10 ms depending on the number of samples and the sampling

bandwidth. TR is one of the critical factors, which determine the total scan time

of image.

The values of the parameters discussed above can be manipulated by the operator

in order to highlight the source of contrast that would prove most beneficial for a given

application. The most-commonly used weightings in MR imaging are :

T1-weighted imaging utilizes the difference between the spin-lattice relaxation times

of two materials by pinning the 90 degree RF signal to an adequate time interval (TR,



1.4. Signal interpretation 9

repetition time) that facilitates signal detection when the difference between the two T1

relaxation curves is maximal.

T2-weighted imaging utilizes the difference between the spin-lattice relaxation times

of two materials by pinning the 180 degree RF echo signal to an adequate time interval

(TE, time to echo) that facilitates signal detection when the difference between the two

T2 relaxation curves is maximal.

Proton density weighted imaging utilizes the difference in proton densities of two

materials and is utilized when T1 and T2 characteristics are similar. By suppressing the

signal effects of T1 and T2 similarities, signal strength disparities are isolated to proton

density differences.

The combination of RF pulses and gradient pulses that form the basis of MRI is

referred to as a pulse sequence. There are various types of pulse sequences such as

spin-echo sequence and gradient-echo sequence, depending upon the application of MR

imaging.

1.4 Signal interpretation

The received signal sr(t) is derived from the contributions of all precessing transverse

magnetization in the volume.

sr(t) =

∫

x

∫

y

∫

z

M(x, y, z, t)dxdydz (1.1)

Ignoring constant phase factors, gain factors and the relaxation term, we arrive at,

s(t) =

∫

x

∫

y

m(x, y)e−i2π[kx(t)x+ky(t)y]dxdy (1.2)

Here, m(x, y) is the total planar magnetization within the excited z-slice, and kx(t) and
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ky(t) are the time integrals of the gradient waveforms, given by,

kx(t) = γ
2π

∫ t

0
Gx(τ)dτ

ky(t) = γ
2π

∫ t

0
Gy(τ)dτ

Also we know that,

M(kx, ky) =

∫

x

∫

y

m(x, y)e−i2π(kxx+kyy)dxdy (1.3)

Comparing Eq. (1.2) with Eq. (1.3), we find the most important relationship in MR

imaging. At any time t, s(t) equals the value of the 2D Fourier transform of m(x, y) at

some spatial frequency, given by :

s(t) = M (kx(t), ky(t)) (1.4)

The total recorded signal s(t) maps directly to a trajectory through spatial frequency

space (k-space) as determined by the time-integrals of the applied gradient waveforms

Gx(t) and Gy(t), given by :

s(t) = M
(

γ

2π

∫ t

0

Gx(τ)dτ,
γ

2π

∫ t

0

Gy(τ)dτ

)
(1.5)

Hence by applying suitable gradients, we can maneuver through k-space along the

trajectory k(t) to collect Fourier data samples. Once a sufficient number of samples are

acquired, the object image can be reconstructed by taking inverse Fourier transform of

the k-space data. In theory, the entire spatial frequency information of the object can

be read out in one shot. In practice, it is limited by the effects of relaxation discussed

previously.

1.4.1 Field of view (FOV)
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FOV is the area that contains the object to be imaged. The smaller the FOV, the

higher the resolution and the smaller the voxel size but the lower the measured signal. The

criterion for sampling k-space must be such that the required FOV is the most faithful

representation of the corresponding area of the object being imaged. The constraints on

sampling are most easily explained for the case of Cartesian sampling, where k-space is

sampled along straight lines parallel to the kx-axis. Image reconstruction involves a simple

2D IFFT of the acquired data. Besides, the phenomenon of aliasing due to undersampling

along Cartesian trajectories is easy to handle since it occurs as localized peaks. Figure 1.4

shows that if the FOV is of dimensions FOVx×FOVy, then the spacing between samples

along the two axes must satisfy the Nyquist requirements in order to be alias-free. The

FOV depends on the k-space sampling intervals given by,

FOVx ≤ 1
∆kx

FOVy ≤ 1
∆ky

(1.6)

where,

∆kx = γ
2π

Gx∆t

∆ky = γ
2π

Gyτy

(1.7)

Here Gx is the gradient along X, Gy is the gradient along Y , ∆t is the time-resolution

of the analog to digital converter and τy is the time for which the gradient along Y is

applied.

On the other hand, the spatial resolution along X and Y , namely δx and δy achieved

depend on the widths of k-space coverage along the respective axes (say, Wkx along kx

and Wky along ky), and are given by,

δx = 1
Wkx

δy = 1
Wky

(1.8)

Note that in MR, there is no aliasing in the frequency encoding or readout direction due

to the anti-aliasing filter preceding the digitization step. The spatial resolution depends
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Figure 1.4: Constraints on Cartesian sampling of k-space in MR imaging. (Source : [69])

on the amount of high frequency content sampled bringing in the classic tradeoff between

spatial and temporal resolution (speed of acquisition) in MRI. Sampling a finite extent

of k-space can be thought of as the convolution of the object with a sinc function (i.e.,

low-pass filtering) in the image domain.

1.5 Sampling trajectories

A very important factor that determines the SNR of the data acquisition, time taken,

quality of image reconstructed and the computations involved in the process of image

reconstruction, is the sampling trajectory utilized [61, 36]. A variety of sampling tra-

jectories have been explored, of which Cartesian is the simplest, and has already been

discussed above. The most popular non-Cartesian trajectories are radial and spiral. The

radial trajectory shown in Fig. 1.5(a) consists of a collection of spokes that are the radii

of an imaginary circle in k-space. The advantage of this trajectory is that the energy-rich

DC point is sampled in each of the scans. The low k-space which has high energy is

more densely sampled than the high k-space, making the SNR of the acquisition high. In

spiral trajectory, shown in Fig. 1.5(b), the points are sampled along a spiral centered at

the origin of the k-space. Single or multiple spirals (interleaves) may be used depending

on the desired application. The advantage of spiral trajectory lies in its insensitivity to
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(a) (b)

Figure 1.5: Typical Non-Cartesian trajectories for sampling of k-space in MR acquisition.
(a) Radial (b) Spiral

motion and flow-induced phase errors. Spiral trajectory is found to be the most efficient

of all the trajectories since it covers a desired region with the smallest number of points.

The high SNR of spiral acquisition comes from oversampling the centre of the k-space.

Besides, there are a large number of other trajectories such as circular, rosette and

random trajectories. Significant developments in flexible gradient systems has allowed the

MRI community to try non-Cartesian trajectories [61, 36, 69]. These acquisition patterns

are all capable of generating MR images, but differ in attributes, such as speed, spectral

off-resonance behavior, and flow and motion sensitivity.

1.6 Rapid imaging

Rapid imaging is being studied thoroughly by researchers as it is very relevant in

medical engineering today [21, 62]. The imaging speed of conventional MRI is primarily

limited by the sequential data acquisition scheme where the Fourier-encoded data in k-

space is acquired one point at a time. However, in applications such as dynamic imaging, a

sequence of images is acquired in order to monitor changes in tissue characteristics (struc-

ture) over time. The most popular applications of dynamic MRI include the observation

of the flow of contrast agent to detect tumors, cardiac imaging and functional imaging of
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the brain to detect BOLD (Brain Oxygen Level Dependent) response. These applications

demand adequate temporal and spatial resolution, simultaneously. To accelerate image

acquisition for the same k-space coverage, conventional MRI requires stronger magnetic

field gradients, faster gradient switching rates and/or more frequently applied RF pulses

(which would result in higher RF power deposition). Unfortunately, these approaches

can pose increasing risks of damaging the underlying biological tissues. A safe alterna-

tive strategy to accelerate image acquisition is to come up with optimal data acquisition

schemes that selectively collect samples in k-space. One approach is to follow selective

k-space sample collection schemes that generally prioritize the associated k-space energy;

The other approach is to regularly undersample the k-space and unfold the ensuing alias-

ing. In this thesis, we deal with strategies that aim at good quality images with sparsely

sampled k-space.

1.7 Parallel imaging

The modern approach to accelerated MR imaging is a new hardware set-up, with

entirely different concepts from what was discussed above in the context of conventional

MR scanners, and is being thoroughly investigated [54, 8, 27]. The new set-up, called

parallel MR scanner, is discussed in this section. Conventional MR scanners use a single

homogeneous receiver coil for data acquisition. In contrast, parallel MR scanners use

locally sensitive multiple receivers. Historically, parallel imaging was meant to obtain

images with higher SNR. But later advancements [23, 53] showed that it could be used

to reduce the number of phase-encoding steps, the most time-expensive factor in MR

imaging. The signal contributed by the subject to each receiver coil varies according

to the relative position of the subject from the respective coil. Though every receiver

coil collects the same k-space data, each one contains different information about the

image. Thus Fourier encoding as well as spatial encoding are simultaneously achieved.

An illustration of the image obtained using coils with different spatial sensitivities is shown
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(a) (b)

(c)

Figure 1.6: Difference between images obtained by homogeneous body coil image and
locally sensitive receiver coil images. (a) Body coil Image. (b) Image from one of the
spatially-sensitive receiver coils. (c) Image from another coil with different spatial sensi-
tivity

in Fig. 1.6. The image of the true object S, at location (x, y) acquired from the lth coil,

Sl is given as,

Sl(x, y) = Cl(x, y)S(x, y) (1.9)

where Cl is the complex sensitivity of the lth coil.

The basic concept in parallel imaging is illustrated in Fig. 1.7, depicting an ideal

scenario. As shown, the object is seen differently by the two receiver coils. Each coil

is characterized by its spatial sensitivity function, which conveys information about the

relative position of the origin of the received signal. The sensitivity profiles of the receiver

coils are used as complementary encoding functions to phase encoding. Each receiver coil

collects the same available data, but the signal acquired is modulated by the characteristics
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Object

Coil Sensitivities

Coil Images

Processed Coil Images

Composite Image

Figure 1.7: Concept of parallel imaging in MRI with multiple receiver coils having distinct
coil sensitivities. (Source: [54])

of the receiver coil. Each coil provides its own weighted version of the image, all of which

can eventually be combined to reconstruct the image. Each coil acquires only half of the

image since it receives strong signal from areas it is closest to and low or no signal from

points away from it. This effectively reduces the coil field of view (FOV) to half that of

the image. If the individual coil data now were undersampled in k-space by a factor of 2,

two halves of the image can be obtained simultaneously from the two coils. Once the two

images are appropriately reconstructed after data acquisition, they can be combined to

get the entire image. It is well-established that if each of the receiver coils could acquire

the entire k-space, then the best estimate of the true k-space would be the “root of sum

of squares” [35]. Typically, in parallel MRI, the data collected by each receiver element

in k-space is undersampled. Hence the individual coil images obtained are aliased. In

order to obtain unaliased images, either the coil images can be unfolded in the image

domain or the missing coil k-space lines can be estimated. These coil images can either
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Figure 1.8: Illustration of the effect of downsampling. (a) True image. (b) Aliased image
obtained due to downsampling by 2.

be unfolded in the image domain or the missing k-space lines are estimated, in order to

obtain unaliased images. The unaliased coil images are eventually combined to yield the

final image. The effect of subsampling the k-space is equivalent to reducing the effective

FOV. Aliasing in image domain caused by subsampling in k-space by a factor of 2, is

illustrated in Fig. 1.8.

In most of the existing techniques for image reconstruction in parallel MR, the in-

formation of the coil-sensitivities is crucial in obtaining the final reconstruction. Coil-

sensitivities could vary with the object being imaged, and hence it is preferred to be

estimated for each new scan.

The drawback in parallel MR imaging is the computational overhead incurred in the

process of image reconstruction. The computational complexities depend on the sampling

trajectory used, the estimation of coil sensitivities and the subsampling factor used. The

case of data acquisition using Cartesian trajectories is well studied. Besides, the phe-

nomenon of aliasing in the Cartesian case is easily understood due to its localised nature.

Methods like SENSE [51], kt-SENSE [67], SMASH [64, 26], PILS [13], GRAPPA [12], kt-

GRAPPA [56] have been in existence, that deal exclusively with Cartesian trajectories. Of

late, non-Cartesian trajectories are being explored because of the many advantages they

offer. However, they involve additional computational burden due to the requirements of

density compensation and re-gridding along Cartesian grids. Some of the Cartesian recon-

struction schemes are reportedly adapted for the non-Cartesian data acquisition as well.

The well-known non-Cartesian reconstruction schemes include CGSENSE [50], POCS [60]

and spiral/radial GRAPPA [16, 11]. In this thesis, we propose a novel method to unfold
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images in the context of parallel MR imaging, with data acquired using both Cartesian

and non-Cartesian trajectories.

1.7.1 Issues in parallel imaging

The image domain based SENSE and the k-space based GRAPPA have been the most

popular and robust parallel image reconstruction methods. These methods allow high

acceleration factors in principle [33], but practically they can be used only for moderate

image acceleration factors (about 3-4) with acceptable image quality. SENSE and its

variants suffer from numerical instability problems in the case of noisy acquisitions. On

the other hand, GRAPPA results in multiple image reconstructions depending on the

neighborhoods considered, and is computationally expensive. Besides, to be able to uti-

lize GRAPPA for a given trajectory, it is necessary to obtain customized reconstruction

kernels. This requires an additional scan with the same trajectory of data acquisition. It

is necessary to develop image reconstruction techniques that can be applied to general

trajectories. The reconstruction techniques must preferably avoid additional data acqui-

sition, while being computationally feasible. In this thesis, strategies and concepts are

explored to address these issues.

1.8 Organization of the thesis

Chapter 2 describes a data-truncation window-based method to achieve rapid imaging.

Data truncation windows like rectangular, elliptical and rhomboid suffer from the draw-

back that many high frequency samples containing very less energy also get acquired

resulting in lower acceleration factors. In this chapter, a novel star-shaped truncation

window is proposed to increase the acceleration factor obtained. The proposed window

monotonically cuts down the number of samples acquired in k-space regions with lesser

energy. The data is sampled within a star-shaped region centered around the origin in the

ky-kz plane. The missing values are extrapolated using generalized series modeling-based

methods. The proposed method is applied to several real and synthetic data sets.
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In chapter 3, a popular method for dynamic imaging that uses regular undersampling,

called k-t BLAST is investigated. The method suffers from drawbacks such as separate

training scan, blurred training estimates and aliased phase maps. In this chapter, vari-

ations to k-t BLAST have been proposed to overcome the drawbacks. The proposed

improved k-t BLAST incorporates variable-density sampling scheme, phase information

from the training map and utilization of generalized-series extrapolated training map. The

existing technique and the proposed variations are applied on real fMRI data volumes.

Chapter 4 deals with parallel imaging using Cartesian trajectories and a novel method

is proposed for image reconstruction in the framework of neural networks (NNs). This

method is based on the observation that the aliasing patterns remain the same irrespective

of whether the k-space acquisition consists of only low frequencies or all the frequencies.

In the proposed approach, aliased coil images obtained using regularly undersampled

data at each of the receiver coils are processed using the neural network framework.

The technique, called as composite reconstruction and unaliasing using neural networks

(CRAUNN) has been applied to phantom as well as real brain MRI data sets.

Chapter 5 extends the CRAUNN approach to non-Cartesian trajectories like spiral and

radial. Neural networks are used as machine learning tools to learn the transformation

needed to reconstruct the alias-free composite image from the aliased coil images, using

acquisitions consisting of densely sampled low frequency k-space data. These NNs are

then used to obtain the desired alias-free image from acquisitions containing sparsely

sampled low and high frequencies. Experiments are performed using radial and spiral

trajectories on real and synthetic data.

Chapter 6 contains the concluding remarks.





Chapter 2

Dynamic MR imaging using

generalized series modeling

Abstract

Dynamic MR Imaging can be achieved by sampling only selected regions in k-space.

Optimal region selection in the 3D k-space needs to satisfy “maximum energy capture”

and “minimum acquisition” requirements. In this chapter, a novel star-shaped truncation

window is proposed to increase the achievable acceleration factor. The proposed window

monotonically eliminates the acquisition of the low energy k-space samples. The window

removes the data outside a star-shaped region centered around the origin of the ky-kz plane.

For the same fraction of k-space acquired, this window captures more k-space energy than

all the other existing windows. The missed samples are predicted by generalized series

modeling. The proposed technique is applied to several real and synthetic data sets. Its

superior performance is illustrated using the standard measures of error images and uptake

curve comparisons. Average values of slope error in estimating the enhancement curve

are obtained over 5 real data sets of breast and abdomen images, for an acceleration factor

of 8. The proposed method achieves a slope error of 5%, while the values obtained using

rectangular and elliptical windows are 12% and 10%, respectively.

21
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2.1 Dynamic contrast enhanced (DCE) MRI

Dynamic Magnetic Resonance Imaging is increasingly being used for functional studies

where the organ being studied undergoes continuous change as in functioning of the

brain, cardiac activity and contrast agent uptake by suspected tumors. A very important

application of dynamic imaging is DCE-MRI. It is used for detection and diagnosis of

cancer. In DCE-MRI, a bolus of a paramagnetic contrast agent (typically, gadolinium

chelate) is injected intravenously. The agent shortens the relaxation times (T1, T2, and

T ∗
2 ) of the Hydrogen protons that are in its vicinity.

