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.....The understanding of the enormity of the universe triggers the real-

ization of the insignificance of my existence. In the vast expanse of the cre-

ation around me, my individual achievements, my aspirations, my knowl-

edge, my ego and my assets bear no consequence. Yet, I must not give up

my endeavor, in making an infinitesimal contribution to knowledge in this

world. A world where nothing really changes, only our understanding of

it grows in meaningful increments which, at a microscopic level, are built

out of such infinitesimal contributions.....
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Abstract

Data acquisition from multiple analog channels is one of the important func-

tions in many embedded devices used in avionics, medical electronics, con-

sumer appliances, automotive and industrial control, robotics and space ap-

plications. It is desirable to engineer these systems with the objectives of

compactness, less power consumption, lower heat dissipation and reduced cost.

The goal of this research is to suggest designs that exploit a priori knowledge

of the input signals in order to achieve these objectives. In particular, sparsity

is a commonly observed property in signals that offers opportunity to perform

sub-Nyquist sampling, thereby reducing the number of analogue-to-digital con-

versions. Compressed sensing provides a mechanism for sub-sampling and

reconstruction of sparse signals.

In this research, new architectures are proposed for the real-time, compressed

acquisition of streaming signals, in which sampling is performed on a collec-

tion of signals in a multiplexed fashion. It is demonstrated that by doing

so, it is possible to efficiently utilize all the available sampling cycles of the

analogue-to-digital converters (ADCs), facilitating the simultaneous acquisi-

tion of multiple signals using fewer ADCs. It is shown how the proposed

architecture can be realized using commonly available electronic components.

Simulations on signals having Fourier sparsity exhibit that a set of signals is

fairly well reconstructed even when the signals are sampled at sub-Nyquist

rates by lesser number of ADCs. The proposed method is modified to ac-

commodate more general signals in the case of which spectral leakage, due to

occurrence of non-integral number of cycles in the reconstruction window, vi-

olates the sparsity assumption. Results of simulation demonstrate that when

the primary objective of an application is to only detect the constituent fre-

quencies in the signals, as against exact reconstruction, it can be achieved

surprisingly well even in the presence of severe noise (SNR of the order of 5

dB) and considerable undersampling. This has been applied to the detection

of the carrier frequency that varies randomly around a central frequency in a

noisy FM (frequency-modulated) signal.

Information redundancy, on account of inter-signal correlation, gives scope



for compressed acquisition of a set of signals that may not be individually

sparse. In this work, a scheme is proposed in which the correlation structure

in a set of signals is progressively learnt within a small fraction of the dura-

tion of acquisition, because of which only a few ADCs prove to be adequate

for capturing the signals. This also has important practical implications in

smart acquisition of electro-encephalogram (EEG). Signals from the different

channels of EEG possess significant correlation. Employing signals taken from

the Physionet database, the correlation structure of nearby EEG electrodes

was captured. Subsequent to this training phase, the acquired knowledge has

been used on test signals taken from the same database. Results show that

the spectral characteristics of signals at all the electrodes are detected with

reasonably good accuracy. An average error below 10% has been achieved

between the original and reconstructed signals with respect to the estimation

of the relative power in various EEG spectral bands: delta, theta, alpha and

below 15% in the beta band. It was also possible to demonstrate that the

relative spectral power of the channels in the 10-10 system of electrode place-

ment can be estimated, with an average error less than 8% (below 3% in delta

band) using recordings on the sparser 10-20 system.

Reduction in the number of ADCs undoubtedly reduces the volume of elec-

tronics in embedded designs. It is also possible to downsize other components,

for example, the anti-aliasing filter, if as many number of ADCs as the number

of signals is used. This thesis proposes a design, wherein a set of signals are

collectively sampled on a finer sampling grid using ADCs that are driven by

phase-shifted clocks. In this manner, each signal is sampled at an effective

rate that is a multiple of the actual rate at which the ADCs operate. Con-

sequently, it is possible to have a transition between the pass band and the

stop band that is not too steep, thereby reducing the order of the anti-aliasing

filter from 30 to 8 as demonstrated by simulation results. The usefulness of

this scheme has been demonstrated in the acquisition of voltages proportional

to the deflection of the control surfaces in an aerospace vehicle.

The idle sampling cycles of an ADC that performs compressive sub-sampling

of a sparse signal, can be used to acquire the residue left after a coarse low-

resolution sample is taken in the preceding cycle, like in a pipelined ADC.

Using a general purpose, low resolution ADC, a DAC of the same resolution

and a summer, one can acquire a sparse signal with double the resolution of

the ADC, without having to use a dedicated pipelined ADC. Results of the

work done as part of this research show that the signal-to-quantization ratio



(SQNR) in the reconstructed signal is doubled using such a scheme. It has also

been demonstrated how this idea can be applied to achieve higher dynamic

range in the acquisition of electro-cardiogram (ECG) signals.

Finally, it is possible to combine more than one of the proposed schemes,

to handle acquisition of diverse signals with different kinds of sparsity. The

implementation of the proposed schemes in such an integrated design can share

common hardware components so as to achieve a compact design.
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Chapter 1

Introduction

Over the past several decades, embedded systems have tremendously evolved

with respect to complexity, performance, power consumption and func-

tionality. An embedded device invariably cannot operate in isolation. It

has to be aware of the environment in which it operates and be respon-

sive to stimuli. Awareness is primarily realized through a congregation

of sensors which interface to the system via a multitude of analog chan-

nels. Data acquisition through multiple analog channels is one of the most

important functions and is accomplished with analog-to-digital convert-

ers. With increasing functionality and number of data acquisition chan-

nels, the complexity of the on-board electronics has enormously escalated.

While consumer products, common household appliances, biomedical and

industrial data acquisition systems need to address this matter, the issue

is of greater concern in embedded systems that are employed in aviation,

military and space applications. Such systems have stringent budgets for

available space, power consumption and dissipation, and in some cases,

cost also. In addition, such systems being safety-critical in nature, need to

have a very high order of reliability which becomes suspect with increasing

number of components and the associated interconnect. Invariably, these

systems are built around ruggedized embedded devices performing multiple

computational and I/O tasks under harsh environmental conditions. Each

unit of embedded hardware is usually a component of a bigger sub-system
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and has to perform its function, in real time synchronization with other

subsystems and devices with which it has to communicate through several

analog and digital interfaces. The incorporation of many IC chips along

with the associated passive components makes typical avionics embedded

designs highly complex, thereby, in many cases, not being able to meet the

requirements of compactness, low power consumption and cost.

A smarter design comprising lesser number of components would go

well with the increasing demand for miniaturized avionics. The signals

acquired and processed by most of the embedded avionics are well charac-

terized on account of pre-flight simulations and a wealth of data acquired

through test flights. A plausible and pertinent question is: can the a priori

information about the signal characteristics be utilized to reduce the com-

plexity of embedded designs ? For instance, if the signals have some kind

of information redundancy, can we reduce the number of analog-to-digital

converters without significantly compromising on the performance ? This

research work is a modest attempt to answer such questions and to propose

a few innovative design alternatives that exploit information redundancy.

1.1 Requirements of Embedded Systems

Design of embedded systems is different from that of conventional desk-

top systems in many ways. Embedded devices invariably operate in close

coordination with a number of other subsystems, all of which function syn-

ergistically to realize a common goal. The following considerations bear

significance, specifically in the context of embedded system design:

i) Small size and low weight: These complementary requirements are

important particularly for small, hand-held systems and those that

require portability and mobility, typical examples of which are mobile

phones, medical sensors, air-borne systems and robotics, to name a

few.
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ii) Low power consumption: Excessive power requirement demands

a built-in, high capacity power source which again contributes to size

and weight.

iii) Harsh operating environment: In air-borne, space and process

control applications, the embedded device has to function in unfriendly

conditions: heat and thermal shocks, mechanical shocks and vibra-

tions, electromagnetic interference, unfavorable acoustic and climatic

conditions and corrosion. To handle these unavoidable stimuli, the

devices have to be designed for very high reliability. Designs with

reduced hardware complexity due to lesser number of components,

could possibly push the burden of reliability on software. However, in

such designs, the probability of failure of the system due to malfunc-

tion of components and the associated interconnect reduces. Software

anomalies can be removed through simulations and software testing

methodologies. Repeatability in behavior can be reasonably expected,

but the same is not true for hardware.

iv) Reliability: Reliable and predictable operation is essential in air-

borne, space and defense applications from the point of human safety.