Generally T1-weighted imaging sequences are preferred. Shorter T1 values make the

lesions appear brighter than the remaining tissues. Because of their high vascularity,

the rate of contrast agent uptake by malignant lesions is significantly different from that

of normal tissues. Malignant lesions can hence be detected by monitoring the rate of

contrast agent uptake and their washout characteristics. This wash-in and wash-out

phenomena are monitored by a time series of images of the region of interest. Typical

imaging protocols work as follows : Initially, a data set (pre-contrast data) is acquired

with high spatial resolution. Subsequently, a contrast agent such as Gd-DTPA is injected

followed by saline flush. The injections are immediately followed by the acquisition of 4

or more post-contrast data sets, which takes a few minutes. The pre-contrast and the

post-contrast image sets are acquired with identical acquisition parameters. The signal

intensity through the different types of tissues follow distinct characteristics as shown in

Fig. 2.1.

2.2 Issues in DCE-MRI

The rate of uptake of contrast agent, called “enhancement rate”, distinguishes malignant

from benign tissues. The established way of measuring this rate is to calculate the slope

of initial enhancement typically obtained by imaging the area of interest up to the time of

peak enhancement (approximately 1.5 minutes), following the contrast injection. Beyond
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Figure 2.1: Contrast uptake for different types of tissues (Source: [19])

that time, signal intensity of normal tissues, which enhance slowly in the beginning, will

begin to approach that of malignant tissue. In order to differentiate between malignant

and benign tissues using the initial slope of enhancement, at least 4 samples must be

obtained in 1.5 minutes, implying a temporal resolution requirement of about 20 seconds.

The exact temporal resolution required is determined by the time course of contrast

agent uptake. In malignant lesions, peak contrast enhancement typically occurs at about

90 seconds after injection, and hence to accurately determine lesions, we need to acquire

data sets well within that duration.

As discussed earlier, the number of k-space points acquired determines the quality of

the image obtained. Acquisition of fewer number of data points speeds up the process of

data capture, but leads to Gibbs ringing and spatial blurring that significantly degrade

the spatial resolution. On the other hand, acquiring many points in k-space leads to good

image quality, but results in poor temporal resolution, that may not adequately capture
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the uptake characteristics. Thus we need to obtain good quality images with reduced data

in order to satisfy the conflicting requirements of good spatial and temporal resolution.

Reduction in the volume of data acquisition leads to faster scans. The objective of any

dynamic imaging technique is to obtain as high an acceleration factor as possible, since

it indicates the ability of the technique to yield high-quality images with reduced data

(lower acquisition time). Typically in DCE-MRI, the quality of image reconstruction is

measured by the fidelity in the reproduction of the uptake curve through the region of

interest. For this application, the error measures popular in image processing, namely

error images and RMSE are not as important as the uptake slope error.

2.3 Techniques for DCE-MRI

Reduced data acquisition in conventional (sequential) MR scanners, where a single receiver

coil is used, can be achieved either by acquiring only certain k-space regions or by regularly

undersampling the entire data in k-space. In this chapter, our focus is on methods that

follow the former approach. The two defining aspects in this approach are:

1. Optimal choice of k-space samples to be acquired

2. Technique to estimate the unacquired values

The required criteria for optimal selection of samples in k-space are “maximum energy

capture” and “minimum acquisition”. Partial data acquisition-based techniques hinge on

the fact that if a small number of k-space samples containing a significant fraction of the

total k-space energy, are captured at an adequate temporal resolution, then the dynamics

of the sequence being imaged can be satisfactorily reconstructed. It is well-known that

energy is concentrated at lower frequencies, and hence most acquisition schemes priori-

tize low frequency samples over data at higher frequencies. The ratio of the number of

points acquired to the total number of available k-space points, is called the “accelera-

tion factor”. Techniques that result in higher acceleration factors are preferred because,
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they capture the dynamic k-space at more number of time instants, resulting in higher

temporal resolution.

The first dynamic imaging method, proposed by van Vaals [68] is called “Keyhole

Imaging”. According to this scheme, only the pre-contrast data acquisition, which is free

of time constraints, contains the entire range of k-space frequencies. During the course

of contrast uptake, only partial k-space data, within a rectangular window symmetric

about the kx axis is acquired. This rectangular window, at the center of the ky-kz plane is

assumed to contain a significant fraction of the signal energy. Image reconstruction using

keyhole acquisition simply involves substitution of unacquired dynamic k-space data with

the pre-contrast data. This technique suffers from the drawback posed by discontinuities

in k-space incurred by direct substitution, which manifests as artifacts in the obtained

images. The accuracy is limited by the size of the enhancing object and the rate of

enhancement.

An entirely different approach to dynamic imaging called “Continuous Update with

Random Encoding” (CURE) has been reported in [46]. In this approach, the k-space lines

are randomly acquired with the low k-space being more frequently visited. The missing k-

space points are substituted using their nearest k-space neighbours. Yet another approach

for rapid acquisition called “Time-Resolved Imaging of Contrast Kinetics” (TRICKS) [29],

segments the k-space and not all the segments are acquired at each time point. Instead,

low k-space segments are collected more frequently than the high k-space segments. The

missing k-space data is estimated by interpolating between the collected data.

Variations of the keyhole method such as, keyhole with elliptical and rhomboid win-

dows have also been in existence [62]. The drawback with rhomboid window is its max-

imum acceleration factor is 2. Experiments with elliptical windows have claimed better

performance and higher acceleration factor due to the ability of the window to capture

more k-space samples with higher signal energy. A variation of this technique is called

“radial keyhole” [43]. Here, instead of a rectangular window, radial strips of data, whose

centroid is the origin of ky-kz plane, are acquired, and the missing high k-space values

are obtained by replacement. It must be noted that the above discussed methods differ
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in their choice of the optimal sampling region in k-space, but are similar in their choice

of estimates of the unacquired samples.

A method to estimate the unacquired samples more reliably than simple substitution

has been devised using generalized series modeling by Liang [39], called RIGR (Reduced-

encoding Imaging by Generalized series Reconstruction). This method is based on the

fact that, in applications as in DCE-MRI, the image morphology in the time-series does

not drastically change from one image to another. Hence full k-space need not be acquired

at every time instant. A reference full k-space data set at pre-contrast (reference image)

containing the stationary information is first obtained. This acquisition is followed by

partial (rectangularly truncated) data during the contrast uptake phase. In fact, the data

acquisition part is identical to that in keyhole imaging. RIGR differs in its approach to

the estimation of the unacquired samples. The missing dynamic k-space data is estimated

with the basis functions of a generalized series model using the reference data and the

partially acquired dynamic data. In the works reported in [72, 65, 37], rectangular trunca-

tion window followed by RIGR-based extrapolation has been used. In [72], the technique

is used to obtain dynamic images of liver. A full k-space post-contrast data set is used as

the reference, and the reported temporal resolution is said to be greater by a factor of 3.

A variation of RIGR called “Two-reference RIGR” (TRIGR) has been proposed for

improved performance [24]. Here, two full k-space images are obtained, one in the pre-

contrast phase, and the second at the end of the post-contrast phase. The dynamic images

between the two full k-space images (references) are reconstructed using the difference im-

age between the two references to construct the basis functions of the generalized series

model. These approaches result in reduced truncation artifacts compared to keyhole

imaging. However, the drawback of these methods is that they tend to become unsta-

ble in the presence of noise, necessitating complicated regularization schemes for proper

convergence.

One of the recently proposed methods is called “Dynamic Imaging with Energy Match-

ing” (DIEM) [62]. In this method, data is acquired elliptically for each temporal phase
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during post-contrast. Two full k-space reference images are acquired: one at the begin-

ning (pre-contrast) and the other after the post-contrast phase. The peripheral k-space

dynamic data is estimated using a scaled version of the second reference data instead of

direct replacement with the pre-contrast reference data. The energy of an outer annulus

of the central k-space data (i.e. the acquired dynamic data) is compared to that of the

post contrast reference and an energy scaling factor computed as the square root of this

ratio for each phase. Since the background signal causes significant errors in the compu-

tation of scaling factors, the pre-contrast reference is subtracted from the dynamic data

for calculation of the energy scaling factors.

A very different approach is reported in [58], where a temporally enhancing lesion

is considered as a two-dimensional space-time object possessing an associated spatio-

temporal energy spectrum. The spatio-temporal space is segmented based on a threshold

such that the total spectral energy in a finite number of k-space samples, constrained

by the imaging experiment, is maximized. This thresholded map decides on the k-space

samples to be acquired at specific time instants. The acquisition scheme is shown to be

adequate for a wide range of contrast-enhancing breast lesions.

In this chapter, we propose a dynamic imaging scheme with a novel data truncation

window. The proposed window aims at increasing the achievable acceleration factor.

It monotonically cuts down the acquisition of the number of k-space samples with lesser

energy. The truncation window samples data within a star-shaped region centered around

the origin in the ky-kz plane. The missing values are extrapolated using generalized series

modeling-based methods.
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2.4 Generalized series modeling

Generalized series (GeS) model is a general framework developed for constrained image re-

construction. The explanation in this section and the notations are adapted from [39] and

[24]. The dynamic imaging problem is the acquisition of a sequence of Q images, denoted

as I1(x, y), I2(x, y), . . . , IQ(x, y), each of which is a snapshot of the time-varying image

function I(x, y). Hence the corresponding Q data sets d1(kx, ky), d2(kx, ky), . . . , dQ(kx, ky)

need to be acquired in k-space at successive time instants. The following discussion as-

sumes 1D signals and can be extended to the multi-dimensional cases. The qth data set

in k-space is related to the qth image as,

dq(k) =

∫ ∞

−∞
Iq(x)ei2πkxdx (2.1)

Here, the modeled image function IGeS is represented as

IGeS(x) =
∑

n

cnφn(x) (2.2)

where, φn(x) are the basis functions given by φn(x) = C(x) exp2iπnδx. C(x) is the con-

straint function that is chosen to absorb the available apriori information. cn are the

weighting co-efficients.

The generalized series framework is utilized for dynamic image reconstruction with as

few phase encodings as possible. It relies on the fact that the evolving k-space cannot

change much between two successive time instants. Two extrapolation techniques are

utilized in our work, based on generalized series modeling.

2.4.1 RIGR

Here, data is acquired in the same way as in keyhole. One full k-space (high-frequency

resolution) data set is obtained before the injection of contrast. During the course of

contrast uptake and subsequent wash-out, several partial data sets are acquired. The full



2.4. Generalized series modeling 29

k-space data set serves as the initial estimate for the dynamically changing k-space that

we set out to compute.

Here, the constraint function C(x) is chosen as an initial estimate of the desired

function I(x) and hence the optimal reconstruction is the one that maximizes the following

cross-entropy measure,

−
∫ ∞

−∞
I(x)log

I(x)

C(x)
dx

subject to the data consistency constraints

d(m∆k) =

∫ ∞

−∞
I(x)ei2πm∆kxdx (2.3)

The solution to the above constrained problem is

Ĩ(x) = C(x) exp

(∑
n

λnei2πn∆kx

)
(2.4)

where, λn are appropriate Lagrange multipliers.

If C(x) is a good estimate for Ĩ(x), then the power series expansion of the exponential

term is approximated by the first two terms, resulting in

Ĩ(x) ≈
∑

n

[δ(n) + λn]C(x)ei2πn∆kx (2.5)

which turns out to be the same as the generalized series model function IGeS(x) in Eqn.

2.2, with cn = δ(n) + λn.

The unknown parameters cn are determined by a system of linear equations as de-

scribed later. Renaming the coefficients as ĉ0 = 1 + c0 and ĉn = cn, for n 6= 0, the GeS
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model is re-written as

IGeS(x) = C(x) + C(x)
∑

n

ĉnei2πn∆kx (2.6)

or in the data acquisition domain, we get

dGeS(k) = dc(k) +
∑

n

ĉndc(k − n∆k) (2.7)

where dc(k) is the Fourier transform of C(x)

Equation (2.7) suggests that the high spatial-frequency data modeled by generalized

series consists of two parts : The first part incorporates the prior information and the

other part is adaptively adjusted through the coefficients to maintain data consistency.

The spatial resolution of IGeS(x) would be at least as good as that of C(x). If a high

spatial-resolution reference image is acquired and used to define the basis functions, high

spatial-resolution dynamic images can subsequently be reconstructed using the generalized

series model with only few dynamic encodings.

The qth dynamic image Iq is modeled using GeS, with NL phase encodings and C(x)

as the constraint function as,

Iq(x) = |C(x)|
NL
2
−1∑

n=−NL
2

cnei2πn∆kx (2.8)

The generalized series coefficients cn are then given by,

dq(m) =

NL
2
−1∑

n=−NL
2

cndc(m− n), −NL

2
≤ m ≤ NL

2
− 1 (2.9)

where NL is the number of k-space lines acquired, dq(k) is the Fourier transform of Iq(x)

and dc(k) is the Fourier transform of C(x).
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2.4.2 TRIGR

A variation of RIGR called TRIGR, which stands for ”Two-reference RIGR”, was pro-

posed in [24]. The data acquisition in TRIGR consists of a full k-space (high spatial

resolution) baseline data set (dbaseline) and several partial data sets (ddyn, assume that

only NL lines are acquired in the partial data sets) and one full k-space active reference

(dactive) data set. Dynamic images are reconstructed using the generalized series model

with a reference image reflecting the areas of change in the sequence of images. The dif-

ference reference image (Iref ) is constructed by subtracting the complex baseline (Ibaseline)

from the active reference (Iactive) image.

The dynamic difference data at the qth sampling instant (dq
diff (k)) is created as:

dq
diff (k) = dq

dyn(k)− d̂baseline(k) (2.10)

where, dq
dyn(k) is the dynamic data and d̂baseline(k) represents the baseline reference en-

codings. The RIGR model then becomes

Iq
diff (x) = |Iq

ref (x)|
NL
2
−1∑

n=−NL
2

cnei2πn∆kx (2.11)

where, Iq
ref (x) is the difference reference image and NL is the number of dynamic encod-

ings.

The coefficients cn are obtained by fitting the difference data to maintain consistency

of the data, as in equation (2.9), given by:

dq
diff (m) =

NL
2
−1∑

n=−NL
2

cnd
q
ref (m− n) (2.12)

where, dq
ref (m−n) is the difference data created by subtracting the baseline and active ref-

erence data sets. The dynamic image (Iq
dyn) is generated by adding the complex dynamic
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difference image (Iq
diff ) to the baseline reference (Ibaseline) image :

Iq
dyn(x) = Iq

diff (x) + Ibaseline(x) (2.13)

2.5 Data truncation windows

Data truncation windows are used to acquire samples within a chosen region in the k-

space. Partial data acquisition is always carried out such that fewer values are captured

along either ky or kz or both. Since signal energy is concentrated at lower frequencies

acquisition schemes are designed to capture more points in low k-space.

2.5.1 Rectangular (RS) and elliptical (ELL) windows

The most commonly used data truncation window is “rectangular” in shape (RS), as

shown in Fig. 2.2(a). An “elliptical” (ELL) window is also in use (shown in Fig. 2.2(b)),

which prioritizes points based on the radial distance from the origin in the ky-kz plane. For

higher fractions of k-space availability, the two masks look similar, as the curvature of the

ellipse straightens. Another variation of the RS truncation window, is the “rhomboidal”

window, where the four vertices of the rhombus touch the four edges of the ky-kz plane.

Each of the windows has a trade-off between the maximum acceleration factor possible

and the energy captured. Here, we explore the usage of a novel window, called the “star-

shaped” window.

2.5.2 Star-shaped (SS) data truncation window

The star-shaped (SS) data truncation window, (see Fig. 2.3) consists of 4 arms all along

the ky-kz axes. The window is so shaped that it captures greater number of points near

the origin, while the number of data points tapers off as we move away from the origin.

We observe that the SS data truncation window retains all those points in the ky-kz

plane, whose one or both co-ordinates lie in the low-frequency range. Besides, as we
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(a) (b)

Figure 2.2: Two of the widely utilized data truncation windows in ky-kz plane. (a)
Rectangular (RS) (b) Elliptical (ELL)

increase the fraction of k-space available, the window expands near the origin, leading to

acquisition of many more points in the desired low k-space. Hence, we expect this mask to

be able to capture a greater fraction of the k-space energy, for a given fraction of k-space

availability. For a given value of k-space fraction, the SS mask is unique. This is because

the data dimension along Y is far higher than that along Z. Hence those arms of the SS

window that occupy greater area are along Y , and have smaller slope than those arms

that occupy smaller area lying along Z. Besides, the axes of the triangles that constitute

the SS window coincide with the Y and Z axes.

In acquisitions where the data is not too noisy, it is expected that the acquisition-

scheme that optimizes the “highest-energy capture” criterion results in the best image

reconstruction, for a given fraction of the k-space availability.

A comparison of energy captured by the 3 masks, namely, SS, ELL and RS, is presented

on a synthetic and several real data sets. We leave out the rhomboidal mask, since its

acceleration factor is only 2. As can be seen from Figs. 2.4 to 2.7 the SS-mask consistently

captures more energy at lower fractions of k-space availability, leading to the conjecture

that it might lead to better image reconstruction. It may also be observed that the

ELL mask captures more k-space energy than the RS mask for lower fractions of k-space

availability. However, as the fraction of k-space chosen increases, the energy captured by

RS and ELL masks become comparable.
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Figure 2.3: Proposed data truncation window in ky-kz plane : Star-shaped (SS) mask

2.6 Experiments on different MRI data sets

All simulations are carried out in MATLAB. The proposed method is applied to a syn-

thetic phantom as well as real data volumes of breast and abdomen. In our experiments

we have used both the extrapolation techniques, RIGR and TRIGR. The k-space data

are extrapolated utilizing the fast versions of the algorithms as given in [40]. The partial

data sets obtained by the star-shaped window as well as the rectangular and elliptical

windows are utilized. The criteria used to assess the performance of the methods are:

• Faithful reproduction of enhancement curves (Error in slope calculation)

• Difference images with respect to the original (“gold-standard”) image

• Comparison of the profile of scan lines

The results on each data set are presented separately.

2.6.1 Synthetic data

The proposed method is first applied on a noisy synthetic data set, for proof of concept.

The phantom is constructed simulating tumors of various sizes and shapes, enhancing at

different rates (see Fig. 2.4(a)). The data set is of dimensions 256 × 256 × 20 along
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Figure 2.4: Comparison of k-space energy captured from a phantom data set by the
different masks studied. (a) Mid-slice of the phantom. (b) Plot of percentage of energy
captured vs. percentage of k-space acquired.

X, Y and Z axes, respectively. The evolving k-space is captured at 7 time instants. To

simulate reduced data sets, the respective masks are applied to the full data. Images are

reconstructed after extrapolation by RIGR and TRIGR from various fractions of k-space.

The objective is to look into acceleration factors of at least 4, corresponding to k-space

acquisitions of 25% and below. The most-challenging part of the phantom reconstruction

is the rim-enhancing (annular) tumor, seen at the center of the slice in Fig. 2.4(a).

Case (i) : RIGR reconstruction

The results are shown in Fig. 2.8 for 20% of k-space availability. A close look at the

error images clearly shows the differences. It should be noted that the maximum error in

the difference images occurs at the annular tumor. The error image corresponding to the

SS mask shows the least amount of ripples, while the other masks result in substantial

ringing at abrupt transitions. The profile through a tumor shown in Fig. 2.9, has ripples

in the RS reconstruction, while the SS and ELL mask reconstructions follow the abrupt

change in intensity more faithfully.

Case (ii) : TRIGR reconstruction

The results are discussed for 20% of k-space availability. The error images in Fig. 2.10

clearly show that the quality of TRIGR reconstruction is better than that of RIGR. The

SS mask results in better image reconstruction than ELL and RS masks as shown by the
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Figure 2.5: Comparison of the percentage of energy captured by various masks on a real
data set (breast) (a) Original image of the real data set: breast with a large tumor shown
by the arrow. (b) Corresponding plot of percentage of energy vs. percentage of k-space
acquired.
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Figure 2.6: Comparison of energy captured by various masks on another breast data set.
(a) Original breast image, with a small tumor shown by the arrow. (b) Corresponding
plot of percentage of energy captured by the window vs. percentage of k-space acquired.
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Figure 2.7: Comparison of energy captured by various masks on an abdomen data set. (a)
Original image. (b) Corresponding plot of percentage of energy vs. percentage of k-space
acquired.
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Figure 2.8: Comparison of performance of different masks on the synthetic data set shown
in Fig. 2.4(a) for acceleration factor 5. Error images for RIGR reconstruction using masks
(a) SS (b) ELL (c) RS (color scale for all images : 0 to 16)
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Figure 2.9: Comparison of scan lines through the annular tumor in the RIGR reconstruc-
tions obtained using different masks

profile through a tumor in Fig. 2.11. The RS reconstruction clearly shows ripples while

the SS and ELL masks based reconstructions follow the abrupt change in intensity more

faithfully. In this case, unlike RIGR, it must be noted that while the SS mask performs

the best, the performances of RS and ELL masks are comparable.

2.6.2 Real data

Five real data volumes are analyzed: 2 breast and 3 abdomen data sets. One of the

breast data sets contains a large enhancing tumor while the other has a small tumor. The

abdomen data sets are all similar with no enhancing tumors, but contain enhancing blood

vessels.

Breast data with large tumor

This data set is of dimensions 256 × 256 × 36. The 21st slice shown in Fig. 2.5(a) has

a large tumor occupying about 300 pixels out of 256 × 256, . The image shown has

perceptibly high SNR. We expect the reconstruction of these images to be good, not only

because of the signal quality, but also because of the large size of the tumor. The dynamic

volume is available at 5 time instants.
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Figure 2.10: Comparison of performance of different masks on the synthetic data set
shown in Fig. 2.4(a) for acceleration factor 5. Error images for TRIGR reconstruction
using masks (a) SS (b) ELL (c) RS (color scale for all images : 0 to 14)
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Figure 2.11: Comparison of scan lines through the annular tumor in the TRIGR recon-
structions obtained using different masks
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(a)
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Figure 2.12: Performance on the real breast data set with large tumor (shown in Fig.
2.5(a)): Comparison of images reconstructed using RIGR with various masks : (a) SS (b)
ELL (c) RS. (color scale for all images : 0 to 255)

Case (i) RIGR reconstruction : The volume at the first time instant is chosen as the

high spatial-resolution data set, and the remaining 4 volumes are reduced according to the

3 masks considered. The images reconstructed from 20% of k-space sampled are shown

in Fig. 2.12. All the 3 masks perform comparably well and result in satisfactory quality

of reconstructed images. However, the reconstruction using RS mask looks blurred as

compared to the ones obtained with other masks.

The plots shown in Fig. 2.13(a) are obtained from the images shown in Fig. 2.12.

The plots suggest that all the phases are satisfactorily reconstructed. The plot in Fig.

2.13(b) clearly shows that the enhancement curve slope error is well within 10%, even for
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Figure 2.13: Results on breast data with large tumor (shown in Fig. 2.5(a)) with RIGR
reconstruction. (a) Comparison of the enhancement curves through the tumor (b) Com-
parison of the percentage uptake slope error vs. percentage of k-space sampled
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cases where only 10% of k-space is available. Hence, acceleration factors of even 10 can

be achieved on data sets of this nature.

Case (ii) TRIGR reconstruction : The first and the last volume are chosen as the

high spatial-resolution data sets, and the remaining 3 are reduced according to the 3

masks considered. The performance of both RIGR and TRIGR are comparable in such

a noise-free, large tumor data. Differences in performance can be expected at very high

acceleration factors. However, we do not consider cases of very high acceleration factor

(8 and above) because the SNR of the data acquisition would be very low.

Breast data with small tumor

This data set is of dimensions 256 × 256 × 20. The 11th slice has a tumor as shown in

Fig. 2.6(a). The images are noisy, and the tumor is very small, occupying about 15 pixels

out of 256 × 256. The dynamic volume is available at 4 time instants.

Case (i) RIGR reconstruction : The first volume is chosen as the high spatial-resolution

data set, and the remaining 3 are reduced separately using each of the 3 masks considered.

Since the images are noisy, the regularization parameter in RIGR needs to be fine-tuned.

The error images seen in Fig. 2.14 are obtained from reconstructions with 20% of k-space

availability. Here it is seen that SS and RS masks perform much better than the ELL

mask.

The plot in Fig. 2.15 clearly shows that the percentage slope error with SS mask is

within 10%, even for k-space acquisition as low as 12.5%. Hence acceleration factor as

high as 8 can be achieved with the SS mask. As also observed from the error images in

Fig. 2.14, of all the masks, the ELL mask results in the highest error.

Case (ii) : TRIGR reconstruction : The first and the last volumes are chosen as the

high-resolution data sets, and the remaining 2 are reduced according to each of the 3

masks separately. The plot of the error in enhancement slope versus fraction of k-space

acquired shows that the performance of TRIGR is better than that of RIGR.

The plot shown in Fig. 2.16(a) is obtained after reconstruction using 25% of the k-

space. The plot in Fig. 2.16(b) indicates that the enhancement curve slope error with SS
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(a)
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Figure 2.14: Performance on the real breast data set with small tumor: Comparison of
error images obtained from RIGR reconstructions using various masks : (a) SS (b) ELL
(c) RS. (color scale for all images : 0 to 70)

mask is within 10%, even for fractions as small as 12.5% indicating a higher achievable

acceleration factor, as compared to the technique using RIGR. Consistent with RIGR

reconstructions, it is seen that the SS and RS masks perform better than the ELL mask.

Abdomen data

Three abdomen data sets are used in this experiment, of which 2 are of dimensions 256 ×
256 × 20, while the third is of size 256 × 256 × 36. ROIs of different sizes are chosen in

order to assess the accuracy and resolution of the reconstruction techniques. Enhancing

structures like blood vessels are used as ROIs. Signal enhancement curves through the

ROIs are used to compute errors in the slope of contrast uptake. The difference images

are also examined for reconstruction quality and artifacts. Large ROIs typically occupy
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Figure 2.15: Comparison of the percentage uptake slope error vs. percentage of k-space
available with RIGR reconstruction, for breast data with small tumor.

100 pixels and above, while small ROIs occupy about 20 pixels. ROIs from all the 3 data

sets are analyzed, and the mean of the slope errors is calculated. A typical image in the

data sets utilized is shown in Fig.2.7(a).

Case (i) : RIGR reconstruction : At k-space availability of 20% and above, all the

masks perform comparably well, with the slope errors well-within bounds of 10%. How-

ever, differences can be observed in the values of slope errors for varying sizes of ROI.

Case (ii) TRIGR reconstruction : All the masks achieve slope errors less than 10%

with k-space percentage of 15% and above. The errors in slope uptake curve are negligible

for larger ROIs, even at high acceleration factors. However for smaller ROIs, only lesser

acceleration factors are achievable.

Clearly, plots in Figs. 2.17 and 2.18, show that TRIGR outperforms RIGR. For a

given acceleration factor, reconstruction using TRIGR results in far less an error than

RIGR. The plot in Fig. 2.18(a) shows that if the ROI in question is known to be large

before hand, then acceleration factors up to 8 are achievable with any mask, since the

slope errors are negligible. But if the ROI happens to be small (see plot in Fig. 2.18(b)),

then SS mask performs better. The errors in the images reconstructed using TRIGR are

seen in Fig. 2.19 for 15% of k-space availability.

Average values of slope error in estimating the enhancement curve are obtained over 5
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Figure 2.16: (a) Comparison of the enhancement curves (signal intensity vs. sampling
instants) through the tumor in the TRIGR reconstructed images of the data shown in
Fig. 2.6(a). (b) Corresponding plot showing comparison of the percentage uptake slope
error vs. fraction of k-space available

real data sets of breast and abdomen images, for an acceleration factor of 8. The proposed

method results in a slope error of 5%, while the values obtained using rectangular and

elliptical windows are 12% and 10%, respectively.

2.7 Discussion

As seen from the experiments, reconstructions using TRIGR are always better than the

corresponding images obtained using RIGR. This is to be expected since TRIGR involves

acquisition of 2 full k-space data sets. The error images obtained from the reconstructions

and the errors in slope of contrast uptake, consistently are found to be much better with

TRIGR reconstructions. It can be observed that higher acceleration factors are possible

when TRIGR is utilized along with the proposed SS data truncation window. The quality

of image reconstruction obtained depends on the SNR of the data acquisition and the

relative size of the region of interest in the image.

In the comparison of scan lines through regions of abrupt transitions, the reconstruc-

tion using RS mask shows far greater ripples than the other two masks. Contrary to
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Figure 2.17: Mean percentage slope errors vs. percentage of k-space sampled on real data
sets of abdomen using RIGR (a) Large ROI (100 pixels) (b) Small ROI (20 pixels)
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Figure 2.18: Mean percentage slope errors vs. percentage of k-space sampled on real data
sets of abdomen using TRIGR reconstruction (a) Large ROI (100 pixels) (b) Small ROI
(20 pixels)
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(a)
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Figure 2.19: Performance on a real abdomen data set: Comparison of error images com-
puted from TRIGR reconstruction from 15% of k-space obtained with various masks
(a) SS (b) ELL (c) RS (color scale for all images : 0 to 50)

expectation, it is observed that in some cases, when the fraction of acquired k-space in-

creases, the reconstruction error also increases. This might be attributed to the possibility

of increase in noise, in place of signal, in the acquisition.

The SS window is basically made of four triangles. Instead of triangles, we tried an-

other window based on four Gaussian curves along each of the sides of the rectangle within

the ky-kz plane, called Gaussian-shaped (GS) window. We carried out trials to make a

comparative study between the two windows. For typical values of k-space fraction (0.2)

and data dimensions along ky-kz of 256 × 36, the two windows are shown in Figs. 2.21(a)

and (b), respectively. The GS window looks like a smoothed version of the SS window,

and the two of them differ at very few locations. The similarity between the two windows

is due to the skewness in the dimensions of data in ky-kz plane. The locations where the

two windows differ are shown in Fig. 2.21(c). Here, the regions inside and outside the
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marked ellipse belong to the lower and higher half frequency ranges, respectively. The SS

window captures relatively greater number of points in the low-frequency region (corre-

sponding to the white region), and lesser number of points in the high-frequency region

(corresponding to the black region) than the GS window. Due to the aforementioned

factor, the SS window provides more energy compaction than the GS window. The above

argument holds true for any given fraction of k-space. This is because the step-size for

SS-window is linear, while that for GS window is Gaussian in nature. The GS window

falls rapidly from the peak along the smaller dimension (kz), contrary to the gradual fall

along the higher (ky) dimension. We apply the two truncation windows on the real data
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Figure 2.20: Performance comparison between SS and GS windows on a real data set (a)
Plot of percentage energy vs. percentage of k-space acquired (b) Plot showing comparison
of the uptake slope error vs. percentage of k-space acquired

set shown in Fig. 2.5(a). Consistent with the observations made about the nature of data

capture, we notice that the SS window captures greater k-space energy than the GS win-

dow, as shown in Fig. 2.20(a). The capture of greater k-space energy by the SS window

leads to lower errors in uptake slope as shown in Fig. 2.20(b). Hence we observe that the

smoothed version of SS window (GS window), does not result in improved performance.
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(a) (b) (c)

Figure 2.21: Comparison between SS and GS windows for k-frac of 0.2 and data dimen-
sions along ky-kz of 256 × 36 (a) Star-shaped window (b) Gaussian-shaped window (c)
Difference between SS and GS: White region marks the frequency points captured by SS
and missed by GS masks; Black region marks the frequency points captured by GS and
missed by SS masks. The ellipse separates the lower half k-space from the higher half
k-space.
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2.8 Conclusion

In this chapter, a novel star-shaped truncation window is proposed that achieves higher

acceleration factors. The proposed window monotonically cuts down the number of sam-

ples acquired in k-space regions with lesser energy. It samples data within a star-shaped

region centered around the origin in the ky-kz plane. The missing values are extrapo-

lated using generalized series modeling-based methods. The proposed method is applied

to several real and synthetic data sets. The superior performance of the SS window is

illustrated using the standard measures of error images and uptake curve comparisons.

Average values of enhancement curve slope error are compared over 5 real data sets of

breast and abdomen images, for acceleration factor 8. The proposed window results in an

error of 5%, while the values obtained using rectangular and elliptical windows are 12%

and 10%, respectively.



Chapter 3

Improved k-t BLAST for dynamic

imaging

Abstract

Modifications are explored for the popular dynamic imaging technique, k-t BLAST

(ktB) for fMR imaging. ktB utilizes both the correlations in k-space and time, to re-

construct the image time series with only a fraction of the data. The algorithm works by

unwrapping the aliased Fourier conjugate space of k-t (here called y-f space). The unwrap-

ping process utilizes the estimate of the true y-f space, by acquiring densely sampled low

k-space data. The drawbacks of this method include separate training scan, blurred training

estimates and aliased phase maps. In this chapter, variations to ktB have been proposed

to overcome these drawbacks. The proposed improved ktB incorporates variable-density

sampling scheme, phase information from the training map and utilizes generalized-series

extrapolated training map. The proposed technique is compared with ktB on real fMRI

data. The proposed changes lead to a gain in temporal resolution by a factor of 6. Per-

formance is evaluated by comparing activation maps obtained using reconstructed images.

An improvement of up to 10 dB is observed in the PSNR of activation maps. Besides,

a 10% reduction in RMSE is obtained over the entire time series of fMRI images. Peak

improvement of the proposed method over k-t BLAST is 35%, averaged over 5 data sets.

51
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3.1 Introduction

Images with high spatial and temporal resolution are essential in medical diagnosis in-

volving dynamic contrast-enhanced MRI or functional MRI, where dynamic events are

monitored. Today, fMRI has the potential to probe neurophysiological activation in the

brain at a much higher spatial resolution than that offered by other non-invasive neu-

roimaging techniques like PET. The high sensitivity measurement of “Blood Oxygenation

Level Dependent” (BOLD) signal modulation points to regions in the cortex responsible

for a specific activity. Currently fMRI applications interrogate neural activity changes

only on the order of seconds, although neural activity happens on time scales of the order

of milliseconds.