Unlike in traditional desktop systems, failure could be catastrophic.

v) Deterministic response: Embedded systems usually operate in real

time since they have to function within a bigger system. Due to this,

an embedded system needs to respond to an external stimulus within

a specified and deterministic time period.

vi) Cost: Embedded devices are usually produced in bulk volumes to

support multiple deployable systems. Hence, a small reduction in the

cost of individual unit has significant financial repercussions.

Table A.1 in Appendix A lists some of the techniques that are typically

considered for designing embedded hardware for reliability, compactness,
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reduced power consumption and heat dissipation. The focus of this work

is on reduction of components, that is common to all the design features.

1.2 Data Converters in System-On-Chips

Development of System-On-Chip (SOC) solutions, which comprise dozens

of functional blocks on a single die, has been a significant trend in the em-

bedded world in the last two decades [2]. Examples of applications include

consumer appliances like cellular phones, DVD players, set-top boxes and

multi-media players to name a few. The largest component of such SOCs is

the digital portion which houses multi-core gigahertz processors, multiple

megabytes of memory, various media access controllers and dedicated dig-

ital signal processors (DSPs) built with close to half a billion transistors.

On account of this, assuming that digital is almost available for free, the

trend is to keep the analog circuitry to the minimum, pushing as much

as possible to the digital domain. However, the data converter continues

to remain as the minimum required analog function that has to be avail-

able in an SOC, since the analog signal of the outside world has to be

in any case brought into the digital world before the available processing

power can be made use of. While architectural choices in the design of

Analogue-to-Digital Converters (ADC) aid in reducing the analog portion

of the SOC, there also has been a trend towards minimizing the associated

analog circuitry for any given architecture. For example, if the effective

sampling rate of the signal is increased, then the complexity of the anti-

aliasing filter before the ADC could be reduced. Reconstruction algorithms

in the digital section could overcome any degradation in data conversion

process due to the abridged analog circuitry. Such digitally-aided ana-

log design techniques allow for better analog performance, compactness,

reduced power requirement and cost.
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1.3 Information Redundancy in Signals

Quite often, the signals input to an embedded system have redundant in-

formation. For instance, if the signal exhibits sparsity in a transformation

domain, then the insignificant coefficients in the transformed vector do

not contribute to additional knowledge of the system. Sparsity leads to

dimensionality reduction. In classical data compression schemes, such co-

efficients are omitted before storage or transmission. Commonly used are

Fourier and Cosine transforms. The Discrete Wavelet Transform (DWT)

has been used for multi-resolution analysis serving as a sparsity inducing

transformation for non-stationary signals. The list of signal transforms,

that have been introduced by the signal processing community, to handle

specific signals in different applications is long. Information redundancy

is also exhibited by a set of correlated signals, since knowledge of a few

signals in the group, at any instant of time, can be used to predict the rest,

given the correlation structure of the signals.

Transform coding schemes like JPEG 2000 typically work by acquiring

the full signal, computing the complete set of transform coefficients and

encoding the largest coefficients while discarding the others. This process

of massive data acquisition followed by compression is wasteful. In this

context, a fundamental question can be raised, “Since most signals are

compressible, why spend so much effort acquiring all the data when we

know that most of it will be discarded ? Would it not be possible to

acquire the data in already compressed form so that one does not need to

throw away anything?” In other words, does sparsity have bearings on the

data acquisition process itself ?

1.4 Scope for Improvised Embedded Designs

Consider a set of n input signals for data acquisition in an embedded sys-

tem, each having a Nyquist sampling rate of f
(i)
NYQ, i = 1...n. The total
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number of degrees of freedom of the system during a time period T of

data acquisition is N = T
∑n

i=1 f
(i)
NYQ. Let the system have information

redundancy due to sparsity on some transformation basis or because of

inter-signal correlation such that there exist only M < N degrees of free-

dom. This implies that theoretically there need to be only M analog to

digital data conversions required to reconstruct each signal in the digital

world of the embedded system. In practice, more analog to digital data

conversions are required in order to have a reconstruction probability close

to one. In any case, the number of data conversions required is certainly

less than N . In the light of this observation, it is reasonable to raise the

following questions with respect to realizing efficient embedded hardware

for data acquisition of sparse signals:

• Can the input signals in the system be captured with lesser number

of analog to digital converters than that required in a Nyquist setup

?

• For a given number of signals and an equal number of analog to digital

converters, can we do the acquisition at an effective sampling rate that

is higher than Nyquist rate ?

• Assuming that the two questions above can be answered in the affir-

mative, can we conceptualize designs with less number of components

and consequently less floor area requirement on the printed circuit

board (PCB)?

One can leverage upon the fact that design of the analog portion in SOCs

is usually not general purpose (involves reuse of existing blocks) and has to

be tailored to specific system at hand. Thus characteristics of the specific

signals that are input to the system, like sparsity can be exploited to evolve

efficient designs.

The next section gives a brief description of various sparse signal pro-

cessing applications with specific focus on data acquisition.
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1.5 Sampling and Reconstruction of Sparse Signals

Data acquisition, which is the focus of this research work, is not the only

problem that has been addressed in the context of sparse signals. It consti-

tutes only a small space in the vast arena of sparse signal processing that

includes such diverse problems as source localization and spectral estima-

tion, to name a few. It is meaningful to briefly explore such problems and

their solutions in order to identify the coordinates of this research in this

immense space and possibly borrow a few techniques. Before a survey of

this field is presented, it is prudent that the criteria which categorize the

various applications be understood. The following aspects are associated

with any sparse signal processing problem:

i) Sparsity domain: This is the domain where the signal exhibits spar-

sity. For example, in the case of a signal that has only a few frequency

components, this is the frequency domain. For a smooth, blurred im-

age this could be the wavelet or Discrete Cosine Transform (DCT)

domain.

ii) Information domain: The domain in which the signal is sampled is

usually different from the sparsity domain and is known as the infor-

mation domain. In case of a frequency sparse signal, this is simply the

time domain signal.

iii) Type of sampling in the information domain: The pattern of sam-

pling could be periodic or random.

iv) Nature of sparsity: The sparsity could be one of the following:

• band-pass: all the non-zero components in the sparse domain are

within a small interval at consecutive locations, e.g. radar appli-

cations

• multi-band: the non-zero components are bundled into a number
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of distinct small intervals, e.g. the sum of a few narrow-band

transmissions, each modulated by distinct high frequency carriers.

• random: the non-zero components can be located anywhere in the

sparse domain, e.g. Communication signals, such as transmissions

with a frequency hopping modulation scheme that switches a si-

nusoidal carrier among many frequency channels according to a

predefined (often pseudorandom) sequence.

v) Reconstruction algorithm: The nature of the algorithm used to re-

construct the original signal from the sub-sampled information domain

signal is an important factor as this determines the required computa-

tion power. The algorithm could be based on low pass filtering, iter-

ative methods with and without adaptive thresholding, interpolation,

filter banks, basis pursuit, matching pursuit, annihilating filter etc. In

order to relate the findings of this research to the broader framework

of sparse signal acquisition and reconstruction schemes, under which it

falls, a survey has been done and is presented in the next subsection.

The objective of the survey is to find the sparse signal reconstruction

algorithm that is best suited for this research.

1.5.1 Sparse Reconstruction Schemes

While it is a simple matter to sub-sample a signal, reconstructing the origi-

nal signal from the limited number of samples is the real challenge. Several

algorithms have been reported each with its own merits and demerits and

suitability to specific applications. A few of these algorithms are described

in what follows:

i) Iterative methods with a priori knowledge of sparsity loca-

tions - When the locations of the non-zero coefficients in the sparsity

domain are known, then the number of samples in the information

domain that are required to reconstruct the signal should be at least

8
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equal to the number of such coefficients. However, depending upon

the nature of the sparsity and the type of sampling, the reconstruction

may be unstable1 and the actual number of samples required for ex-

act reconstruction may be higher. Iterative methods involve alternate

projections between the sparsity domain and the information domain.