In order to facilitate dynamic imaging, one needs to determine the adequate temporal

and spatial sampling rates, which has been extensively researched [21, 32, 62]. Enhance-

ment changes that occur in tumors due to contrast uptake, are continuous and aperiodic

functions, while dynamic events such as cardiac activity and typical brain-study experi-

ments are periodic or quasi-periodic functions. The periodicity of the dynamic events leads

to discreteness in temporal frequency. This sparseness in distribution has been explored,

leading to strategies entirely different from the discussions in the previous chapter.

In the work reported in [73], the authors represent the continuously changing object

in a multi-dimensional space, as a function of spatial frequencies (kx,ky) and a temporal

variable (t). The Fourier conjugate of this multi-dimensional space corresponds to x-y-f -

space, which is equivalent to the former in terms of energy, based on Parsevals theorem.

The sparse energy distribution in x-y-f -space, is explored to determine sampling schemes

that can effectively trade-off between spatial and temporal samples. The work reported

in [38] utilizes a generalized harmonic model for dynamic imaging of objects with pe-

riodic or quasi-periodic time variations. The approach converts the problem to one of

parameter identification. “UNaliasing by Fourier-encoding the Overlaps using the tem-

poral Dimension” (UNFOLD) [42] has been proposed by Madore et al. in order to speed

up acquisition exploiting the periodicity of the underlying event. The method hinges on
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transfer of information from the k axes to the t axis, making it sufficient to acquire a

smaller but denser k-t space. UNFOLD involves a reduction of the dynamic FOV. This

FOV reduction diminishes the amount of spatial information acquired along the k axes of

k-t space. Because of aliasing, spatially distinct points within the object are overlapped

at the same spatial position in the images. UNFOLD uses time to label the overlapped

components, such that a Fourier transform through time can resolve them. The authors

present results on cardiac and fMR imaging, illustrating significant reductions in the ac-

quisition time. Recently, a method for dynamic imaging of periodic and quasi-periodic

events, called k-t BLAST has been proposed [67]. In this chapter, we study this method

and propose variations for improved performance.

3.2 k-t BLAST

k-t BLAST (ktB) was proposed by Tsao et al. [67], for reconstruction of dynamic images

using regularly undersampled data acquisitions. The correlations in both k-space and time

are exploited for estimating the unacquired data. A missing data point is estimated based

on other available points, within its vicinity in both k-space and time. This approach

exploits more of the relevant correlations, thus improving the estimation of missing data.

This improvement could be used to obtain better reconstructed images or achieve higher

reduction in data acquisition leading to better temporal resolution. Several variations of

ktB have been proposed to customize the image reconstruction algorithm for applications

such as angiography and cardiac imaging [31, 30, 7]

Dynamic MRI can be seen as acquisition of a changing k-space signal at different time

instants, which is essentially sampling in a higher dimensional k-t space. Here, k stands

for multi-dimensional k-space. Since we are dealing with 2D k-space, and it is known that

all points along the read-out (kx) dimension are available, we need to undersample only

along phase-encode dimension (ky). Hence, the mention of k-axis would refer to the actual

ky axis, whose Fourier conjugate axis would be the spatial dimension y. The images in

Fig. 3.1 explain the working of the ktB. The lattice along which these points are acquired
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Figure 3.1: Knowledge of the sampling pattern helps in unaliasing the y-f space (Source:
[67])

in k-t space is referred to as the k-t sampling pattern. The conjugate space obtained upon

Fourier transformation of the k-t space is the y-f space. It is observed that the signal

distribution in y-f space is very sparse, especially for fMRI with its temporal periodicity

of activated pixels. This feature can be used to pack y-f space densely, allowing higher

acceleration factors. Under-sampling in k-t space leads to an aliased signal distribution

in y-f space. For instance, at a given location (y0, f0) in the aliased y-f space obtained

from the sparsely acquired data, the signal value ρalias(y0, f0) is actually the sum of

the values at (y1, f1) . . . (yn, fn) on the true y-f space signal distribution. The locations

(y1, f1) . . . (yn, fn) are determined by the k-t sampling pattern.

ρalias(y0, f0) = ρ1(y1, f1) + . . . + ρn(yn, fn) (3.1)

where n is the acceleration factor.

Unaliasing the aliased y-f signal distribution is possible because the aliasing pattern
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is completely known, once the sampling pattern is fixed. This under-determined system

in equation (3.1) needs to be solved for every set of aliased voxels. Since infinite solutions

exist, the most sensible way would be to minimize a well-designed cost function. Here,

weighted-minimum norm solution is preferred. This solution makes use of prior informa-

tion, wherein a low resolution, alias-free signal distribution is obtained by acquiring the

low k-space frequencies, forming the “training map”. The values of the training map form

initial estimates in order to obtain the solution given by,

ρ = M2.1H(1.M2.1H)−1.ρalias (3.2)

where, M2 = diag(|m1|2, . . . |mn|2) , and |mi| is the magnitude of the training y-f map

at the ith aliasing location. Here, 1 is the row vector of all 1s, at n positions. Note

that the acquisition of the training map data slightly reduces the speed-up effected by

the under-sampling pattern. However, the DC-value is separately taken care of, since it

is the most important component. The temporal average of the sparse acquisitions forms

the DC-value of the estimated y-f map.

The new set of equations to be solved is given by,

ρ = ρ + M2.1H(1.M2.1H + ψ)−1.(ρalias − 1ρ) (3.3)

where, ρ is the baseline estimate (DC-component) and ψ is the noise variance.

3.3 Improvements proposed

3.3.1 Data acquisition

In the original ktB scheme [67], the training and the actual data are acquired at dis-

joint instants of time and follow different sampling schemes. The training data contains

only the low k-space frequencies, while the actual data acquisition is along a pre-designed

sparsely sampled lattice, as shown in Fig. 3.2(a). A variation of data acquisition scheme
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(a) (b)

Figure 3.2: Data acquisition schemes (a) Uniform density (used in ktB). (b) Variable
density (utilized by the proposed method)

that couples both the training and actual scans is shown in Fig. 3.2(b). This is a vari-

able density sampling lattice. This scheme has been designed to minimize the mismatch

between the training and the data scans. This scheme of acquisition reduces the acceler-

ation factor achievable, but eliminates possible artifacts due to mis-registration. We have

utilized the variable-density sampling scheme for our experiments.

3.3.2 Training map

The work reported in [15], deals with how the quality of the training data influences

the working of ktB, in contexts where the training and the actual data are acquired at

disjoint instants of time. It reports that increasing the number of time frames for which

the training data is acquired, results only in a negligible decrease of reconstruction error.

However, in a variable-density acquisition scheme like ours, thetraining data is avail-

able at all the time frames of the experiment. We explore the impact of including higher

frequencies in the training data, on the working of ktB. We compare ktB reconstructions

that use low k-space frequencies in the training data against these using all the k-space

frequencies (ideal training data) in the training map. It is seen that the errors can be

brought down by a factor of 2, using higher frequencies in the training map. The disparity

between the qualities of the two image reconstructions led us to explore the possibility of
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obtaining an improved resolution training-map using the acquired low k-space frequen-

cies. It must be observed that at locations in the aliased y-f space, where the signal is

dominated by noise, the values from the training map that are chosen as estimates can

lead to meaningful results only if the estimate is close to the truth.

RIGR

kt Blast

Generation

y−f map

Combination

Reconstructed Image Time−series

Reconstruction

Image

(Sparse full k−space)

Actual data

(Dense low k−space)
Training Data

Information

Final y−f map

Data Acquisition

y−f map

Generation

y−f map

Aliased

y−f map

PhaseMagnitude of Unaliased

(blurred)
Training

y−f map

Figure 3.3: Overview of the proposed method (ktB-PR: ktB with unaliased phase (P)
and RIGR-extrapolated (R) training map)

Figure 3.3 shows a block diagram of the proposed method, which generates an im-

proved training map, despite acquiring only the lower spatial frequencies. This is achieved

by extrapolation using the generalized series-based method called RIGR (Reduced-encoding
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Imaging by Generalized-series Reconstruction). ktB with RIGR-extrapolated training

map is referred to as ktB-RIGR in this work. In order to utilize RIGR for extrapolation,

one static full k-space data acquisition is required. This static acquisition is required for

the estimation of the unacquired higher k-space frequencies, as outlined below.

Generalized series modeling

In generalized series modeling, the missing high spatial frequencies are split into two

components as follows :

dGeS(k) = dc(k) +
∑
m

cmdc(k −m.∆k) (3.4)

where, dGeS is the generalized series estimate, dc is the Fourier transform of the static

image, cm are the generalized series coefficients and ∆k refers to the spatial-frequency

resolution. The first term incorporates the apriori static information, whereas the second

term comes by adaptively adjusting the coefficients so that data consistency is maintained.

We implemented a fast version of this algorithm outlined in [40]. After this extrapolation,

the deviation of the training data from the ideal, full k-space training data decreases. We

expect better training data to translate to better training maps in y-f space.

3.3.3 Phase constraints

The second change proposed is the incorporation of phase constraints from the training

map. The training map, though not of best possible resolution, does contain unaliased

signal distributions. In (3.3), as given in the original k-t BLAST proposition, the phase

of the aliased y-f map is used, which would be erroneous. Hence, we use the phase infor-

mation of the training map in estimating the true y-f map. ktB with phase constraints

from the training map is referred to as ktB-Ph in this work.

Θ = 6 ρtrain (3.5)

ρ̃ = |ρ| exp(iΘ) (3.6)
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where, ρ̃ is the final estimate of the signal distribution in y-f plane and ρtrain is the

training map.

3.4 Experiments and results

3.4.1 Data utilized for the study

fMRI data is obtained using “visual stimulus”. In the course of the experiments, 3 two-

dimensional T ∗
2 -weighted images, each with 64 scans, are acquired using a gradient-echo

FLASH sequence. The acquisition parameters are: TE/TR = 40 msec/80.5 msec, matrix

size = 128 × 64; slice thickness = 5-mm and 2-mm gap. The image matrices are zero-filled

to obtain images of size = 128 × 128, with a spatial resolution of 1.953 × 1.953 mm; The

corresponding two-dimensional anatomical slices are also acquired with a T1-weighted IR

RARE sequence (TI = 900 msec; TE/TR = 3900 msec/40 msec, matrix size = 512 ×
512) in the same experiment session. In all the experiments, ON and OFF stimuli are

presented at a rate of 5.162 sec/sample. Each stimulation period had four successive

ON states followed by four OFF states. The stimulations are repeated for eight cycles,

thus resulting in an acquisition time of 5.5 min. The experiments are carried out at

different sessions with different subjects. The visual stimulation task comprised an 8-Hz

alternating checkerboard pattern with a central fixation point projected on a LCD system.

The subjects are asked to fixate on the point during stimulations. Images are acquired at

three axial levels of the brain at the visual cortex.

3.4.2 Performance evaluation

fMRI images are mainly studied for the activation maps, which interpret the information

contained in the entire time series of images. Hence, to evaluate the reconstruction per-

formance, we compare the activation maps obtained against the reference activation map.

Statistical parametric mapping (SPM2) is the most widely used method for fMRI time-

series analysis [9]. The primary objective is to detect activated voxels and the resulting
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statistical parametric maps represent the activation strength of each voxel. The scale of

the activation-strength obtained is important, since the activation maps are eventually

thresholded to obtain the truly activated regions. Hence, when drastic changes in the

scales of activation-strength are observed, the activation maps are considered degraded.

Root mean square error (RMSE), correlation with reference, and mean activation level of

the maps are the performance metrics used to quantify the degradation in activation. If

we analyze the true image time series A and the reconstructed series B, using same SPM

method and parameters, we expect comparable scales in activation strength at similar

locations in the resulting statistical parametric maps SA and SB.

fMRI time-series are first realigned to remove movement effects using least-squares

minimization [9] and then smoothed using 3D Gaussian kernel with full width at half

maximum (FWHM) = 4.47 mm, to decrease spatial noise. Canonical hemodynamic re-

sponse function (HRF) plus time and dispersion derivatives are used as basis function and

changes in BOLD signal associated with the task are assessed on a pixel-by-pixel basis,

using the general linear model and the theory of Gaussian fields as implemented in SPM2.

This method takes advantage of multivariate regression analysis and corrects for temporal

and spatial autocorrelations in the fMRI data. Those voxels in the statistical parametric

map are identified as activated, that satisfy p ≤ 0.05, on carrying out the F-test.

3.4.3 Experimental results

MATLAB is used for all simulations. For our trials, the training and the actual acquisi-

tions are generated from the full k-space, by using the appropriate under-sampling masks.

The unaliased training as well as aliased sparse y-f maps are shown in Figs. 3.4 (a) and

(b), respectively. As claimed earlier, it can be seen that the signal distribution in y-f space

is very compact, thus leading to possibilities of achieving higher acceleration factors. In

Fig. 3.5 (a), the deviation of the training data from the ideal training data is shown for

2 cases. In the first case, the training data is simply zero-padded as in the baseline ktB,

whereas in the second case, the obtained low k-space frequencies are RIGR-extrapolated.
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(a) (b)

Figure 3.4: Typical y-f maps obtained from k-space data acquisition for acceleration
factor 5 using : (a) Densely sampled low k-space (Training data) (b) Sparsely sampled
full k-space (Actual data)

Clearly, the RIGR-extrapolated data is seen to be closer to the ideal training data. In

Fig. 3.5 (b), we compare how the gains of Fig. 3.5 (a) translate to the y-f space. It

can be observed that the RIGR-extrapolated training map is close to the training map

that would have been generated had all the frequencies been available for training (ideal

training data) and is more accurate than the zero-padded map that the ktB algorithm

uses. In Fig. 3.6(a), we see errors in the reconstructed y-f plane as compared to the true

y-f plane. The three cases compared are : The training map being ideal (ktB with ideal

training data), zero-padded (ktB) and RIGR-extrapolated (ktB-RIGR). It can be seen

that the RIGR-extrapolated case results in errors lower than that of the zero-padded case,

consistently for all the instants of the time series. In Fig. 3.6(b), the time series of RMSE,

in image reconstruction in all the three cases outlined above, is shown. It can be seen

that the RIGR-extrapolated case and the ideal training map case, are quite comparable,

while both consistently outperform the baseline ktB reconstruction. Fig. 3.7 shows the

decline in correlation of the obtained activation map with the reference map as a function

of the acceleration factor. In Fig. 3.8, we observe the activation maps obtained using

the two methods, for a gain of factor 5 in temporal resolution. Clearly, the map obtained

using baseline ktB displays more artifacts than the proposed method. We also observe

that the gain in PSNR goes up to 10 dB. The RMSE of the fMRI time series reduces by
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Figure 3.5: Errors for acceleration factor 5 in : (a) Training k-space data with respect to
the ideal training data. (b) y-f training map with respect to the ideal y-f training map.
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Figure 3.6: Reconstruction errors for acceleration factor 5 in : (a) y-f map. (b) RMSE
of the reconstructed image time series.

about 10% averaged over all the time points, with a peak improvement of 35% compared

to the baseline ktB for acceleration factors up to 6. For acceleration factor of 6, we notice

that the scales of activation maps obtained using the baseline ktB are lower by a factor

more than 10, and hence, it is not possible to threshold them to see activated regions.

On the other hand, ktB-PR results in activation maps that are lower by only a factor 2

and hence activated regions can be seen even at lower thresholds. At acceleration factors

above 6, we notice significant degradation in the strength of the activation maps, and

hence do not consider them.
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Figure 3.7: Correlation of the obtained activation map with the image time series recon-
structed using ktB-PR with accelerated data acquisition, with respect to the reference
activation map obtained using the original image time series.

(a) (b) (c)

Figure 3.8: Thresholded activation maps obtained using SPM for acceleration factor 5,
with the image time series reconstructed using : (a) Original images (b) ktB-PR (c) ktB

3.5 Discussion

The image shown in Fig. 3.9(a) is a sample from the chosen fMR time series. Applying

the ktB algorithm, we obtain the reconstruction shown in Fig. 3.9(b). The corresponding

error image is shown in Fig. 3.10(a). Now, the same image is reconstructed with a change

in the training data set. We assume the case where all possible data is available for

training (ideal training data). The error image for the obtained reconstruction in this

case is shown in Fig. 3.10(b). We have also carried out trials where only one of the two

proposed changes are made to the existing algorithm. We compare the results (image

reconstructions) for each of the following cases separately :
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(a) (b)

Figure 3.9: (a) Sample fMR image from a time series of images. (b) Corresponding ktB
reconstruction (Color scale for all images : 0 to 255)

(a) (b)

Figure 3.10: Comparison of reconstruction performance for the image in Fig. 3.9(a).
Error image for ktB with : (a) Regular training data (b) Ideal training data (Color scale
for all images : 0 to 14)

• Only phase constraints are imposed (ktB-Ph)

• Only generalized series-extrapolated (RIGR) training map (ktB-RIGR)

• Both the above variations incorporated (ktB-PR)

The error images obtained from the three separate cases of image reconstructions are

shown in Fig. 3.11. It is observed that incorporating both the proposed variations (ktB-

PR) leads to a reconstruction better than the baseline ktB. The plot in Fig. 3.12 shows

the RMSE obtained for an entire image time series using the variations of ktB discussed in

this chapter, that include ktB with phase constraints but no RIGR-extrapolated training
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i
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(c)

Figure 3.11: Reconstruction performance of the proposed improvements on the image
shown in Fig. 3.9(a). Error images using ktB with: (a) Only phase constraints (b) Only
RIGR-extrapolated training map (c) Variations utilized in both (a) and (b). (Color scale
for all images : 0 to 14)
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Figure 3.12: Performance comparison of each of the proposed variations to ktB, separately
applied. For each of the time series RMS error is plotted from the error images.
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map (ktB-Ph), ktB with RIGR-extrapolated training map but no phase constraints (ktB-

RIGR) and finally ktB with both the improvements included (ktB-PR). It is observed

that ktB-PR results in the least RMSE for the reconstruction of the image time series.

3.6 Conclusion

In this chapter, we have proposed an improved version of the existing dynamic imaging

technique ktB. A variable density data acquisition scheme has been proposed, in order

to avoid a separate training scan. The generalized-series extrapolated training map is

used in place of the zero-padded training map to serve as an estimate of the true signal

distribution. Besides, the phase-constraints from the training map rather than from the

aliased training map are included in the final solution. All of the above changes are

incorporated into the algorithm and applied to real data. Results on fMRI data have

shown that these changes together lead to improved reconstructions and acceleration

factors of up to 6. The reconstruction performance is evaluated using the activation maps

obtained. We observe up to 10 dB improvement in the PSNR of the activation maps.

The proposed technique results in more accurate activation maps and also a mean RMSE

of less than 10% averaged over the entire time series, for acceleration factors up to 6.
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Chapter 4

CRAUNN for Cartesian parallel MR

imaging

Abstract

In rapid parallel MR imaging, image reconstruction is computationally demanding.

We propose image reconstruction utilizing the neural network framework, called “Com-

posite image Reconstruction And Unaliasing using Neural Networks” (CRAUNN). Here,

variable-density data acquisition is followed, where low k-space frequencies are densely

sampled, while the rest are sparsely sampled. The images obtained using the densely sam-

pled low frequencies are used to train the neural network. The densely sampled central

k-lines are used to obtain the unaliased but blurred coil images and the corresponding

composite image. The dense lines are then undersampled to obtain the corresponding

aliased coil images. These aliased blurred images form the input training data set for the

neural network. The corresponding output in this phase is the blurred unaliased composite

image. The weights needed to generate the unaliased composite image from the aliased

coil images are determined. Now the trained neural network is fed with images obtained

using regularly undersampled full k-space data. The CRAUNN approach has been applied

to phantom as well as real brain MRI data sets, and results have been compared with those

of the standard existing parallel imaging techniques in the literature.

67
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4.1 Parallel imaging

Parallel MR imaging is gaining popularity since it enables rapid imaging, leading to

images with better spatio-temporal resolution. Parallel imaging was designed [23, 53] as

a method to reduce the number of phase-encoding steps, the most time-expensive factor

in MR Imaging. Here, multiple receiver coils are used in order to accelerate imaging. Each

receiver coil is characterized by its spatial sensitivity function, which conveys information

about the relative position of the origin of the received signal. The sensitivity profiles

of the receiver coils are used as complementary encoding functions to phase encoding.

Each coil provides a coil-weighted version of the image, all of which eventually can be

combined to reconstruct the image. The information of the coil-sensitivities is crucial

in obtaining the final reconstruction. Coil-sensitivities could vary with the object being

imaged, and hence it is preferred to estimate them anew for each new scan. It is well-

established that if each of the receiver coils could acquire the entire k-space, then the

best estimate of the true k-space would be the “sum of squares” [35]. However, when the

k-space at each of the receiver coils is sparsely sampled, then we need to devise better

ways to combine the acquired signals, in order to reconstruct the image. Methods like

SENSE [51], kt-SENSE [67], SMASH [64], PILS [13], GRAPPA [12], and kt-GRAPPA

[56], are the known standard techniques used in parallel imaging.

4.2 Cartesian sampling

The most popular trajectory for sampling k-space is Cartesian shown in Fig. 4.1. Here,

k-space is sampled along straight lines parallel to the kx-axis. The advantage of Cartesian

sampling lies in its ability to utilize FFT to obtain the image. To acquire k-space data,

samples along kx are acquired for a fixed value of ky. This is carried out by clamping ky

to a fixed value by playing out Gy(t) for the required time period, while Gx(t) is kept

constant since kx(t) = γ
2π

tGx(t). To cover the desired range of values of ky, prior to

acquiring each line, Gy(t) is made to vary within a pre-designed set of values.
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Figure 4.1: Cartesian sampling scheme : Horizontal(kx) - Readout, Vertical(ky) - Phase
encode
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Figure 4.2: Illustration of the effect of downsampling. (a) True image. (b) Aliased image
obtained with data downsampled by 2.

4.2.1 Sparse sampling and aliasing

Regular Cartesian sub-sampling of k-space is achieved by reducing the number of phase-

encoding steps. This is accomplished by increasing the distance between the equidistantly

sampled lines in k-space. The maximal values sampled along the k-axes remain the same.

The effect of subsampling in the k-space manifests as aliasing in the image space. This is

illustrated in Fig. 4.2.

4.3 Cartesian parallel MR imaging methods

Image reconstruction in parallel MR is computationally intensive, and depends on the

sampling trajectory, data reduction factor, as well as the reconstruction approach em-

ployed. Some of the reconstruction strategies critically depend on the precision of coil

sensitivity estimation. Problems of numerical instability might arise in the event of noisy

acquisitions. A brief description follows of the prevalent methods to reconstruct images

with undersampled data.
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The method called SENSE, proposed by Pruessman et al. [51], has become very

popular. SENSE combines the acquired signals in the image domain. Here, the coil

sensitivity information is used to combine the coil-weighted aliased images. Let us assume

i1 and i2 to be the true intensities at the pixels shown in Fig. 4.2(a). Let the sensitivities

at these points be c11, c12 and c21, c22 for coils 1 and 2, respectively. Let the resulting

intensity at the pixel in the aliased image (see Fig. 4.2(b)), due to coil 1 be α1, and coil

2, α2, respectively. Then we know,

c11i1 + c21i2 = α1

c12i1 + c22i2 = α2 (4.1)

The framework in equation (4.1) is a linear system of equations, which will be over-

determined, if the downsampling factor is less than the number of receiver coils. The

existence of the solution demands invertibility of the sensitivity matrix, which in turn

implies that the coil sensitivities be distinct. Regularized versions of SENSE have also

been proposed which attempt at overcoming the problem of numerical instability. kt-

SENSE makes use of the time-dimension, and exploits sparseness in the conjugate plane

of k-t, referred to as x-f space. Hence undersampling in k-t space becomes feasible.

Unaliasing is carried out with prior knowledge of the sampling pattern. A linear system

of over-determined equations leads to the reconstruction of the image.

Partially parallel Imaging with Localized Sensitivities (PILS) is yet another technique

used in parallel MR imaging, which works in the image domain. Here, each of the receiver

coils is assumed to have a box-car function coil sensitivity profile over a distinct region of

the object and zero elsewhere. In the event of accelerated data acquisition, the subimages

periodically repeat due to aliasing. The knowledge of the coil sensitivity helps in extract-

ing the subimages separately from each of the coils in order to generate the composite

unaliased image.

Another technique has been recently proposed that works in the image domain utilizing

B-splines [47, 48] for reconstruction in parallel imaging. The coil sensitivities are assumed
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to be distinct, as in SENSE. The coil-weighted aliased images are linearly combined to

obtain the final image. The reconstruction operator is determined by using low-frequency

acquisitions. The same reconstruction operator is applied to the full k-space acquisition.

The coefficients that linearly combine are expressed as a linear combination of B-splines.

The parameters are obtained by minimizing the error for the low-resolution acquisition.

SMASH is a k-space technique, where the composite k-space is generated using sig-

nals acquired in the entire array of receiver coils. Each receiver coil, say pth coil has a

distinct sensitivity Cp(x, y) at location (x, y). Forming appropriate linear combinations

of component coil signals, we may generate composite sensitivity Ctotal(x, y) given by,

Ctotal(x, y) =
∑

p

npCp(x, y) ≈ expi(p∆kyy) (4.2)

where, np are complex weight factors, p is an integer, and ∆ky is the resolution along ky.

In other words, the combined signal stot, generated from linear combinations of component

coil signals sp using the weights np from equation (4.2), is shifted in k-space by an amount

(p∆ky).

Here, the coils are designed such that the linear combinations of their acquisitions

generate the missing harmonics. However, it turns out that the harmonic fit may not

be exactly sinusoidal, leading to artifacts in reconstruction. In auto-calibrated version of

SMASH, called AUTO-SMASH [26] additional low k-space lines are acquired to determine

the coefficients for the harmonic fit.

GRAPPA is also a k-space technique, which linearly combines the acquired lines to

generate the missing lines. Here, a bunch of lines at the central k-space, called auto-

calibration lines (ACS), is acquired along with the usual sparse acquisition. A “block” is

defined as a single acquired line and (A− 1) missing lines, where, A is the downsampling

factor. The concept in GRAPPA is explained in the Fig. 4.3.

Employing blockwise reconstruction, the missing data in coil p at the line (ky−m∆ky),

is obtained as:
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Figure 4.3: GRAPPA Estimation (Source: [[12]])

sp(ky −m∆ky) =
L∑

l=1

Nb−1∑

b=0

n(p, b, l, m)sl(ky − bA∆ky) (4.3)

where Nb is the number of blocks used in the reconstruction, l counts through the in-

dividual coils and b counts through the individual reconstruction blocks. The Nb lines

which are separated by A∆ky are combined using the weights n(p, b, l,m) to form each

line, corresponding to a reduction factor A.

This process is repeated for each coil in the array, resulting in L uncombined single

coil images, which can be combined using the known optimal ways. The estimation of

the missing points depends on the size of blocks and the number of blocks considered.

Here the reconstruction errors spread themselves across the image. The coil-design is not

so critical, and hence the method brings some flexibility. kt-GRAPPA is an extension of

GRAPPA that also utilizes information along the time-dimension.

4.4 Proposed image reconstruction

In conventional MRI, a single coil with homogeneous spatial sensitivity (body-coil) is

used. The use of multiple receiver coils was originally proposed to improve image SNR.

Images from the individual coils are separately reconstructed and then combined to yield a

composite image, which serves as a benchmark for image quality comparisons with reduced

data parallel imaging reconstruction schemes. The notations used here are adapted from

[47]. The composite image (here, root-sum-of-squares) is assumed to be the true image.



4.4. Proposed image reconstruction 73

The problem formulation is discussed here for Cartesian sampling. It can be seen that

the same argument can be extended to non-Cartesian cases too.

For accelerated Cartesian data acquisition, where each coil under-samples the data,

the image acquired from the lth coil, Sl is given as,

Sl(x, y) = Cl(x, y)S(x, y) (4.4)

where Cl is the complex sensitivity of the lth coil, and S is the true image.

It is well-known that sparse sampling in k-space causes aliasing in the image domain.

Consider the case where the maximum value of ky sampled is Ny, and rectangular under-

sampling by factor M is carried out. The aliased image obtained at the lth coil, SA
l is

given by,

SA
l (x, y) =

M−1∑
m=0

Sl(x, y + m
Ny

M
) (4.5)

Substituting equation (4.4) in equation (4.5) we get,

SA
l (x, y) =

M−1∑
m=0

Cl(x, y + m
Ny

M
)S(x, y + m

Ny

M
) (4.6)

The popular technique SENSE accomplishes image reconstruction by determining the

individual unaliased coil images in the framework represented in equation (4.6), utilizing

the prior knowledge of the values of coil sensitivities and acquisitions of the aliased coil

images. The knowledge of the aliasing pattern determined by the acceleration factor is

utilized to obtain the unfolding matrix. The unaliased coil images are finally combined

to form the composite image. The solution is obtained in the least squares sense, and

requires regularization in the event of noisy acquisitions.

In the proposed CRAUNN approach, the image reconstruction operator is assumed to

be a function of the aliased coil images, processed pixel-wise. The reconstruction function,
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(a) (b)

Figure 4.4: Illustration that the nature of aliasing does not vary appreciably with the
extent of frequency content in the acquisition. PSF obtained using Cartesian undersam-
pling by factor 2. (a) Using the entire range of k-space frequencies. (b) Using only low
k-space frequencies.

F , to estimate the composite alias-free image Ŝ, is given as:

Ŝ(x, y) = F (
SA

l (x, y)
)

(4.7)

where, l = 1, 2, · · · , L. The function is allowed to be arbitrary in form and complexity,

and is determined using neural networks. Thus, both the unaliasing and combining of coil

images to generate the composite image are accomplished together by the neural network,

without explicitly requiring the coil sensitivity estimation.

Figs. 4.4(a) and (b) illustrate that the nature of aliasing does not depend appreciably

on the extent of frequencies available in the acquisition. The PSF obtained with the entire

range of k-space frequencies shows sharp, localized peaks. On the other hand, the PSF

obtained with low frequency acquisitions exhibit the peaks at precisely the same locations,

but are smeared. Hence we deduce that the way to unalias can be determined using low

frequency acquisitions and can be applied to the full k-space acquisitions. An overview

of the proposed system is shown in Fig. 4.5.
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Figure 4.5: Image reconstruction by CRAUNN: The acquired data is selectively used to
obtain images employed at different stages of the image reconstruction. The top leg of the
block diagram represents the training phase, while the bottom leg represents the actual
reconstruction phase.

4.4.1 Multi-layer perceptron (MLP) network

Neural networks have emerged as powerful mathematical tools for solving various prob-

lems like pattern classification and medical imaging, due to their ability to map complex

characteristics, and learn. Of the many neural network architectures proposed, single

hidden layer feed-forward network with sigmoidal or radial basis function is found to be

effective for solving a number of real-world problems. The free parameters of the network

are learned from the given training samples using gradient descent algorithm.

A typical MLP network consists of three or more layers of processing nodes (neurons):

an input layer that receives external inputs, one or more hidden layers, and an output

layer which produces the target outputs. Note that unlike other layers, no computation

is involved in the input layer. The principle of the network is that when data is presented

at the input layer, the network nodes perform calculations in the successive layers until

an output value is obtained at each of the output nodes. This output signal should be the

appropriate target value for each input data. Using universal approximation property [77],

one can say that the single layer feedforward network with sufficient number of hidden

neurons (Nh) can approximate any function to any arbitrary level of accuracy. It implies

that for bounded inputs to the network, there exist optimal weights (not necessarily

unique) to approximate the function. Hence, in our study, we use single hidden layer
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network to approximate the functional relationship between the aliased coil images and

the true image. Let U be the n-dimensional input feature vector (U ∈ <n), which is

transformed into an Nh-dimensional vector Yh as

yh
i = fa

(
n∑

j=1

wijuj

)
i = 1, 2, · · · , Nh (4.8)

where wij is the connection weight between the jth input neuron and ith hidden neuron

and fa(.) is the sigmoidal activation function. The bipolar sigmoid function is a common

choice for the activation function, and is defined as

fa(x) =
1.0− exp(−x)

1.0 + exp(−x)
(4.9)

The output (T ) of the MLP network with Nh hidden neurons has the following form:

T = fa

(
Nh∑
j=1

vjy
h
j

)
(4.10)

where vj is the connection weight between the jth hidden neuron and the output neuron,

and fa(.) is the sigmoidal activation function.

4.4.2 Back propagation learning algorithm

Back propagation (BP) is one of the simplest and most general methods for the supervised

training of a MLP [57]. The basic BP algorithm works as follows:

1. Initialize all the connection weights (W and V) with small random values from a

pseudo-random sequence generator.

2. Compute the network output for the given input feature vector U.

3. Let T̂ be the target for the given input U.
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Calculate the deviation E of the network output from the target value as

E =
1

2

∑(
T̂ − T

)2

(4.11)

4. Compute the negative gradient of error to update the network weights

∆wij = − ∂E

∂wij

(4.12)

5. Update the weights using negative gradient of error E until the weights converge,

i.e., the current error E must be equal to or smaller than the prescribed value.

4.4.3 Acquisition scheme

Full k-space 8-coil data is acquired for the experiments. Points from the acquired data

are selectively chosen to form the testing and training data sets. A variable-density [66]

sampling scheme is chosen, as shown in Fig. 4.6. Such schemes reduce the achievable ac-

celeration factor, but also eliminate the need for separate training scans. It also reduces

the artifacts that could arise due to mis-registration. The “root Sum of Squares”(SoS)

image is assumed to be the gold standard image. The central k-space is densely sam-

pled (32 lines in our experiments) at each of the receiver coils. The corresponding SoS

reconstruction is the blurred unaliased image. The densely sampled lines are separately

undersampled to form the blurred, aliased coil images, which along with the correspond-

ing SoS image, form the training data set to the neural network. This data set establishes

the functional relation between the aliased images and the corresponding unaliased ver-

sion. The weights associated with the neural network topology are now determined. The

trained neural network is now fed with full k-space aliased coil images, to obtain the final

image reconstruction.

The neural network architecture used here is a single hidden layer feed-forward network

with radial basis functions. The input layer consists of 18 nodes, while the output layer is
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Figure 4.6: Variable density sampling scheme utilized for the study

made of a single node. The hidden layer has 98 nodes. The system that we aim to build

works in two phases : training phase and reconstruction phase, as shown in Figs. 4.7 and

4.8, respectively.