The initial input to the algorithm is the sub-sampled vector. In each

iteration, the estimate of the information domain signal is transformed

to the sparsity domain; passed through a mask or filter that is localized

at the sparsity location and then transformed back to the information

domain to get a residue vector. The residue is used to update the

signal estimate. If the sparsity is band-pass in nature, then a single

iteration is usually sufficient. In the case of random sparsity, more

number of iterations is required. The iterations can be accelerated us-

ing Chebyshev and conjugate gradient methods [3]. Iterative methods

are quite robust against quantization and additive noise and it can be

proved that they approach the pseudo-inverse (least squares) in the

case of noisy signals.

ii) Iterative methods for unknown sparsity locations - When loca-

tions of the non-zero coefficients are unknown, one needs to evaluate

the number of sparse coefficients (or non-zero samples), the sparsity

locations, and the values of the non-zero coefficients. By means of

alternate projections between information and sparsity domains and

simultaneous adaptive lowering or rising of a threshold in the sparsity

domain, the sparse coefficients are gradually picked up after several it-

erations. The method given in [4] is an example of an iterative method

with adaptive threshold. Other iterative methods like Spline interpo-

lation [5], nonlinear/time varying methods [6], Lagrange interpolation

[7] and Error Locator Polynomial (ELP) [8] work quite well in the ab-

1low probability of accurate reconstruction
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sence of additive noise, but may not be robust in the presence of noise.

iii) Compressed Sensing (CS) - In compressed sensing, a weighted lin-

ear combination of samples, also called compressive measurements, is

taken in a basis different from the basis in which the signal is known

to be sparse (sparsity domain). It has been proven that even a small

number of these compressive measurements contain useful informa-

tion. Reconstructing the original signal from the linear combination

involves solving an under-determined set of equations since the num-

ber of compressive measurements taken is smaller than the number

of unknown non-zero coefficients in the sparse domain. However, the

sparsity assumption constrains the solution set and it is possible to find

a solution using a plethora of algorithms proposed in a huge volume of

literature spanning the last two decades. Compressed sensing meth-

ods do not depend upon any sparsity pattern like band pass. There is

no prior knowledge of the sparsity locations; even the exact number of

non-zero locations, though within a known upper bound, is not known.

The basic tenets of compressed sensing form the subject of the next

chapter and therefore, no references are cited here.

iv) Sampling with finite rate of innovation - Parametric signals, such

as streams of short pulses, appear in many applications including bio-

imaging, radar, and spread-spectrum communication. The recently

developed Finite Rate of Innovation (FRI) framework [9], has paved

the way to low rate sampling of such signals, by exploiting the fact

that only a small number of parameters which is the number of de-

grees of freedom or innovation per unit of time, are needed to fully

describe them. An elegant and powerful result is that, in many cases,

certain types of FRI signals can be reconstructed without error from
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samples taken at the rate of innovation [10; 11]. The advantage of this

result is self-evident: FRI signals need not be bandlimited, and even if

they are, the Nyquist frequency can be much higher than the rate of

innovation. Thus, by using FRI techniques, the sampling rate required

for perfect reconstruction can be lowered substantially.

v) Spectral estimation - Parametric spectral estimation methods like

Prony’s method [12], Pisarenko Harmonic Decomposition (PHD)[13]

and Multiple Signal Classification (MUSIC)[14] have been adapted to

give efficient solutions in the case of signals that are sparse in the fre-

quency domain. In such applications, the objective is to estimate the

spectral signature of the signal from the sub-sampled measurements,

instead of the signal itself.

vi) Sparse Array Processing - Three types of array processing problems

have been explored by researchers:

• Estimation of Multi-Source Location (MSL) and Direc-

tion of Arrival (DOA) - In MSL and DOA estimation [15; 16;

17] a sparse (passive or active) array of sensors is used to locate

the sources of narrow-band signals. Some applications may assume

far-field sources (e.g. radar signal processing), where the array is

only capable of DOA estimation, while other applications (e.g.

biomedical imaging systems) assume near-field sources, where the

array is capable of locating the sources of radiation. The common

temporal frequency of the source signals is known. Simultaneous

spatial sampling of the signal exhibits a phase change from sensor

to sensor, thereby obtaining discrete samples of a complex expo-

nential in which the frequency gets translated into direction of the

signal source. This resembles the spectral estimation problem with
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the difference that sampling of the array elements is not limited

in time. In fact, in array processing, an additional degree of free-

dom (the number of elements) is present; thus, array processing is

more general than spectral estimation. For both MSL and DOA,

the angle of arrival (azimuth and elevation) should be estimated;

while for MSL, an extra parameter of range is also needed.

• Sparse array beam forming and design - In certain appli-

cations like radar, sonar, ultrasound imaging and seismology, the

challenge is the combinatorial problem of finding the best sparse

layout of beam forming elements in one and two dimensions [17;

18]. Linear programming, genetic algorithms and simulated an-

nealing techniques have been used to solve the associated opti-

mization problem.

• Sparse sensor networks - Wireless sensor networks typically

consist of a large number of sensor nodes, spatially distributed

over a region of interest, that observe some physical environment

like acoustic, seismic, and thermal fields with applications in a

wide range of areas such as health care, geographical monitoring,

homeland security, and hazard detection. In general, there are

three main tasks that should be implemented efficiently in a wire-

less sensor network: sensing, communication, and processing. The

main challenge in design of practical sensor networks is to find an

efficient way of jointly performing these tasks, while using the min-

imum amount of system resources. In general, sparsity can arise in

a sensor network from two main perspectives: 1) Sparsity due to

non-uniform spatial distribution of nodes that can be exploited to

reduce the amount of sensing, processing, and/or communication

[19] and 2) Sparsity of the field to be estimated due to correlation

between the data at different nodes [20; 21].

vii) Sparse Component Analysis - Recovery of the original source sig-
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nals from their mixtures, without having a priori information about

the sources and the way they are mixed, is called Blind Source Sep-

aration (BSS). BSS algorithms are based on the assumption that the

sources may be uncorrelated, statistically independent without any

mutual information, or are disjoint in some space. Based on their dis-

joint characteristics in a suitable domain, in which they are sparse,

the signal mixtures can be decomposed with Sparse Component Anal-

ysis. SCA algorithms [22; 23] assume that the sources are sparse on

an overcomplete dictionary of basis functions. The source separation

is performed in two different stages. First, the problem is treated as a

clustering problem to extract the unknown mixing matrix. Next the

l1−norm of the source is minimized subject to the constraint that the

mixtures are formed from the sources and the estimated mixing matrix.

viii) Sparse Dictionary Representation (SDR) - Closely related to SCA

is the sparse dictionary representation problem of finding out a basis

or frame in which all the signals in a particular class are sparse [24].

ix) Multipath Channel Estimation - In wireless systems, the trans-

mitted signal bounces off different objects and arrives at the receiver

from multiple paths. This phenomenon causes the received signal to

be a mixture of reflected and scattered versions of the transmitted

signal. The mobility of the transmitter, receiver, and scattering ob-

jects results in rapid changes in the channel response, and thus the

channel estimation process becomes more complicated. Due to the

sparse distribution of scattering objects, a multipath channel is sparse

in the time domain. By taking sparsity into consideration, channel

estimation can be simplified and/or made more accurate.

This completes a very brief survey of some of the major interesting
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problems related to sparse signals that are being investigated by the

signal processing community. An excellent and exhaustive exposition

to sparse signal processing problems has been given by Marvasti et.

al. in [25].

1.6 Outline of Thesis

In this research effort, the focus is mainly on streaming data acquisition of

multiple sparse signals. Guided by the literature survey, in this work the

compressed sensing paradigm is chosen as the core engine for acquisition

and reconstruction of signals due to the following reasons:

• Of all the various sparse signal processing schemes, the one that has

been most widely used for data acquisition is compressed sensing.

• There is extensive literature in support of compressed sensing with

report of proof of performance in a wide variety of applications.

• Well tested and proven, open source toolboxes are available for CS

recovery algorithms that can be readily used for simulations.