Features

The input layer of the neural network is fed with features extracted from one pixel of all

the aliased coil images at a time. The features used here are the spatial coordinates of

the pixel and its complex intensity from each of the coil images. Here, since we happen to

use 8-coil data, we have 8 complex coil images. At a fixed location, for all the 8 coils, we

obtain 8 complex numbers which are split into their real and imaginary parts (2×8 = 16).

The spatial co-ordinates ((x co-ordinate, y co-ordinate) = 2) for that location, are con-

catenated, making the length of the feature vector 18. It must be noted that the inclusion

of the spatial co-ordinates in the feature vector, facilitates the transformation to be spa-

tially varying. In the training phase, features are extracted from the images constructed

using only low frequencies. In this phase, for every feature vector, the corresponding

output also needs to be specified. At a given location, corresponding to the feature vector

assembled as explained above, the neural network output is the pixel intensity at the

corresponding location in the alias-free composite image. In the reconstruction phase,

features are extracted from images containing the entire range of frequencies. Unlike the
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Figure 4.7: Training phase of the proposed system. The inputs are pixel-wise aliased coil
image intensities as well as the pixel location, while the output is the corresponding pixel
intensity of the composite alias-free image. Images here contain only low frequencies.
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Figure 4.8: Reconstruction phase of the proposed system. The inputs are pixel-wise
aliased coil image intensities as well as the pixel location; The output is the estimate of the
desired image. The images contain both low and high frequencies uniformly undersampled.
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training phase, here, the output is estimated by the network. The outputs put together

from each and every location, form the reconstructed image.

Neural Network parameters

The activation functions used are all sigmoidal functions. The learning rate is chosen

such that the error between iterations reduces rapidly enough for quicker convergence,

but does not get trapped at local minima. Experimentally it was found that setting the

learning rate below 10−6 resulted in the error between iterations to reduce too slowly,

while setting the learning rate greater than 10−6 resulted in oscillatory behavior between

iterations. Hence, the learning rate was set to 10−6. The choice of the number of hidden

neurons decides how smoothly the target function can be modeled. In practical situations,

the appropriate number is chosen across several trials, where we start with a fixed number

greater than at least four times the length of the feature vector, as a rule of thumb. The

number is increased gradually and the corresponding training error is observed. The

training error hits a minimum at a point, and thereafter gradually increases. The number

of hidden neurons is clamped at the value where the training error is measured to be the

least. Here, it turns out to be 98. We assume convergence when the training error reaches

10−3.

4.4.4 Validation criterion

Generally errors in image reconstruction are quantified using error images, with indices

like mean square error and PSNR. However, it is also widely acknowledged that these

indices do not correlate well with the visual assessment of the images [71]. Hence, we

use a similarity index to quantify the closeness of the reconstructed image to the original

image, called “Structural SIMilarity” index (SSIM) [70]. This is similar to the evaluation

criterion utilized in [59], where human visual perception is considered in order to determine

the quality of the MR images.
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SSIM

The SSIM index penalizes loss in structural correlation, intensity and contrast. SSIM at

location (p, q) is given by, SSIM(p, q) = [l(p, q)]αc(p, q)]βs(p, q)]γ, where l, c and s reward

similarities in intensity, contrast and structure, respectively. Since all the three are given

the same weightage, α, β and γ are all chosen to be equal to 1. A small local neighbourhood

is chosen to determine the point-wise attributes. Here, l(p, q) = 2µ1µ2

µ1
2+µ2

2 , where µ1 and

µ2 are the average neighbourhood intensities in the two images being compared. The

contrast comparison function is given by, c(p, q) = 2σ1σ2

σ1
2+σ2

2 , where σ1 and σ2 are the

respective standard deviations around the compared pixels. Standard deviation σ is the

square root of variance, and is an unbiased estimate of the signal contrast. The structural

comparison function is given by, s(p, q) = σ12

σ1σ2
, which turns out to be the correlation

(inner product) between the structures being compared. Structure comparison is carried

out only after intensity subtraction and variance normalization.

This is a widely used full-reference image quality metric, given a reference image and

its distorted version. The SSIM score ranges from 0 to 1, where 0 represents the worst

and 1 stands for the best quality of reconstruction. The index is developed based on the

assumption that the structural information of the image is the most critical in determining

the perceived quality of the image. This metric is generally used for image/video quality

assessment. It is claimed by the authors to correlate well with subjective test results,

illustrated for a wide variety of images.

4.5 Data used and results

A typical instance of reconstruction of a point using an undersampled acquisition is shown

in Fig. 4.9. The artifacts in the reconstructed point depend on its position, and hence

this reconstruction operator is not spatially invariant. The proposed method is applied

to synthetic and real data sets. The standard “Shepp-Logan” phantom and its corrupted

versions form the synthetic data sets. The real data sets used are a structural brain data

set and a functional MR data set.
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(a) (b)

Figure 4.9: Reconstruction of a point with an undersampled acquisition using CRAUNN
(a) Direct reconstruction (b) Reconstruction using CRAUNN
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Figure 4.10: Shepp-Logan phantom with distinct regions labelled

4.5.1 Phantom data

The CRAUNN technique is applied to the standard “Shepp-Logan” phantom shown in

Fig. 4.10. There are nine distinct regions in the phantom, which are separately labelled.

Three separate cases are studied.

1. The standard phantom

2. Phantom corrupted with complex additive Gaussian noise (SNR = 10 dB)

3. Phantom with a fine grid-structure super-imposed.
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Table 4.1: Comparison of SSIM indices for distinct regions of the phantom, for image
reconstructions obtained using CRAUNN, GRAPPA and SENSE

Region CRAUNN GRAPPA SENSE
1 0.89 0.67 0.46
2 0.52 0.40 0.55
3 0.59 0.41 0.74
4 0.94 0.13 0.39
5 0.89 0.67 0.47
6 0.99 0.67 0.39
7 0.39 0.84 0.19
8 0.74 0.67 0.32
9 0.78 0.67 0.48

In all the 3 cases, the phantom is multiplied with the coil-sensitivity data (8-coil)

available on [2], in order to simulate parallel MR data. The size of the image matrix

is 256 × 256. The central 32 lines are densely sampled, while the remaining k-space is

sparsely sampled, depending on the down-sampling factor. All the reconstructions are

carried out for a downsampling factor of 4. The distinct structures in the reconstructed

phantom in Fig. 4.10 are separately assessed. Table 4.1 lists the SSIM indices obtained

for the reconstructions (case 1), using CRAUNN, as well as other existing techniques.

The comparison of the SSIM indices for the noisy-phantom (case 2) is shown in Table

4.2. A grid of varying thickness and intensities, spread out, was superimposed on the

phantom (case 3) to determine the abilities of the techniques to reproduce fine structures.

A comparison of the reconstructions for case 3, obtained using CRAUNN, GRAPPA and

SENSE is performed in Fig. 4.11 Table 4.4 lists the PSNR values achieved by the

different techniques. It can be seen that PSNR values of the CRAUNN and GRAPPA

reconstructions are comparable, while that of SENSE is lesser. However, when visually

assessed, it can be seen that the image reconstructed by CRAUNN is perceptually better.
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Table 4.2: Comparison of SSIM indices of distinct regions of the phantom, corrupted with
noise, for image reconstructions obtained using CRAUNN, GRAPPA and SENSE

Region CRAUNN GRAPPA SENSE
1 0.80 0.67 0.46
2 0.55 0.48 0.59
3 0.63 0.51 0.77
4 0.84 0.14 0.39
5 0.93 0.67 0.39
6 0.81 0.78 0.32
7 0.28 0.84 0.18
8 0.66 0.67 0.32
9 0.73 0.69 0.48

Table 4.3: Comparison of SSIM indices for distinct regions of the noisy phantom with
super-imposed grid, for images reconstructed using CRAUNN, GRAPPA and SENSE

Region CRAUNN GRAPPA SENSE
1 0.79 0.57 0.40
2 0.56 0.36 0.46
3 0.62 0.44 0.58
4 0.88 0.06 0.37
5 0.92 0.60 0.36
6 0.81 0.63 0.27
7 0.37 0.77 0.22
8 0.66 0.52 0.33
9 0.72 0.58 0.42

Table 4.4: Comparison of PSNR values of the images reconstructed by CRAUNN,
GRAPPA and SENSE

Phantom CRAUNN GRAPPA SENSE
Noise-less 26.6 27.3 14.8

Noisy 24.9 27.3 6.9
With Grid 25.2 25.1 15.3



4.5. Data used and results 85

(a) (b)

(c) (d)

Figure 4.11: Comparison of performance of different techniques on the Shepp-Logan phan-
tom super-imposed with a fine grid-like structure, for undersampling by a factor of 4. (a)
Original image (b) Image reconstructed using CRAUNN (c) Image reconstructed using
GRAPPA (d) Image reconstructed using SENSE [color scale: 0-255]

4.5.2 Real data

Structural brain data

The CRAUNN method is applied on real data sets of brain MR images. A real structural

brain data set (8-coil data) available on [2], is utilized. The data matrix is of size 256

× 256. The central 32 lines are densely sampled, while the remaining k-space is sparsely

sampled, depending on the down-sampling factor. Figure 4.13 displays the reconstructed

and the corresponding error images, for a downsampling factor of 4, for the structural

brain image shown in Fig. 4.12. The same sparsely sampled data is used for reconstruction

by the standard parallel imaging techniques, SENSE and GRAPPA. Figure 4.13 clearly

shows that the artifacts in error images from SENSE and GRAPPA reconstructions are
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Figure 4.12: Real data : Original image of the structural brain data used for the study
[0-255] (Source : [2])

greater than those obtained with the CRAUNN technique. CRAUNN achieves a gain

in PSNR of 10 dB over SENSE. The PSNR values obtained using GRAPPA and the

CRAUNN approach are almost comparable.

The performance of CRAUNN using a single neural network for the entire image, is

compared with that using four identical neural networks for the image (one NN for each

quarter of the image) in Figs. 4.14(a) and (b). It is observed that the performances are

comparable, with no clear winner. When a single NN is used for the entire image, the

number of input feature vectors is four times that in the approach where each NN is used

only for a quarter of the image, making the former approach slower. Utilizing 4 NNs in

place of 1 NN makes the process parallalizable and faster, but results in no improvement

in the quality of reconstruction.

Functional brain (fMR) data

fMRI data is obtained for experiments with “visual stimulus”. In the course of the

experiment, 3 two-dimensional T ∗
2 -weighted images, each with 64 scans, are acquired

using a gradient-echo FLASH sequence. The acquisition parameters are: TE/TR = 40

msec/80.5 msec, matrix size = 128× 64; slice thickness = 5-mm and 2-mm gap. The image
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(a) (d)

(b) (e)

(c) (f)

Figure 4.13: Comparison of performance of different techniques on a real brain data set for
undersampling by 4. Left Panel : Reconstructed images using (a) SENSE (b) GRAPPA
(c) CRAUNN (color scale : 0 to 255) Right Panel : Corresponding error images, for
reconstructions using (d) SENSE (e) GRAPPA (f) CRAUNN (color scale : 0 to 34)
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(a) (b)

Figure 4.14: Performance comparison of 1NN and 4NN models using error images : Error
image obtained using (a) CRAUNN - 1 NN (b) CRAUNN - 4 NN model [color scale : 0
to 34]

matrices are zero-filled to obtain images of size = 128 × 128, with a spatial resolution of

1.953 × 1.953 mm; The corresponding two-dimensional anatomical slices are also acquired

with a T1-weighted IR RARE sequence (TI = 900 msec; TE/TR = 3900 msec/40 msec,

matrix size = 512 × 512) in the same experimental session. In all the experiments, ON

and OFF stimuli are presented at a rate of 5.162 sec/sample. Each stimulation period had

four successive ON states followed by four OFF states. The stimulations are repeated for

eight cycles, thus resulting in an acquisition time of 5.5 min. The experiments are carried

out at different sessions with different subjects. The visual stimulation task comprised an

8-Hz alternating checkerboard pattern with a central fixation point projected on a LCD

system. The subjects are asked to fixate on the point during the stimulation. Images are

acquired at three axial levels of the brain at the visual cortex.

The error image for the splines-based reconstruction is compared with that of CRAUNN

method in Fig. 4.15. The PSNR value obtained using the CRAUNN method is about 10

dB greater than that obtained with the splines-approach.
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(a)

(b) (c)

Figure 4.15: Performance comparison of CRAUNN and the splines-based methods on a
real fMR data set using undersampling by a factor of 4. (a) Original image [0-255]. (b)
Error image obtained using CRAUNN method [0-50]. (c) Error image obtained using
splines method [0-100].

4.6 Discussion

The proposed method, CRAUNN, uses neural networks to determine the desired alias-

free image. The transformation required to reconstruct the alias-free composite image is

determined using images obtained with low frequency acquisitions. The idea of utilizing

low-frequency acquisitions to determine the image reconstruction operator and then using

it for acquisitions containing the entire range of k-space frequencies, is similar to the idea

reported by Jan Petr et al., in [47]. However, the reconstruction method based on splines

heavily relies on the localized nature of the PSF obtained using Cartesian undersampling

and also on the assumption of linear form for the transformation function. The technique
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reported in [47] determines the image reconstruction operator using a linear combination

of B-splines. In both methods, the explicit evaluation of coil sensitivities is not required.

However, Fig. 4.15 clearly illustrates that CRAUNN outperforms the splines method.

The CRAUNN method is compared with the standard methods and the performance

is found to be superior on the real and synthetic data sets analysed. The function that

processes the aliased coil images to yield the composite unaliased image, is estimated

with no assumptions of form or complexity. The only underlying assumption is that the

transformation that holds for images obtained using only low frequencies, should also hold

for images obtained using the entire range of k-space frequencies.

Besides, the fact that the network is solely trained by the same image, leads to fewer

artifacts than can occur if features from other images are learnt. The training phase needs

about hundred iterations to converge to an error of 1
100

th
of the maximum intensity of the

original image.

The results on the standard “Shepp-Logan” phantom, corrupted with noise and super-

imposed with a fine grid-like structure, show the superior performance of the CRAUNN

approach. A close look at the distinct regions in the phantom labelled in Fig. 4.10 and

the associated SSIM indices tabulated in Tables 4.1, 4.2 and 4.3, help us make some ob-

servations about the CRAUNN method in comparison with the existing methods. Across

the three cases, it is noted that the CRAUNN method as well as GRAPPA outperform

SENSE. It must be remarked that region number 7, which happens to be a tiny elliptical

region sandwiched between two ellipses is the most challenging for the CRAUNN method

as well as SENSE. It must be attributed to the fact that the two methods are image-

domain based. GRAPPA, the k-space domain based method performs remarkably well in

that region. The average SSIM for the noisy Shepp-Logan phantom using the proposed

method is 0.68, while those obtained using GRAPPA and SENSE are 0.6 and 0.42, re-

spectively. For the case of the phantom super-imposed with fine grid-like structure, the

average SSIM index obtained with CRAUNN is 0.7, while those for GRAPPA and SENSE

are 0.5 and 0.37, respectively. The PSNR values obtained (see Table 4.4) using the three

methods show that the CRAUNN method and GRAPPA perform comparably, while the
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performance of SENSE lags behind. GRAPPA is found to out-perform the other methods

for the case of noisy phantom.

From the error images shown in Fig. 4.13, we observe that the reconstruction obtained

using SENSE clearly preserves the structural details. However, the method loses out on

account of allowing bright aliases. The replication of larger structures stands out in the

reconstruction, as seen in the error image (Fig. 4.13(d)). GRAPPA performs comparably

well with the CRAUNN technique, as seen in Figs. 4.13(b) and (c). Figures 4.14(a)

and (b) illustrate that parallelizing the reconstruction does not lead to better results.

The comparison of artifacts in the error images shown in Fig. 4.15, illustrates that the

CRAUNN method outperforms the splines-based approach.
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4.7 Conclusion

We have proposed a neural network framework to reconstruct images for parallel magnetic

resonance imaging. Variable density data acquisition is carried out at all the receiver coils.

Low k-space frequencies (32 central k-space lines) are densely sampled while the rest of the

frequencies are sparsely sampled. The densely sampled central k-lines are used to obtain

the blurred unaliased image. The same lines are undersampled to obtain the corresponding

aliased coil images, which form the input training data set for the neural network. The

corresponding target used in training phase is the blurred unaliased composite image. The

weights needed to generate the unaliased composite image from the aliased coil images

are determined.

The trained neural network is fed with images obtained using regularly undersam-

pled full k-space data, in order to obtain the final image reconstruction. Thus, we do

not assume any specific form for the function that combines the aliased coil images.

The CRAUNN technique is applied on phantom and real MR data sets. “Shepp-Logan”

phantom corrupted with complex Gaussian noise, and super-imposed with a fine grid-like

structure is used to verify the credibility of the technique. Besides, the technique is ap-

plied to real MR data sets of the brain (both structural and functional). The results are

compared with those generated by the techniques like SENSE and GRAPPA. Performance

is evaluated using criteria like PSNR and structural similarity index.
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Chapter 5

CRAUNN for non-Cartesian parallel

MR imaging

Abstract

In rapid parallel MR imaging with non-Cartesian trajectories like spiral and radial, the

problem of image reconstruction is challenging since undersampling along non-Cartesian

trajectories results in aliasing which is not straight-forward to unalias. Here we propose

image reconstruction for data sampled along general non-Cartesian trajectories, utilizing

the neural network framework, called “Composite Reconstruction And Unaliasing using

Neural Networks” (CRAUNN), as discussed in the preceding chapter. Radial and spiral

trajectories on real and synthetic data, are utilized. The reconstruction errors depend

on the acceleration factor as well as the sampling trajectory. It is found that higher

acceleration factors can be obtained when radial trajectories are used. Comparisons against

the existing techniques are presented, and the proposed method has been found to result in

better-quality images compared to the existing techniques.