The next chapter exclusively deals with an introduction to compressed

sensing and the associated issues. If it is possible to reconstruct a sparse

signal, using sub-Nyquist number of samples, can the idle sampling cycles of

an analog-to-digital converter be used to capture many such sparse signals

in a multiplexed fashion, such that a single ADC acquires and reconstructs

several sparse signals simultaneously ? This question is answered in chap-

ter 3, which presents an efficient data acquisition architecture that samples

and reconstructs multiple sparse signals. An improvisation of the proposed

scheme for general signals with arbitrary frequencies is also explained in

the chapter. The chapter concludes with a suggestion of how the method

can be adapted to the problem of detecting sinusoids buried in heavy noise.
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Do individual signals always have to be sparse or can we exploit the cor-

relation between multiple non-sparse signals, with the objective of again

reducing the number of data converters ? In chapter 4 is proposed an

algorithm that gradually learns the correlation between multiple signals

that are not necessarily sparse. The chapter also proposes a scheme for ex-

ploiting inter-signal correlation to perform compressed acquisition of EEG

signals. Instead of reducing the number of data converters, can we use as

many of them as there are sparse signals and try to achieve an effective

sampling rate for each signal that is higher than the specified sampling rate

of each ADC, thereby being able to relax the specifications of the front-end

anti-aliasing filter ? This question is probed in chapter 5 and yet another

compact data acquisition scheme is proposed. Proof of performance of the

ideas put forth in the thesis has been demonstrated through simulations

using synthetic data and in some cases with real world signals. The the-

sis is concluded in chapter 6, along with the presentation of a scheme in

which a combination of various methods is used in an integrated fashion

to acquire multiple signals with different sparsity properties.
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Chapter 2

Compressed Sensing

2.1 Introduction

Conventional approaches to the acquisition of signals or images obey the

well known Nyquist/Shannon theorem, which states that the sampling rate

must be at least twice the maximum frequency present in the signal. This

principle underlies nearly all signal acquisition at the front-end of most

applications like consumer audio and visual electronics, medical imaging

devices, radio receivers and radar. Where there is an upper limit on the

possible sampling rate, an anti-aliasing filter is used to filter out the signal

frequencies that are more than half the sampling frequency, assuming that

the region of interest in the signal lies in the lower frequencies. While it

is true that Nyquist rate sampling is able to completely describe a signal,

situations arise where ‘twice the maximum frequency in the signal’ is so

high that it is beyond the sampling capability of conventional analog to

digital converters. If such a signal is heavily sparse in the frequency domain

is it advisable to sample the signal at a very high rate just because there

exists a narrow band of high frequency in the signal ? Sparsity expresses

the idea that the information rate of a continuous time signal may be

much smaller than suggested by its bandwidth, or that a discrete-time

signal depends on a number of degrees of freedom which is comparably

much smaller than its (finite) length.
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2. Compressed Sensing

Transform coding methods like JPEG2000 rely on the fact that many

signals can be sparsely represented in a fixed basis (e.g. Fourier basis in

the case of frequency sparsity). This implies that only a small number of

adaptively chosen transform coefficients rather than all the signal samples

need to be stored or transmitted. Typically the full signal is acquired from

which the complete set of transform coefficients is computed and the largest

coefficients are encoded while discarding the rest. Compression after acqui-

sition of huge amount of data is a wasteful exercise. This throws up a basic

question: Is it worth acquiring so much data when only a small fraction of

it is retained ? Is there a way of acquiring the data in already compressed

form, so that there is no need to discard anything ? Is it possible that

even the data acquisition process can leverage upon the signal sparsity ?

“Compressive sampling”, also known as “compressed sensing”, shows that

it is indeed possible to capture analog signals directly in a compressed dig-

ital form. Using a simple and efficient mechanism of signal acquisition it is

possible to reconstruct the signal, with the help of computational power,

from an incomplete set of measurements obtained at a low sampling rate.

Before giving a formal introduction to compressed sensing, it is neces-

sary to understand the concept of sparsity and compressibility in signals.

Consider a vector, x ∈ RN which can be expanded in an orthonormal basis

represented by the N ×N matrix Ψ = [ψ1 ψ2 ...ψN ] as:

x =
N∑
i=1

ciψi (2.1)

where ci = 〈x, ψi〉 , i = 1...N are the coefficients of the signal on the

orthonormal basis. Equivalently, x can be expressed as

x = Ψc (2.2)

where c is a column vector of the coefficients of size N × 1. Hereafter, the

vector c shall be referred to as the coefficient vector and the matrix Ψ
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2. Compressed Sensing

as the sparsity matrix

Sparsity - When a signal is said to be sparse in any basis like the one

above, then most of the elements in the coefficient vector c are zero. In

other words, the number of non-zero elements in vector c (also called the

l0-norm) is small compared to N .

K = ‖c‖0 << N (2.3)

Such signals are called K− sparse signals. K in general, will be used to

denote the number of non-zero elements in a sparse vector of N elements.

Compressibility - In cases, where the l0-norm of the coefficient vector is

not significantly smaller than N , the signal, although not sparse, can still

be called compressible, if the ordered set of coefficients decay exponentially

(or x belongs to a weak-lp ball1 of radius R ). This can be mathematically

expressed as,

|c1| ≥ |c2| ... ≥ |ci| ... ≥ |cN | , then (2.4)

|ci| ≤ Ri−1/p, 1 ≤ i ≤ N (2.5)

where p is the decay constant[26]. The smaller is p, the faster is the

decay.

The K-term linear combination of elements which best approximates x in

an l2 sense is obtained by keeping only the K largest terms in the expansion

(2.1)-

x(K) =
K∑
i=1

ciψi (2.6)

If the coefficients ci obey (2.5), then the error between x and x(K) also

obeys a power law: ∥∥∥x− x(K)
∥∥∥

2
≤ C2RK

1/2−1/p (2.7)

1For a real number p ≥ 1, the lp-norm of a vector x is defined as ‖x‖p = (|x1|p + |x2|p + ...+ |xN |p)
1/p
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2. Compressed Sensing

in the l2-norm and ∥∥∥x− x(K)
∥∥∥

1
≤ C1RK

1−1/p (2.8)

in the l1-norm[26] for some positive constants C1 and C2 .

Sparsity and compressibility have clear implications. When a signal is

sparse or compressible then the zero or small coefficients can be discarded

without perceptible loss of information. For example, if c(K) is the co-

efficient vector containing only K significant coefficients, the remaining

elements being trivially zero in case of sparse signals and forced to zero in

the case of compressible signals, then the corresponding signal vector is

x(K) = Ψc(K) (2.9)

Since Ψ is an orthonormal basis, we have∥∥∥x− x(K)
∥∥∥

2
=
∥∥∥c− c(K)

∥∥∥
2

(2.10)

Thus, if x is sparse or compressible, then x is well approximated by x(K) and

the error,
∥∥x− x(K)

∥∥
2

obeys the power law in (2.7). This is the principle

behind most lossy encoders like JPEG2000 in which c is computed from x

and the K most significant coefficients of c are encoded before being stored

or transmitted. When the signal has to be recovered, the full length sparse

vector c is constructed using the decoded coefficients. The lossy approxi-

mation of the original signal is then recovered using (2.2). Many natural

signals have concise representations when expressed in a convenient basis.

For example, although nearly all pixels in a gray scale image have non-zero

values, the wavelet coefficients offer a concise summary: most wavelet co-

efficients are small, and the relatively few large coefficients capture most

of the information about the object.

The sample-then-compress framework in general, is an inefficient scheme:

A potentially large number of samples N have to be taken, even if the ul-
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2. Compressed Sensing

timate desired number K is small. Along with the K large coefficients,

their locations also have to be encoded by the encoder. Compressed sens-

ing offers a different data acquisition and reconstruction method in which

a compressed representation of the signal is directly obtained without re-

quiring to take the N samples.

2.2 Sensing the Signal

Sensing a signal is the mechanism by which information about a signal

x ∈ RN is obtained through linear functionals, φm as,

fm = 〈x, φm〉 m = 1, ...,M (2.11)

or putting it more concisely,

f = Φx (2.12)

where Φ = [φ1 φ2... φM ]T is an M × N matrix (M ≤ N), which hereafter

shall be referred to as the measurement matrix. The vector f shall be

called the measured vector. That is, we simply correlate the signal we

wish to acquire with the waveforms, φm. The measured vector depends on

the sensing waveforms[27]:

• Dirac deltas - If the sensing waveforms are Dirac delta functions

(spikes), then f is a vector of sampled values of x in the time or

space domain. As an example of a 2D signal, if the sensing waveforms

are indicator functions of pixels, then f is the image data typically

collected by sensors in a digital camera.

• Sinusoids - If the sensing waveforms are sinusoids, then f is a vector

of Fourier coefficients; this corresponds to the sensing modality in use

in Magnetic Resonance imaging (MRI).
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2. Compressed Sensing

• Random - Random measurement matrices with i.i.d.1 Gaussian en-

tries are suited for compressed sensing of general signals. This is the

subject of discussion of a later section.

The design of efficient measurement matrices, tailored to specific applica-

tions, is in itself an area of research in compressed sensing.

2.3 Reconstructing the Signal

When M = N , the sensing is Nyquist, and the recovery of x given f and

Φ, involves just obtaining the solution of the system of equations in (2.12).

Compressed sensing deals with undersampled cases in which M < N . The

solution to (2.12) is ill-posed - there are infinitely many solutions. What

is required is a constraint which originates from some a priori knowledge

about the signal. Sparsity is such a priori information in the signals dealt

with in this research.