5.1 Non-Cartesian sampling trajectories

The simplest sampling trajectory is Cartesian, that leads to image reconstruction using

the well-known 2D FFT of the sampled points. However, this trajectory is not preferred

95
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in certain applications for its disadvantages such as sensitivity to motion/flow artifacts

and no choice in sampling density along the read-out direction. These disadvantages

are overcome by non-Cartesian trajectories like radial and spiral. Image reconstruction

with sparse non-Cartesian sampling has been the subject of study by the MR research

community [61, 69, 36].

5.1.1 Radial scan

This trajectory is shown in Fig. 5.1(a) and consists of a collection of spokes that are the

radii of an imaginary circle in k-space. The PSF obtained for undersampled radial scans,

shown in Fig. 5.2(a) illustrates that the center of the image remains alias-free. Hence

high under-sampling factors can be achieved since the aliasing artifacts appear as radial

streaks away from the center of the image. The disadvantage faced with this trajectory is

that during actual acquisitions, the various radial lines may not intersect exactly at the

origin of the k-space leading to artifacts like blurring and ghosting.

5.1.2 Spiral scan

Spiral trajectory is shown in Fig. 5.1(b), and in this acquisition the points are sam-

pled along a spiral centered at the origin of the k-space. Most of the spiral imaging se-

quences realize Archimedean spirals given by k(t) = Aθ(t) expjθ(t), where θ(t) represents

a monotonically increasing function and k(t) = kx(t) + jky(t). The distance between two

successive revolutions has to be smaller than 1/FOV to avoid aliasing. Archimedean

spirals have the property of constant distance between two successive arms, which helps

in designing the optimal spiral trajectory for a given value of FOV . The function θ(t)

determines the spacing between the samples along the spiral. The choice of θ(t) is critical

since care must be taken to ensure that the gradient waveforms comply with hardware

limitations such as gradient amplitude and slew rate. The optimal choice of function has

been shown to be θ(t) = t√
(α+(1−α)t)

[6, 10], where α is used to tune the spiral between

constant angular speed and constant orbit speed. The PSF obtained for undersampled
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(a) (b)

Figure 5.1: Non-Cartesian trajectories considered here : (a) Radial (b) Spiral

(a) (b)

Figure 5.2: Point Spread Function (PSF) obtained on undersampling : (a) Radial trajec-
tory. (b) Spiral trajectory.

spiral scans is shown in Fig. 5.2(b). The disadvantage of using spiral scan is that it

is too sensitive to hardware imperfections. Besides, off-resonance effects, which occur

due to signal contributions with resonant frequencies other than the central water proton

resonance frequency, lead to blurring.

Apart from these, rosette sampling [45] is also used in fMR imaging for higher temporal

resolution especially in applications where data points are acquired from multiple slices

simultaneously. It is also found useful in NMR applications such as resolving different

spectral components corresponding to various chemicals. Random trajectories have also
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been utilized in order to overcome problems caused by coherent accumulation of signal

for off-resonance spins.

5.2 Image reconstruction with fully sampled data

This section deals with image reconstruction using data sampled along non-Cartesian tra-

jectories. The issues discussed here are purely those that arise from the non-Cartesian

nature of the sampling trajectory. The sampled points need to be “regridded” along

Cartesian grids in order to use FFT for image reconstruction since the data lie on an

arbitrary sampling grid that is not amenable to FFT. The problem is further complicated

because the density of the samples is not uniform all along the k-space. The data ac-

quisition needs to satisfy Nyquist requirements at every location. The higher density of

samples in the low k-space needs to be compensated for. This process is called “density

compensation”. Besides, the non-rectangular region of support of the sampled k-space

leads to abrupt truncations at the edges, and needs to be corrected. This process is called

“apodization”.

5.2.1 Regridding

Regridding of non-Cartesian data to Cartesian grids requires reliable interpolation tools.

The choice of the convolution kernel must be made very carefully. Kernels like sinc,

Gaussian and their variants have been experimented with. A technique called “Block

Uniform ReSampling” (BURS) [14] has been reported, which utilizes the interpolation

matrix derived from the trajectory and grid positions using the sinc function. The pseudo

inverse of the interpolation matrix multiplied with the given k-space data at arbitrary

locations results in the Cartesian regridding of the given data. Jackson et al. [25] proposed

a Kaiser-Bessel convolution window for regridding, which has been shown to be optimal

in minimizing aliasing as well as leakage.
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5.2.2 Density compensation

In order to compensate for variable sampling density, it is required that the data samples

be weighted by a suitable density compensation function [20]. One of the prevalent

methods utilizes Vornoi diagram [55] for determining the neighborhood associated with

each sampled point. Jackson [25] has proposed the convolution of the sampling grid with

the Kaiser-Bessel function. Pipe [49] proposed an iterative method to compute the density

compensation function, initializing with the function proposed by Jackson. However,

research is still on to determine the best possible method for density compensation to get

rid of blurring due to over-sampling of low k-space.

5.2.3 Apodization

This is carried out to get rid of the Gibbs ringing that manifests in the reconstructed

images due to the abrupt truncations at the boundaries of the non-rectangular region of

support of the sampled k-space. The k-space samples are multiplied by a suitable filter so

that the transition at the edges of the region of support is smooth. This process however

introduces blurring. The user needs to trade-off spatial resolution against truncation

artifacts.

5.3 Reconstruction with undersampled acquisitions

This section deals with the image reconstruction schemes that have been in existence,

for data sampled along non-Cartesian trajectories, below Nyquist density requirements.

Apart from the issues mentioned in the preceding section, the additional issue that needs

to be addressed in such acquisitions is that of aliasing. It is well-known that the aliasing

arising out of undersampling data along non-Cartesian trajectories is hard to characterize

and cannot be put into a closed mathematical expression. Unlike Cartesian regular un-

dersampling, the aliasing pattern is not a simple replication. Also the varying density of

samples across the k-space needs to be addressed. As shall be seen in the section ahead,
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most of the existing methods can be described as attempts to adapt the existing solutions

for Cartesian trajectories to suit non-Cartesian trajectories.

The linear-algebra framework used in [51] was extended to non-Cartesian trajectories

by proposing an iterative solution using conjugate-gradient method “CGSENSE” [50].

Although this solution is widely used, it faces the problem of regularization in the event

of poor SNR, leading to numerical instabilities. Many regularization techniques have been

reported [28] to counter the problem of numerical instability, the most popular of them

being Tikhonov regularization scheme [41]. Another strategy for image reconstruction,

called POCSENSE has been proposed [60], in the framework of “Projection On Convex

Sets” (POCS). The advantage of this method lies in its capability to incorporate prior

knowledge into the solution. This solution is also iterative, and unlike CGSENSE, poses

the problem in a set-theoretic rather than linear-algebraic framework, making it possible

to incorporate non-linear constraints. Both of the above-mentioned methods faced the

drawback of needing a separate scan for estimating the coil sensitivities. This drawback

was overcome in many later reported works that over-sampled the low k-space, to obtain

alias-free low-frequency images. The densely sampled low k-space was used to estimate

the coil sensitivities, thus eliminating the need for a separate calibration scan.

Hybrid methods such as “Sensitivity Profiles from an Array of Coils for Encoding

and Reconstruction In Parallel” (SPACE-RIP) [34] that work both in image and k-space

domains have also been explored. This method too requires estimation of coil sensitivities,

which are used to partially encode the image. Reduced acquisition of k-space is carried

out and is shown to be adequate enough for image reconstruction.

In works such as [74, 52], the observation that trajectories such as radial/spiral inher-

ently over-sampled the k-space center was exploited. They reported attempts to estimate

coil sensitivities, without modifying the sampling trajectories. They utilized acquisitions

within a certain region, where the sampling density would be sufficient enough to satisfy

Nyquist requirements. However, the question remained on the optimality of the choice

of the cut-off k-radius, within which the samples could be assumed to be free of aliasing
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artifacts. In [52], the authors obtain the optimal radius for determining the coil sensitiv-

ities by examining the PSF visually. They declare that radius to be optimal where the

trade-off between blurring and aliasing artifacts is “well-balanced”. However, the method

only depends on visual inspection and could be subjective. In [74], the cut-off k-space ra-

dius is determined by comparison with Nyquist density. The k-space radius, within which

the samples are acquired beyond the critical requirement of Nyquist density, is chosen

as the cut-off. Samples well within this radius are used to determine coil sensitivities.

However, this work acknowledges the fact that for greater acceleration factors (beyond

4), one might have to modify trajectories.

In most of the k-space based techniques, a combination of the acquired points in the

vicinity of a missing sample is used to estimate the unknown value. The techniques mainly

differ in the method adopted to generate the combining coefficients. The well-known

technique “GeneRalized Auto-calibrating Partially Parallel Acquisitions” (GRAPPA) [12],

first proposed for uniformly-spaced acquisitions along Cartesian trajectories, was adapted

to suit non-Cartesian trajectories. Extension to radial sampling was proposed by laying

out the acquired radial data along a pseudo-Cartesian plane [11]. The same idea was

adapted for spiral acquisitions too [16]. However, the drawback of this procedure was

that it required a complete separate scan to determine the combining weights. This

drawback was overcome in works that reported determination of the combining weights

using densely sampled low k-space [17] with dual-density spirals. In [18], interpolation

kernels are separately generated for each sector that the k-space is divided into. Numerous

variations of GRAPPA like PARS [75] and “Direct SENSE” [63] differ in the criterion for

the selection of the best neighbourhood. In methods like “Parallel image reconstruction

Based On Successive Convolution Operations” (BOSCO) [22], convolution kernels are

devised using low k-space, which are then used to generate the missing points in the

high k-space. In k-space based techniques, the estimation of coil sensitivities is not very

critical, and also they have the advantage that the processing takes place in the same

domain as that of data acquisition. However, these methods are computationally more

intensive than image-domain methods.
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In our work, we employ CRAUNN in the context of non-Cartesian parallel imaging.

The proposed technique has been applied to radial and spiral acquisitions of real and

synthetic data. Acceleration factors of up to 6 and 4, have been achieved in radial and

spiral cases, respectively.

5.4 Proposed method: CRAUNN

5.4.1 PSF observations

The proposed method is based on the observation that for a fixed undersampling factor the

nature of the PSF (ie, aliasing) remains the same, irrespective of whether the acquisition

contains only low frequencies or entire range of frequencies. It is well-known in the case

of Cartesian sampling, that for a fixed undersampling factor the PSF obtained for a

low-frequency acquisition contains localized peaks at precisely the same points as the

PSF for an acquisition containing both low and high frequencies. In the case of low-

frequency acquisition, the peaks get smeared, indicating blurring. The same observations

can be made in the spiral and radial cases too, from Figs. 5.3(a-d), which depict the

magnitude functions of PSFs for spiral and radial acquisitions for the undersampling

factor of 2. Aliases are contributed in proportion to the brightness of the regions seen

in the PSFs. Here, the PSFs are not localized unlike the Cartesian case and hence

unaliasing is not straightforward. In the spiral case, accelerated scans utilize lesser number

of spiral interleaves. As the spacing between two consecutive interleaves increases, the

concentric circles seen in the PSF get closer leading to greater aliasing. With radial

trajectory, accelerated scans mean utilization of lesser number of radial projections. As

the spacing between two consecutive radial projections increases, the streaking artifacts

increase. Radial PSF offers an inherent advantage over spiral PSF since the aliasing

artifacts occur away from the center.
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(a) (b)

(c) (d)

Figure 5.3: Illustration that the nature of aliasing does not depend on the extent of
frequency content in the acquisition. PSF obtained on undersampling spiral trajectory
for acquisitions containing : (a) Low frequencies only. (b) Both low and high frequencies.
PSF obtained on undersampling radial trajectory for acquisitions containing : (c) Low
frequencies only. (d) Both low and high frequencies.

5.4.2 Neural network-based reconstruction

As discussed in the previous chapter, in the proposed CRAUNN approach, the image

reconstruction operator is assumed to be a function of the aliased coil images, processed

pixel-wise. The reconstruction function, F , to estimate the composite alias-free image Ŝ,

using the L aliased coil images, (SA
l ) is given as:

Ŝ(x, y) = F (
SA

l (x, y)
)

where l = 1, 2, · · · , L (5.1)
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The function is allowed to be arbitrary in form and complexity, and is determined using

neural networks. Thus, both the unaliasing and combining of coil images to generate

the composite image are accomplished together by the neural network, without explicitly

estimating the coil sensitivity.

In the training phase, the system takes the aliased coil images as input, and learns the

transformation required to output the corresponding true alias-free image. In this phase,

only the low k-space data is used. At the end of this phase, the interconnecting weights

among the nodes in the various layers are frozen, and the system is said to be configured

for the image reconstruction.

In the reconstruction phase, the transformation learnt in the training phase is used.

Here, the images are constructed using both low and high frequencies, uniformly under-

sampled. Aliased coil images are input to the configured system. The output of the

system is the estimate of the desired alias-free image.

5.4.3 Images for learning and reconstruction

Alias-free images containing only low frequencies

It is well-known that alias-free acquisitions can be obtained by considering k-samples

within low k-space where the sampling density satisfies Nyquist requirements. While

Cartesian sampling schemes are modified to variable-density trajectories, non-Cartesian

sampling trajectories may not need to be modified since they inherently over-sample low

k-space. In the case of spiral sampling, variable density spirals are used, such that a

central disk of radius kmax

10
is densely sampled. This densely sampled disk is used to

obtain alias-free acquisitions. However, in radial sampling, variable density sampling is

not possible. Hence a separate alias-free low-frequency acquisition scan is required in

order to obtain blurred alias-free coil images. The alias-free coil images are combined to

obtain the composite alias-free blurred version of the true image. Here, the composite

image is taken as the root-sum-of-squares combination.
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Aliased coil images containing only low frequencies

During training, the aliased coil images containing only low frequencies form the input to

the system, while the corresponding alias-free image obtained as explained in the previous

section forms the target of the system. We choose to retain only those low k-space samples

that affect under-sampling by the desired acceleration factor, thereby generating aliased

coil images with low frequencies alone. Now we have at hand, aliased coil images and

the corresponding true image containing the same set of low k-space frequencies, which

is what we require in the training phase.

Aliased coil images containing both low and high frequencies

The aliased coil images containing both low and high frequencies are obtained by uni-

formly undersampling the k-space. The appropriate samples from the densely sampled

low k-space are ignored in order to affect aliasing by the required acceleration factor.

Features from these aliased coil images are used as inputs to the configured neural net-

work in the reconstruction phase. The output of the neural network is the estimate of the

corresponding alias-free image.

5.5 Results

All simulations are carried out in MATLAB. CRAUNN is applied to spiral and radial

acquisitions. For all the image reconstructions, regridding on a 2X grid is performed as

in [25] using a Kaiser-Bessel window of width 2.5. Errors in image reconstruction are

quantified using error images as well as by comparing scan lines that run through the

images. Besides, a full-reference image metric called ‘Structural SIMilarity’ (SSIM) index

[76] is used to assess the quality of reconstruction, as in the preceding chapter. The scale

of the SSIM indices range from 0 to 1, where 0 implies very poor similarity to the original

image, while 1 implies the best similarity to the original image. SSIM is widely used by

the image/video processing community in order to evaluate degradations in image/video
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reconstruction, based on structural similarities with the original. This is similar to the

evaluation criterion utilized in [59], where human visual system is considered in order to

determine the quality of the MR images.

5.5.1 Spiral case

Phantom data is obtained using a 8-channel head coil and a gradient echo spiral pulse

sequence (16 interleaves, 3096 samples per interleaf) on a GE 1.5T Excite scanner. The

spiral trajectory desired is such that the lower k-space up to kmax

10
is densely sampled,

while among higher frequencies fewer interleaves are used. After density compensation

and regridding, all reconstructed images were cropped to a 256 × 256 grid. For accelerated

scans, the relevant spiral interleaves are set to zero. The well-known CGSENSE is also

used to reconstruct the same data. The obtained reconstruction and error images for both

the methods are shown in Fig. 5.4. CRAUNN is also applied on brain data available on

[2], shown in Fig. 5.5. This is spirally re-sampled using 24 interleaves, with 4015 points

in each interleaf. After density compensation and regridding, all reconstructed images are

cropped to a 256 × 256 grid. For comparison, reconstruction with undersampled data

(x4) is obtained using both CRAUNN and CGSENSE methods and are shown in Fig. 5.6.

A standard phantom used in non-Cartesian MR studies is also employed to assess

the performance of the CRAUNN method. The reconstruction parameters remained the

same as in the preceding data set. The results obtained and the comparison with the

performance of CGSENSE are shown in Fig. 5.7. The performance metrics used, namely

SSIM and RMSE, are tabulated in Table 5.1.