Let x be a signal that has a K− sparse representation on an orthonormal

basis Ψ as in (2.2). Substituting (2.2) in (2.12) we have

f = ΦΨc (2.13)

f = Θc (2.14)

where, Θ = ΦΨ (2.15)

In subsequent discussions the matrix Θ in (2.14) shall be called the sens-

ing matrix. Applications, in which the signal exhibits sparsity in the

information domain itself (for example, if the vector x is itself sparse) are

special cases of (2.13) where Ψ is simply the identity matrix. Since the

measurement process is linear and defined in terms of the matrices Φ and

Ψ, solving for c, given f in (2.14) is just a linear algebra problem, and with

1independent and identically distributed
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2. Compressed Sensing

M < N , there are fewer equations than unknowns, making the solution

ill-posed, in general. If sparsity of c is the a priori information available,

it is meaningful to obtain the sparsest solution of (2.14) by looking for a

solution vector c with the minimal lp-norm1.

Minimization of l2-norm (p = 2) - This is nothing but the least squares

method, the classical approach of solving inverse problems.

ĉ = argmin
∥∥∥c′∥∥∥

2
such that Θc

′
= f (2.16)

Substituting ĉ in (2.2), an estimate x̂ of the original signal can be obtained.

An even more convenient and equivalent solution involves pseudoinverse

computation:

ĉ = ΘT (ΘΘT )
−1

f (2.17)

Although l2 minimization is the very fast method, it is incorrect and returns

a non-sparse ĉ with plenty of ringing.

Minimization of l0-norm (p = 0) - l0-norm reflects sparsity in the best

possible way.

ĉ = argmin
∥∥∥c′∥∥∥

0
such that Θc

′
= f (2.18)

It can be shown [28; 29] that with just M ≥ K+1 i.i.d. Gaussian measure-

ments, this optimization will return a K − sparse signal with probability

one. Although l0 minimization guarantees the most accurate results, it

cannot be practically used as it is extremely slow. Solution of (2.18) is

both numerically unstable [28] and an NP-complete problem that requires

an exhaustive enumeration of all (NK) possible combinations for the loca-

tions of the nonzero entries in c.

Minimization of l1-norm (p = 1) - The compressed sensing paradigm of-

fers a surprise in the form of l1-norm minimization as a compromise between

the fast and inaccurate l2-norm based solution and the accurate and slow l0-

norm based one. It has been proved [30; 31] that with M = CKlog(N/K)

1The lp-norm of a vector v ∈ RN is defined as ‖v‖p ,
(∑N

j=1|vj |
p
)1/p
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2. Compressed Sensing

independently and identically distributed (i.i.d.) Gaussian measurements,

we can exactly reconstruct K− sparse vectors and closely approximate

compressible vectors stably with high probability via the l1 minimization.

ĉ = argmin
∥∥∥c′∥∥∥

1
such that Θc

′
= f (2.19)

This is a convex optimization problem that conveniently reduces to a linear

program known as Basis Pursuit (BP) [32], whose computational complex-

ity is about O(N 3).

While introducing the concept of compressed sensing so far, expansion of

the sparse signal has been restricted to orthonormal bases. It is important

to note that this restriction is not mandatory [26] and the theory and

practice of compressed sensing accommodates other types of expansions

also. For example, the signal might be the coefficients of a digital image

in a tight-frame of curvelets [33].

It is also pertinent here to make a comment on compressed sensing for

analog signals. Fourier sparsity in the context of an analog signal implies

that the signal can be represented using just K out of N elements of the

continuous Fourier sinusoids. However, to facilitate simulations in a digital

computer, one is compelled to make use of a discrete sparsity matrix. In

support of this argument, the following from [28] is reproduced verbatim,

“While we have focused on discrete-time signals x, compressive sensing

also applies to analog signals x(t) that can be represented sparsely using

just K out of N possible elements from some continuous basis or dictionary

{Ψi (t)}Ni=1. While each Ψi (t) may have large bandwidth (and hence a high

Nyquist rate), the signal x(t) has only K degrees of freedom, and we can

apply the above theory to measure it at a rate below Nyquist.”
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2. Compressed Sensing

2.4 Stability of Reconstruction

Signals of practical interest may, in general, need not necessarily have a

support of relatively small size either in space or in a transform domain.

It may however, be possible that the support is only concentrated near a

sparse set. Another model that is widely used in signal processing is that

of signals in which the coefficients decay rapidly (compressible signals in-

troduced in Chapter 1), typically following a power law. Examples of such

signals are smooth signals, piecewise signals and images with bounded

variations [34]. In addition, due to finite precision of sensing devices, the

measured samples in any practical application will invariably be corrupted

by at least a small amount of noise. In the presence of noise or absence

of heavy sparsity, what is required is that the signals are reconstructed to

the best possible approximation within a precision. In other words, the

reconstruction should be stable - small perturbations in the signal caused

by noise result in small distortions in the output solution. Clearly, it is not

possible to reconstruct the signal if it is distorted during the measurement

process itself and information is lost. To ensure that this is not the case,

the measurement matrix Φ and equivalently, the sensing matrix Θ must

satisfy certain conditions. To probe into this aspect a key notion, that

has proved to be very useful in the study of the robustness of CS, is in-

troduced. This is the so-called restricted isometry property (RIP) [35].

2.4.1 Restricted Isometry Property

Definition:. For each integer K = 1, 2, ..., the isometry constant δK of a

matrix Θ is defined as the smallest number such that

(1− δK)‖c‖2
l2
≤ ‖Θc‖2

l2
≤ (1 + δK)‖c‖2

l2
(2.20)

holds for all K− sparse vectors, c.
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A matrix Θ is said to obey RIP of order K if δK is small compared to

one in which case Θ approximately preserves the Euclidean length of K−
sparse signals, which in turn implies that K−sparse vectors cannot be in

the null space of Θ, thereby making it possible to recover the sparse vector.

Equivalently, for a matrix that has the restricted isometry property, every

set of columns of cardinality less than K, is approximately orthogonal.

Thus, an important requirement for stable reconstruction of the coefficient

vector c and consequently the signal vector, x is that the sensing matrix, Θ

must obey RIP. The measured vector f in (2.14) is just a linear combination

of the K columns of Θ whose corresponding ci 6= 0. Hence, if we knew

a priori which K entries were nonzero, then we could form an M × K

system of linear equations to solve for these nonzero entries, where now

the number of equations M equals or exceeds the number of unknowns K.

A necessary and sufficient condition to ensure that this M ×K system is

well-conditioned and hence sports a stable inverse is that for any vector v

sharing the same K nonzero entries as c, (2.20) is satisfied for a small δK .

Of course, in practice, the locations of the K nonzero entries in c are not

known. Interestingly, one can show [28] that a sufficient condition for a

stable inverse for both K− sparse and compressible signals is that Θ must

satisfy (2.20) for an arbitrary 3K− sparse vector v.

2.4.2 Mutual Incoherence

Definition:. The mutual coherence between two matrices Φ and Ψ is de-

fined [26] as

µ(Φ,Ψ) =
√
N.maxk,j |〈φk, ψj〉| (2.21)

where φk are the rows of Φ and ψj are the columns of Ψ and N is the

number of basis vectors in Ψ.

To put it simply, the mutual coherence measures the largest correlation

between any two elements of Φ and Ψ. If Φ and Ψ contain correlated ele-
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2. Compressed Sensing

ments, the coherence is large. Otherwise, it is small. Compressed sensing is

mainly concerned with such sensing matrices Θ that are constructed from

pairs of the measurement and sparsity matrices that have low mutual co-

herence. Lower the mutual coherence, lesser the number of measurements

required for stable reconstruction. For example [27], in classical sampling

scheme in time and space, Φ is the canonical spike basis φk = δ(t− k) and

Ψ is the Fourier basis, ψi = (1/
√
N)e

j2πin
N and µ(Φ,Ψ) = 1.

Another simple way to measure the coherence between Φ and Ψ is to

look at the columns of Θ, instead. As Θ = ΦΨ, the mutual coherence can

be defined as the maximum absolute value and normalized inner product

between all columns [36] in Θ which can be expressed as follows:

µ(Φ,Ψ) = µ(Θ) = max
i6=j,1≤i,j≤N

{ ∣∣θTi θj∣∣
‖θi‖ . ‖θj‖

}
(2.22)

Mutual coherence can also be computed [36] from the Gram matrix

G = Θ̄TΘ̄ where Θ̄ is the column-normalized version of Θ. In this case,

µ(Θ) is the maximum absolute off-diagonal element of G.

µ(Θ) = max
i6=j,1≤i,j≤N

|gij| (2.23)

In some cases the average of the absolute value of the off-diagonal elements

is also used[36].

µav(Θ) =

∑
i6=j |gij|

N(N − 1)
(2.24)

Suppose that the following inequality holds,

K = ‖c‖0 <
1

2

(
1 +

1

µ(Θ)

)
(2.25)

then the sparsest possible solution is guaranteed to be obtained[36] for the

equations (2.13), (2.14) and (2.15).

Incoherence extends the duality between time and frequency and ex-
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presses the idea that objects having a sparse representation in the sparsity

domain (Ψ) must be spread out in the information domain (Φ) in which

they are acquired, just as a Dirac or a spike in the time domain is spread

out in the frequency domain. In compressed sensing parlance, this notion is

called the Uniform Uncertainty Principle (UUP). Put differently, inco-

herence says that unlike the signal of interest, the measurement waveforms

{φk} cannot be sparsely represented by the vectors {ψj} (and vice versa)

which is another way of saying that there is very little mutual coherence

between Φ and Ψ.

A natural question is how well one can recover a signal that is just

nearly sparse. For an arbitrary vector x in RN , let xK denote its best

K−sparse approximation; that is, xK is the approximation obtained by

applying the inverse transform on cK which is a vector formed by keeping

the K largest entries of c, the coefficient vector (in the sparsity domain)

and setting the others to zero. It turns out [26] that if the sensing matrix

obeys the uniform uncertainty principle at level K, then the recovery error

is not much worse than ‖x− xK‖l2. In other words, the reconstruction is

nearly as good as if one had full and perfect knowledge about the signal,

and would extract the K most significant elements of the sparse signal.

2.4.3 Choosing the Right Measurement Matrix

Given a sparsifying basis Ψ, is it possible to construct a measurement

matrix Φ such that Θ = ΦΨ has the RIP ? Unfortunately, even simple

verification of RIP for a given Θ is combinatorially complex. This involves

verification of (2.20) for each of the (NK) possible combinations of K non-

zero entries in the length−N vector c [28]. In compressed sensing, this issue

is avoided by choosing a random matrix for Φ. The restricted isometry

property holds for sensing matrices Θ = ΦΨ, where Ψ is an arbitrary

orthonormal basis and Φ is an M × N measurement matrix, satisfying

RIP, that has entries drawn randomly from a suitable distribution. Thus,
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random measurements Φ are universal [37]in the sense that Θ = ΦΨ has

the RIP with high probability for every possible Ψ. The sparsity basis need

not even be known when designing the measurement system. One needs to

confirm the RIP of Φ and RIP of Θ follows. Several random matrices that

have been explored as candidate measurement matrices by researchers are

presented here.

i) Gaussian matrix-Among the matrices that satisfy the RIP condition

(2.20) are Gaussian random matrices consisting of elements drawn

as i.i.d. random variables from a zero-mean, 1/N -variance Gaussian

density (white noise) [30; 31]. If Φ is an M by N Gaussian random

matrix where,

M ≥ CKlog(N/K) (2.26)

and C is a constant, then Φ will obey the RIP with a high probability

[38]. The proof of this result, using known concentration results about

the singular values of Gaussian matrices, is involved and [39; 40] can

be referred to for the same. If Φ is a Gaussian random matrix with the

number of rows satisfying RIP, then Θ = ΦΨ, regardless of the choice

of (orthonormal) sparsifying basis matrix, is also a Gaussian random

matrix with the same number of rows and thus it satisfies RIP.

ii) Binary matrix-If the entries of the M ×N measurement matrix, Φ

are independently drawn from the symmetric Bernoulli distribution,

P (Φmn = ± 1√
M

) = 1/2, then Φ will satisfy the RIP.

iii) Fourier measurements- The partial Fourier matrix obtained by se-

lecting M rows uniformly at random from the full Fourier matrix of

order N and then re-normalizing the columns so that they are unit-

normed is used as the measurement matrix Φ. Candes and Tao have

showed in [41] that this construction of Φ obeys the UUP.

iv) Incoherent measurements- A more general case of Fourier mea-

surements is the measurement matrix Φ obtained by selecting K rows
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uniformly at random from an N × N orthonormal matrix U and re-

normalizing the columns so that they are unit-normed. The arguments

used in [41], to prove that the UUP holds for incomplete Fourier ma-

trices, extend to this more general situation.

2.5 Robust Compressed Sensing

It is important to closely examine the notion of sparsity that has been

discussed until this point, in the context of real world signals -

i) First, signals of practical interest possess only approximate sparsity.

Very few signals are exactly sparse. Accurate reconstruction of such

signals from highly undersampled measurements is an issue.

ii) Second, signals will invariably have measurement noise due to limited

precision of the sensors. It is therefore imperative that CS be robust

vis a vis such non-idealities.

In the presence of such non-idealities, the CS acquisition and reconstruction

procedure must be robust. A small deviation from ideal behavior must not

cause a drastic variation in the reconstruction. Fortunately, the recovery

procedure may be adapted to be surprisingly stable and robust vis a vis

arbitrary perturbations. The measurement process (2.13) is remodeled as

follows:

f = ΦΨc + e (2.27)

where e is a stochastic or deterministic error term with bounded energy

‖e‖l2 ≤ ε. The reconstruction program is accordingly altered as

ĉ = argmin
∥∥∥c′∥∥∥

1
such that

∥∥∥Θc
′ − f

∥∥∥
l2
≤ ε (2.28)
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2.6 Greedy Reconstruction Algorithms

The l1-minimization algorithm,solved with Basis Pursuit, has strong and

rigorous theoretical proofs in support of exact reconstruction under quite

general circumstances. However, it has been realized over the years by the

compressed sensing research community that Basis Pursuit is much too

slow for practical large-scale applications. Quite a few heuristic approaches

based on greedy algorithms 1 have been proposed, that are many times

faster, albeit without any theoretical guarantee of exact reconstruction.

Perhaps the Orthogonal Matching Pursuit (OMP) algorithm proposed by

Tropp and Gilbert [42] can be considered as the genesis of several of these

greedy approximation methods. A brief outline of OMP is given in the

next subsection.

2.6.1 Orthogonal Matching Pursuit

Consider the measured vector f introduced in (2.14). The vector, f is just a

linear combination ofK columns of the matrix Θ, given that c is aK-sparse

vector. In other words, f has a K-term representation over the dictionary

Θ. To recover the sparse vector c, which in turn would give the actual

signal x from (2.2), it is required to determine which columns, θj of Θ

participate in f. OMP (see Algorithm 1) picks the columns iteratively, in a

greedy fashion. The vector f, that is input to the algorithm, is obtained by

sensing the signal x using the measurement matrix Φ(see equation 2.12).

At each iteration, a column of Θ is chosen that is most strongly correlated

with the remaining part of the residual. The contribution to f, due to the

chosen column, is subtracted from f and the residual is input to the next

iteration.

In this manner, it is expected, without any theoretical guarantee, that

after K iterations the algorithm would have identified the correct set of

1A greedy algorithm is an algorithm that follows the problem solving heuristic of making the locally
optimal choice at each stage with the hope of finding a global optimum.
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Algorithm 1 Orthogonal Matching Pursuit

Input: The M×N sensing matrix Θ, the N×N sparsity matrix Ψ, the measured vector
f and K the required number of iterations, the algorithm must execute
Output: An estimate x̂ of the signal vector
Procedure:

1. Initialize:
the residual, r(0) ← f
the set of indices, Λ(0) ← ∅
matrix of atoms, Θ(0) ← ∅
iteration-count, i← 1

2. At every iteration i, find the index λ(i) that solves the optimization problem,
λ(i) ← argmaxj=1...N

∣∣〈r(i−1), θj
〉∣∣ If the maximum occurs for multiple indices, break

the tie deterministically.
3. Augment the index set Λ(i) ← Λ(i−1) ∪ λ(i) and the matrix of chosen atoms, Θ(i) ←[

Θ(i−1) θj
]

4. Solve a least-squares problem to obtain a new estimate of the coefficients:
ĉ(i) ← argminc′

∥∥Θ(i−1) c
′ − f

∥∥
2

5. Update the residual:
r(i) ← f−Θ(i−1) ĉ(i)

6. if i < K then
7. i← i + 1
8. else
9. Form the length−N , sparse coefficient vector, c populated with the elements of ĉ(i)

at the appropriate locations
10. x̂← Ψc
11. quit
12. end if
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columns. It is important to note in the algorithm listing that r(i) is always

orthogonal to the columns of Θ(i). The computational complexity of the

algorithm is dominated by step 2 whose total cost is O(KMN). The least

squares problem in step 4 at iteration i can be solved with marginal cost of

O(iM). In comparison the basis pursuit algorithm (see section 2.3), using

a dense unstructured sensing matrix, can be solved in time O(M 2N 3/2)

time [43]. Thus in cases where N is much larger than K or M , OMP has

clear advantage over BP in terms of speed of computation.