5.5.2 Radial case

For the radial case, a synthetic phantom is created (180 projections, 128 points). The

phantom is multiplied with the 8-coil complex sensitivity data available on [2], and trans-

formed to k-space in order to simulate 8-channel parallel MR data. Complex noise is

added to the obtained k-space in order to simulate conditions of real acquisition to result
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Performance comparison on a real phantom data set for spiral undersampling
by 4. (a) True image (16 spirals) [0-255]. (b) Direct reconstruction of undersampled data
[0-255]. (c) Reconstruction with CRAUNN [0-255]. (d) Corresponding error image [0-60].
(e) Reconstruction using CGSENSE [0-255]. (f) Corresponding error image [0-51].
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Figure 5.5: Real data : Original image of the brain data used for the study. (Source : [2])

Table 5.1: Performance comparison of CGSENSE and CRAUNN on spirally-sampled
images.

SSIM index RMS error
Spirally undersampled Image CRAUNN CGSENSE CRAUNN CGSENSE
GE phantom (Fig. 5.4(a)) 0.81 0.76 6.1 8.1

Brain (Fig. 5.5) 0.85 0.52 12.3 21.7
Spiral phantom (Fig. 5.7(a)) 0.82 0.74 14.9 18.1

in SNR of 10 dB. Unlike the previous cases, a pilot scan with unaccelerated acquisition

within a certain k-space radius is required. For the simulations carried out, it is assumed

that all the samples along all the projections till the frequency kmax

10
are available. These

low frequency acquisitions are used to train the neural network. For the actual recon-

struction, undersampling is achieved by discarding projections suitably, determined by the

undersampling factor. After density compensation and regridding, all the reconstructed

images are cropped to a 128 × 128 grid. The reconstructed images obtained using both

CRAUNN and CGSENSE are shown in Fig. 5.8, along with the error images.

Besides, real brain data (8-channel) found on the web-site [2] (shown in Fig. 5.5)

is used, by radially re-sampling (180 projections, 385 points) in k-space. After density

compensation and regridding, all the reconstructed images are cropped to a 256 × 256
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(a) (b)

(c) (d)

Figure 5.6: Performance comparison of CRAUNN with CGSENSE on real brain data
shown in Fig. 5.5 for spiral undersampling by 4. (a) Reconstruction with CRAUNN [0-
255]. (b) Corresponding error image [0-25.5]. (c) Reconstruction using CGSENSE [0-255].
(d) Corresponding error image [0-46].

grid. For comparison, reconstruction using undersampled data (x6) is performed using

both CRAUNN and CGSENSE. The reconstructions obtained are shown in Fig. 5.9. The

performance metrics evaluated, namely, SSIM and RMSE are tabulated in Table 5.2.

5.6 Discussion

The proposed method makes no assumptions about the nature of the sampling trajectory

and hence can be generalized to any arbitrary trajectory. Also, the function that processes

the aliased coil images to yield the alias-free true image, is estimated with no assumptions

of form or complexity. The only underlying assumption is that the transformation that

holds for acquisitions containing low frequencies alone also hold good for acquisitions that
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(a)

(b) (c)

(d) (e)

Figure 5.7: Performance comparison of CRAUNN and CGSENSE on a simulated data
set for spiral undersampling by 4. (a) Original image [0-255]. (b) Image reconstructed
by CRAUNN [0-255]. (c) Corresponding error image [0-92]. (d) Reconstruction using
CGSENSE [0-255]. (e) Corresponding error image [0-92].
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Comparison of performance of CRAUNN with CGSENSE on a simulated
phantom using radial undersampling by 6. (a) Simulated phantom reconstructed using
180 radials [0-255]. (b) Direct reconstruction using data undersampled by 6 [0-255]. (c)
Image reconstructed with CRAUNN [0-255]. (d) Corresponding error image [0-50]. (e)
Image reconstructed using CGSENSE [0-255]. (f) Corresponding error image [0-55].
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(a) (b)

(c) (d)

Figure 5.9: Performance comparison of CRAUNN versus CGSENSE on brain data shown
in Fig. 5.5 using radial undersampling by 6. (a) Image reconstructed using CRAUNN
[0-255]. (b) Corresponding error image [0-38]. (c) Image reconstructed using CGSENSE
[0-255]. (d) Corresponding error image [0-46].

contain the entire range of frequencies, as seen from the observations made using the PSF

images. The fact that the network is solely trained by the same image, leads to fewer

artifacts than could have occurred if features from other images were also learnt. Here

the explicit evaluation of coil sensitivities is not required, which is a great advantage,

compared to existing methods like CGSENSE.

Since spiral and radial trajectories inherently over-sample the central k-space, the

direct reconstruction without any intermediate processing of the sparsely acquired data

also preserves the broader details of the image. However, the differences in reconstruction

appear more prominently in the finer details. Comparison of the profile lines for the

reconstructed images are shown in Fig. 5.10. Fine image details are zoomed into, and
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Table 5.2: Comparison of performance of CGSENSE and CRAUNN, on radially-sampled
images

SSIM index RMS error
Image CRAUNN CGSENSE CRAUNN CGSENSE

Brain (Fig. 5.5) 0.83 0.72 6.1 9.5
Radial phantom (Fig. 5.8) 0.92 0.66 6.1 8.8
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(a) (b)

Figure 5.10: Evaluation of the effectiveness of CRAUNN by comparison of scan lines
through the original and the reconstructed images. (a)Spiral sampling (undersampled by
4) for the data used in Fig. 5.4. (b) Radial sampling (undersampled by 6) for the data
used in Fig. 5.8.

compared in Figs. 5.11 and 5.12.

In the results obtained for the spirally re-sampled brain image, we compare the recon-

structions obtained using the proposed method and CGSENSE. The error images clearly

show the residual aliasing in the image obtained using CGSENSE, which is not seen in the

image obtained by CRAUNN. In the case of radial sampling, greater acceleration factors

are possible since the nature of aliasing leads to artifacts away from the center of the

FOV. Most of the artifacts encountered here are mainly the streaking artifacts towards

the image corners.

The SSIM indices for the phantom image reconstructed using CGSENSE and CRAUNN

are compared in Fig. 5.13. It can be seen that the proposed method results in greater

similarity to the reference image, as the SSIM indices show greater brightness than the
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(a)

(b) (c) (d)

Figure 5.11: Comparison of details in the reconstructed images using the data shown in
Fig. 5.4. (a) Original phantom image. The detail being observed is a comb-like structure
marked by a rectangle (spiral data used is undersampled by 4). (b) Comb in the original
image. (c) Comb in the direct reconstruction. (d) Comb in the reconstruction using
CRAUNN.

one obtained using CGSENSE.

The average SSIM index for reconstructions using CRAUNN with spirally and radially

undersampled data, are comparable at 0.83 and 0.87, respectively. The same measure for

reconstructions using CGSENSE are 0.67 and 0.69, respectively. The average RMSE for

reconstructions using CRAUNN with spirally and radially undersampled data, are 11.1

and 6.1, respectively. The same measure for reconstructions using CGSENSE are 16 and

9.18, respectively. Both the performance measures indicate the superiority of CRAUNN

over CGSENSE.

In the proposed method, variable density sampling is utilized, where the low k-space

is densely sampled and the high k-space is sparsely sampled. Dense sampling of low
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(a)

(b) (c) (d)

Figure 5.12: Comparison of details in the reconstructed images of a synthetic phantom.
(a) Original phantom image. The detail being observed is marked by a rectangle (radial
data used is undersampled by 6). (b) Detail in the original image. (c) Detail in the direct
reconstruction. (d) Detail in the reconstruction using CRAUNN.

k-space leads to alias-free images required for the training phase of the system. It is

necessary to check if the disk in the k-space that is densely sampled can be reduced in

size, so as to affect more savings in time. An experiment was carried out where the low

k-space area that is densely sampled, is reduced to half the size. Fig. 5.14 shows that

the resulting images, in this case, are blurred. This is because, using very low frequency

acquisitions for training the neural network, teaches the network to yield smoothened

images. The fine features in the image do not get registered with the network, thus

leading to blurring artifacts in the reconstructed image. The neural network topology,

learning parameters and feature vectors used, have been the same all through, for the

different sampling trajectories used. Since the number of feature vectors is equal to the

number of pixels in the image, each feature vector being independent of all others, the
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(a) (b)

Figure 5.13: Comparison of SSIM indices for reconstruction of the phantom shown in Fig.
5.7 using (a) CRAUNN [0-1] (b) CGSENSE [0-1]

(a) (b)

Figure 5.14: Reconstruction using reduced low k-space acquisition for training (Spiral data
used in Fig. 5.4 undersampled by 4). (a) Reconstructed image [0-255]. (b) Corresponding
error image [0-70].
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Figure 5.15: Typical plot of training error (along Y -axis) vs. number of iterations (along
X-axis), observed for different acceleration factors.

image was cut into four equal quarters. Four identical neural networks were used, one for

each of the quarters, whose input vectors were now (1/4)th of the total number of feature

vectors. This approach results in faster processing, parallelizing the process. It must be

noted however, that parallelizing the problem does not lead to results different from the

situation when only one NN is used in place of 4.

As in the Cartesian case, here too, it is hard to predict the nature of artifacts that might

appear in the reconstructed images. The training phase needs about hundred iterations

to converge to an error of (1/100)th of the maximum intensity. For larger acceleration

factors, the reconstruction errors are larger. One of the reasons is that the training error

itself saturates at a higher value for larger acceleration factors, as shown in the plots in

Fig.5.15. The plot shows that the training error at acceleration factor 2 saturates at a

much lower value than that at acceleration factor 4.

5.7 Conclusions

We have proposed a neural network framework to reconstruct images for non-Cartesian

parallel magnetic resonance imaging. Here, the observations about the nature of artifacts

being similar irrespective of whether the acquisition contains low frequencies alone, or

include higher frequencies too, is exploited. Images obtained using low k-space frequencies
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are used to learn the model needed for image reconstructions using the entire range of k-

space frequencies. The proposed method is demonstrated to work well for spiral and radial

trajectories. The proposed method can be applied to arbitrary trajectories in general. No

assumptions are made about the transformation that is sought. Acceleration factors up

to 6 are achieved with radial trajectories, while spiral trajectories result in acceleration

factor up to 4.
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Chapter 6

Conclusion

The focus of this thesis is to obtain high-quality MR images using reduced data, technically

called “Rapid MR Imaging”. The term “rapid” is used because acquiring less volume of

data results in faster scans. Rapid MR imaging is employed to study the dynamics of

organs. Such studies require a time-series of images to be acquired with adequate spatial

and temporal resolutions. In order to achieve this, strategies are proposed for image

reconstruction with reduced data, in the context of conventional as well as parallel MR

scanners. The factor by which data acquisition can be reduced, without compromising the

image quality is called “acceleration factor”. One would look for techniques that result

in higher acceleration factors.

Reduced data acquisition in conventional (sequential) MR scanners, where a single

homogeneous receiver coil is used for data acquisition, can be achieved either by acquir-

ing only certain k-space regions using suitable data truncation windows or by regularly

undersampling the entire data in k-space. In chapter 2, the former approach is explored,

where the issues involved are selection of the optimal sampling region in k-space followed

by estimation of unacquired samples. A novel star-shaped truncation window is proposed

to increase the achievable acceleration factor. The proposed window monotonically cuts

down the number of low energy k-space samples acquired. The truncation window sam-

ples data within a star-shaped region centered around the origin in the ky−kz plane. The

120
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missing values are extrapolated using generalized series modeling-based method. The pro-

posed method is applied to several real and synthetic data sets. The superior performance

of the proposed method is illustrated using the standard measures of error images and

uptake curve comparisons. Average values of slope error in estimating the enhancement

curve are obtained over 5 real data sets of breast and abdomen images, for an acceleration

factor of 8. The proposed method results in a slope error of 5%, while the values obtained

using rectangular and elliptical windows are 12% and 10%, respectively.

In dynamic imaging methods, where regular undersampling is used, aliasing needs to

be corrected, to obtain good-quality images. The technique to undo aliasing needs to

be chosen with care to ensure that no residual aliasing remains. k-t BLAST , a popular

method used in cardiac and functional brain imaging, is investigated and improvements

are proposed in chapter 3. k-t BLAST suffers from drawbacks such as separate training

scan, blurred training estimates and aliased phase maps. To overcome these drawbacks,

the proposed improved k-t BLAST incorporates variable-density sampling scheme, phase

information from the training map and utilization of generalized-series extrapolated train-

ing map. The advantage of using a variable density sampling scheme is that the training

map is obtained from the actual acquisition instead of a separate pilot scan. Besides,

phase information from the training map is used, in place of phase from the aliased map;

generalized series extrapolated training map is used instead of the zero-padded training

map, leading to better estimation of the unacquired values. The existing technique and

the proposed variations are applied on real fMRI data volumes. Improvement in PSNR

of activation maps of up to 10 dB is observed. Besides, RMSE reduction of 10% is ob-

tained over the entire time series of fMRI images. The peak improvement of the proposed

method over k-t BLAST is 35%, averaged over 5 data sets.

Another way to achieve rapid imaging is to use parallel MR scanners, where mul-

tiple receiver coils are used to acquire data. Parallel MR scanners achieve better SNR

and greater acceleration factor. Reduced data acquisition is accomplished using regular

undersampling, which introduces aliasing in images. The existing image reconstruction

techniques in parallel MR imaging mainly differ in their approach to unaliasing, which
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could be carried out either in the image domain or k-space domain or both. Image recon-

struction techniques also vary with the sampling trajectory utilized for data acquisition.

Although Cartesian trajectories are the simplest to handle, non-Cartesian trajectories

such as radial and spiral, are being explored for their inherent advantages such as robust-

ness to motion and relatively denser sampling of the high-energy low k-space.

Most techniques in parallel MR imaging utilize the knowledge of coil sensitivities

along with assumptions of image reconstruction functions. In chapter 4, a new technique

(CRAUNN) is proposed that neither needs to estimate coil sensitivities nor makes any

assumptions on the image reconstruction function. The proposed Cartesian parallel imag-

ing is a novel approach based on the observation that the aliasing patterns remain the

same irrespective of whether the k-space acquisition consists of only low frequencies or

the entire range of k-space frequencies.

Data acquisition follows a variable-density sampling scheme, where low k-space fre-

quencies are densely sampled, while the rest of the k-space is sparsely sampled. The

blurred, unaliased images obtained using the densely sampled low k-space data are used

to train the neural network. Image reconstruction is carried out by feeding the aliased

images, obtained using the regularly undersampled k-space containing the entire range of

k-space frequencies, to the trained network. The proposed approach has been applied to

the Shepp-Logan phantom as well as real brain MRI data sets. A visual error measure for

image quality estimation in compression literature, called SSIM (Structural SIMilarity)

index is employed. This measure is not used for the works discussed in the preceding chap-

ters, because they deal with a sequence of images. The assessment of the reconstructed

time series is carried out using measures relevant to the given context.

The average SSIM for the noisy Shepp-Logan phantom (SNR = 10 dB) using CRAUNN

is 0.68, while those obtained using GRAPPA and SENSE are 0.6 and 0.42, respectively.

For the case of the phantom superimposed with fine grid-like structure, the average SSIM

index obtained with CRAUNN is 0.7, while those for GRAPPA and SENSE are 0.5 and

0.37, respectively.

Image reconstruction is more challenging with reduced data acquired using non-Cartesian
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trajectories since aliasing introduced is not localized. A popular technique for non-

Cartesian parallel imaging, CGSENSE, suffers from drawbacks like sensitivity to noise

and requirement of good coil estimates, while radial/spiral GRAPPA requires complete

identical scans to obtain reconstruction kernels for specific trajectories. In chapter 5, the

proposed CRAUNN method has been shown to work for general non-Cartesian acquisi-

tions such as spiral and radial too. In addition, the proposed method does not require

coil estimates, or trajectory-specific customized reconstruction kernels.

Experiments are performed using radial and spiral trajectories on real and synthetic

data, and the results are compared with those of CGSENSE. Comparison of error im-

ages shows that the proposed method has lesser residual aliasing than CGSENSE. The

average SSIM index for reconstructions using CRAUNN with spirally and radially un-

dersampled data, are comparable at 0.83 and 0.87, respectively. The same measure for

reconstructions using CGSENSE are 0.67 and 0.69, respectively. The average RMSE for

reconstructions using CRAUNN with spirally and radially undersampled data, are 11.1

and 6.1, respectively. The same measure for reconstructions using CGSENSE are 16 and

9.2, respectively.
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B0 : Homogeneous magnetic field

B1 : RF magnetic field

M : Induced magnetization vector
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h : Planck’s constant

γ : Gyromagnetic constant
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F : Function estimated by neural network to combine aliased coil images to gen-

erate the alias-free composite image

U : Feature vector input to the neural network

w : Connection weights between input and hidden layers

v : Connection weights between hidden and output layer

fa : Sigmoidal activation function

T : Obtained output of the neural network

T̂ : Target output of the neural network

E : Training error of the neural network
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BURS : Block Uniform ReSampling
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ktB-R : kt-Blast with RIGR-Extrapolated Training Map
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RMSE : Root Mean Square Error
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SMASH : Simultaneous Acquisition of Spatial Harmonics

SNR : Signal to Noise Ratio

SPM : Statistical Parametric Mapping

SoS : Sum of Squares

SS : Star Shaped window
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