2.6.2 Other Greedy Algorithms

For many applications, OMP can outperform convex optimization meth-

ods. For large problems, in which the number of non-zero elements is of

the order of several thousands or more, the computational requirements

and storage demands of currently available implementations of OMP can

easily become too large, and faster alternatives are required. A number of

recovery algorithms that are based on OMP and offer some kind of perfor-

mance enhancement, have been proposed. Significant amongst these are

given below:

i) Stage-wise Orthogonal Matching Pursuit - In the Stage-wise Or-

thogonal Matching Pursuit (StOMP) algorithm proposed by Donoho

et. al. [44] many coefficients can enter the model at each stage while

only one enters per stage in OMP; and StOMP takes a fixed number

of stages while OMP can take many. StOMP runs much faster than

competing proposals for sparse solutions, such as l1-minimization and

OMP, and so is attractive for solving large-scale problems.

ii) Gradient Pursuit - Blumensath and Davies [45] have proposed di-

rectional optimization schemes based on - gradient, conjugate gradient

and approximation to conjugate gradient. While conjugate gradient

solves the Orthogonal Matching Pursuit (OMP) algorithm exactly, the
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evaluation of this direction has the same computational complexity as

previous implementations of OMP. The gradient as well as the approx-

imate conjugate gradient is much easier to calculate, with the gradient

being available in Matching Pursuit (MP) for free.

iii) Regularized Orthogonal Matching Pursuit (ROMP) - Needell

and Vershynin tried to bridge the two major algorithmic approaches

to sparse signal recovery from an incomplete set of linear measure-

ments: l1- minimization methods and iterative methods (Matching

Pursuits) via a simple regularized version of the Orthogonal Matching

Pursuit [46]. ROMP has advantages of both approaches: the speed

and transparency of OMP and the strong uniform guarantees of the

l1-minimization and reconstructs a sparse signal in a number of iter-

ations linear in the sparsity (in practice even logarithmic), and the

reconstruction is exact provided the linear measurements satisfy the

Uniform Uncertainty Principle.

iv) Compressive Sampling Matching Pursuit (CoSAMP) - CoSAMP

is at heart a greedy pursuit that incorporates ideas from the combi-

natorial algorithms to guarantee speed and to provide rigorous error

bounds [47].

v) Tree Matching Pursuit - An algorithm to recover piecewise smooth

signals that are sparse and have a distinct connected tree structure in

the wavelet domain has been proposed by Duarte, Wakin and Bara-

niuk [48]. The Tree Matching Pursuit (TMP) algorithm significantly

reduces the search space of the traditional Matching Pursuit greedy

algorithm, resulting in a substantial decrease in computational com-

plexity for recovering piecewise smooth signals.

vi) Chaining Pursuit- Given the original signal f is well-approximated

by a vector with K non-zero entries (spikes), the goal of the Chain-

ing Pursuit algorithm, proposed by Gilbert et. al. [49], is to use a
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sketch of the signal to obtain a signal approximation with no more

than K spikes. To do this, the algorithm first finds an intermediate

approximation g with possibly more than K spikes, then, in the so

called pruning step, returns gK , the restriction of g to the K positions

that maximize the coefficient magnitudes of g. In each pass, the algo-

rithm identifies the locations of a constant fraction of the remaining

spikes and estimates their magnitudes. Then it encodes these spikes

and subtracts them from the sketch to obtain an implicit sketch of the

residual signal. These steps are repeated until the number of spikes

is reduced to zero. After O(log m) passes, the residual has no signif-

icant entries remaining. The run time of Chaining Pursuit, namely,

O(K log2(K)log2(N)), for an N− length signal of sparsity level K is

sub-linear in N .

vii) Subspace Pursuit-In the Subspace Pursuit algorithm proposed by

Wei Dai [50], a set of K (for a K-sparse signal) codewords of highest

reliability that span the code space are first selected. If the distance of

the received vector to this space is deemed large, the algorithm incre-

mentally removes and adds new basis vectors according to their relia-

bility values, until a sufficiently close candidate code word is identified.

The algorithm has two important characteristics: low computational

complexity, comparable to that of orthogonal matching pursuit tech-

niques, and reconstruction accuracy of the same order as that of l1

optimization methods.

viii) Simultaneous Orthogonal Matching Pursuit - Parallel sparse ap-

proximation of several input signals that are only weakly correlated

has been proposed by Gilbert and Strauss in Simultaneous Orthogo-

nal Matching Pursuit (SOMP) [51].
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2.7 Other Recovery Algorithms

In this section, a brief description of a few algorithms, that have drawn the

attention of CS research community, is presented for the sake of completion.

i) Sudocodes- The method based on sudocodes proposed by Sriram Sar-

votham [52] involves non-adaptive construction of a sparse measure-

ment matrix, comprising only the values 0 and 1. Only O(Klog(N))

measurements are constructed by summing subsets of the coefficient

values of the sparse vector, like in group testing. The reconstruction

process receives a stream of measurements and the corresponding rows

of the measurement matrix. It has a low worst-case computational

complexity of O(Klog(K)log(N)).

ii) Bayesian Compressed Sensing - Considerable literature [53] has

been published in the area of Bayesian compressed sensing [54] that

can be considered as a shift in paradigm from the classical compressed

sensing. Algorithms based on Bayesian CS, start with a prior belief on

the sparsity of the signal in a suitable basis and the objective is to pro-

vide a posterior belief (density function) for the values of the elements

of the sparse vector. Rather than providing a point (single) estimate

of the sparse coefficients, a full posterior density function is provided,

which yields error bars on the estimated vector; these error bars may

be used to give a sense of confidence in the approximation, and they

may also be used to guide the optimal design of additional CS mea-

surements, implemented with the goal of reducing the reconstruction

uncertainty. In addition, the Bayesian framework provides an estimate

for the posterior density function of additive noise encountered when

implementing the compressive measurements.

iii) Distributed Compressed Sensing - Considerable work has been

done in the area of distributed compressed sensing based on joint
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sparsity of multiple-signal ensemble. Literature in this area is cited

in a subsequent chapter in which work done, as part of this thesis, on

compressed sensing of several correlated signals is described.

iv) lp-norm minimization - Chartrand has proved that instead of min-

imizing the l1-norm, if the lp-norm, where p < 1, is minimized then

exact reconstruction can be obtained with lesser number of measure-

ments [55].

2.8 The Compressed Sensing ‘Tuple’

To apply compressed sensing techniques to various real world problems, it

is worthwhile to introduce the ’CS-tuple’ which consists of the following:

i) Ψ - A sparsity inducing basis in which the signal to be acquired

has a sparse representation. If the signal is sparse in the information

domain itself, then Ψ = I, the identity matrix.

ii) Φ - A suitable measurement matrix that is mutually incoherent

with Ψ.

iii) Ξ - A suitable signal recovery algorithm like Basis Pursuit or Or-

thogonal Matching Pursuit.

In order to address any sparse recovery problem through the compressed

sensing approach, it is required to carefully understand the signal charac-

teristics, the desired accuracy of reconstruction, the expected benefits out

of using a CS approach as against a traditional Nyquist scheme and the

available hardware to realize the acquisition setup. Based on such an anal-

ysis, one has to prudently choose the elements of the tuple, which almost

always will be application specific. The schemes that have been proposed

in this research are general and therefore, independent of the reconstruc-

tion algorithm used. In other words, any reconstruction method that is
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not too slow can be used to recover the original signal from the measure-

ments taken. Thus, before proposing an embedded design for compressed

acquisition, the ‘CS-tuple’ is formed on the basis of which the system is

architected.

2.9 Choice of Reconstruction Algorithm

Performance of most of the signal reconstruction schemes that have been

proposed in this work are independent of the signal recovery algorithms.

In all the simulations, the basis pursuit tool is used to recover the signal,

since the primary interest is on the reconstruction accuracy and execution

time is not a concern on the computational platform employed for simu-

lations. However, in some cases the proof of performance of the proposed

schemes is demonstrated through simulations with other signal recovery

tools - OMP, ROMP and CoSAMP and comparison of reconstruction ac-

curacy and execution time is given in tabular form.

2.10 Areas of Research in Compressed Sensing

Research in compressed sensing has been multi-faceted and a number of

open issues have been parallelly addressed by the CS community. A bird’s

eye view of the previous as well as ongoing effort is given in what follows:

i) Design of measurement matrices - Focused effort has gone into the

design of more effective measurement matrices that are able to capture

the signal information with lesser number of samples. In particular,

deterministic construction of the matrix [56; 57; 58; 59], wherein the

entries are not entirely drawn at random, has been studied in detail

to suit specific applications. An open problem that has been investi-

gated is the perturbations/transformations that are admissible on the

measurement matrices.
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ii) Development of recovery algorithms - Computation time and ac-

curacy of reconstruction have been the two major driving factors in

the development of newer recovery algorithms. At one end of the

spectrum, there exist the convex optimization algorithms that offer

a high level of accuracy, but tend to become unmanageably slow as

the signal dimension increases. At the other extreme are the greedy

methods like OMP which are significantly faster but do not guaran-

tee any bounded reconstruction error. Reconstruction algorithms that

have been proposed by various people have tried to find a trade-off

- design of more accurate greedy reconstruction methods or alterna-

tively, faster algorithms based on convex minimization. As long as the

field of compressed sensing is active, design of newer reconstruction

algorithms will continue to happen.

iii) Restricted Isometry Property of the sensing matrix - Estab-

lishing RIP of candidate sensing/measurement matrices through non-

combinatorial complexity algorithms is an active area of research.

iv) Sparsity behavior of signals - Study of the existence and type of

sparsity of practical, real world signals is a field of interest which opens

up the possibility of employing compressed sensing techniques to sub-

Nyquist acquisition of such signals.

v) Efficient sampling architecture- Design of efficient and practically

realizable architecture for compressed acquisition of sparse signals is a

problem that demands serious attention for development of commer-

cially viable systems using compressed sensing methods.

vi) Streaming data acquisition and signal recovery - Classical com-

pressed sensing deals with applications in which the sub-Nyquist mea-

sured vector is available and one has to reconstruct the original sig-

nal vector. Recently, significant work [60; 61] has been done towards
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acquisition of real-time streaming data and simultaneous signal recon-

struction.

vii) Applications - Compressed sensing approaches have been applied

in numerous areas of engineering - compressive imaging, analog-to-

information conversion, geophysical data analysis, radar, hyper-spectral

imaging, medical imaging, communications, astronomy, remote sens-

ing, acoustics, audio and speech processing, robotics, control, content-

based retrieval and optics to name a few.

Exhaustive information consisting of a large collection of research pa-

pers, tutorials, talks, software and toolboxes, and conference/workshop

alerts is available in [53].

2.11 Goal of this research

With the necessary background on sparse signal acquisition reviewed, it is

pertinent at this juncture to re-emphasize the goal of this research with

minimum ambiguity.

What this research is about

• This research effort is primarily focused on the design of compact

embedded data acquisition systems which exploit the sparsity charac-

teristic of signals, captured in real time.

• The emphasis is more on how to engineer efficient and cost-effective,

front-end analog-to-digital conversion electronics for space and power

constrained embedded designs using available off-the shelf compo-

nents. The research that has been carried out is ‘applied’ in nature,

dealing with a practical problem to give meaningful solutions to the

same.

What this research is not about
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• As part of this research effort, there is no motive to probe into the

intricacies of compressed sensing and reconstruction and the associ-

ated algorithms, which is a vast area in itself and is supported by a lot

of literature. The designs proposed in this work employ compressed

sensing acquisition and reconstruction simply as a tool. The success

or failure of the designs are dependent on the accuracy and robustness

of the compressed sensing methodology which itself is supported by

strong theoretical proofs of performance, given that the signals are

sparse. In all the simulations carried out in this research, it is en-

sured that the test signals satisfy the sparsity constraint imposed by

compressed sensing. Therefore, it is felt that there is no necessity to

give separate theoretical proofs of reconstruction performance of the

methods proposed in the thesis.

• The ideas proposed in this work have more to do with the signal ac-

quisition phase rather than signal processing. They demonstrate how

a set of sparse signals can be acquired by a system using lesser num-

ber of analog to digital conversions. How the signals are processed,

once they enter the digital world, does not fall in the gamut of this

research.

• Through simulations, it is intended to demonstrate in this work, how

with simple modifications in the data acquisition architecture, it is

possible to capture multiple sparse and streaming signals using lesser

number of hardware components. It is submitted here that the ef-

fort is restricted to providing empirical evidence and actual hardware

design based on CAD tools has not been carried out. However, it is

anticipated that the implementation of the proposed schemes would be

reasonably straightforward and given sufficient proof of performance

through simulations, the schemes should work fairly well when imple-

mented in hardware.
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To the knowledge of the author, there is no instance of research in the open

literature on the application of compressed sensing of sparse signals from

the perspective of designing compact embedded data acquisition architec-

tures. Literature on compressed sensing applications gives numerous cases

of subsampling sparse signals in various engineering domains. There is not

much evidence of smart utilization of ADCs by multiplexing them between

different signal sources that generate streaming data. On account of this,

it was not possible to compare the results with previous work on the same

problem. Consequently, it was not feasible to place a consolidated survey

of literature, on existing approaches to the problem, at the beginning of the

thesis. However, any (even partially) borrowed facts, figures, information

or ideas used in the work have been duly cited throughout the body of the

thesis. Thus, citations to the relevant literature have been given at the

beginning of each chapter.
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Chapter 3

Compressed Acquisition of Multiple

Sparse Signals

3.1 Introduction

Embedded systems in practical applications typically perform real time

data acquisition of more than one signal. Biomedical signals, seismic sig-

nals, flight parameters in aerospace systems, distributed sensor data are

examples in which the signals that have to be acquired occur in multitude.

Quite often such signals can be grouped based on similarity of characteris-

tics. Each group, for instance, may comprise signals that exhibit sparsity

in a particular basis. Assume that the ADC assigned to each signal in

every group, is able to sample the signal at its Nyquist rate. Given that

the signals are sparse, it is possible to perform the sub-Nyquist acquisition

of each signal, in which case the ADC responsible for sampling the signal

would operate at much lower than its maximum possible sampling rate.

In other words, not all the sampling cycles of the ADC are utilized. Is it

possible to utilize the idle cycles of the ADC to sample other signals in the

group such that a single ADC is used to acquire more than one signal in

a compressed sensing setup ? The work done to explore this possibility, as

part of this research, is the content of this chapter. Reducing the number

of ADCs at the front end of data acquisition systems will be the first step

towards achieving the desirable features in embedded architectures that
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were highlighted in Chapter 1.

3.2 Survey of related literature

Efficient sampling of sparse bandlimited wideband signals has been treated

at length in [62]. The approach proposed in this paper employs a random

demodulator for sampling, which in turn consists of a random number

generator, mixer and an accumulator. In [63], the authors have presented

the design of a digital compressed sensing architecture employing a mixer,

integrator and a random matrix generator. In [64] the authors propose a

system, named the modulated wideband converter, which first multiplies

the analog signal by a bank of periodic waveforms. The product is then

lowpass filtered and sampled uniformly at a low rate, which is orders of

magnitude smaller than Nyquist. In [65] the authors propose an analog-

to-information converter that uses modulation, filtering, and sampling to

produce a low-rate set of digital measurements.

In contrast to the methods proposed in these cited papers, the data

acquisition schemes presented in this thesis and this chapter, in particu-

lar, operate simultaneously on multiple signals. The primary focus of the

research reported in this thesis is to propose data acquisition architectures

with simple off-the-shelf components and employ a straightforward sam-

pling scheme, wherein a few random samples are utilized to reconstruct

the input signals without involving any elaborate projection matrix and

the associated multiplication with the signal vector. In this context, a re-

mark made by the authors in [66] is reproduced verbatim:

“To date, implementing random projections in an analog-to-digital data

acquisition device is not straightforward. The most common architectures

use an analog high-rate front end implementing the random projections,

followed by a low-rate precision analog-to-digital converter decoupled from

the analog projection system. Due to the limitations of analog hardware,
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the resulting devices are severely limited in the types of projections they

can implement. Some systems are based on randomly modulating or ran-

domly sampling the input. Systems that randomly filter and subsequently

subsample the input require a significant number of precision analog mul-

tipliers or a high-order switched capacitor filter”

3.3 Signal Model

Consider a stationary signal x, that is composed of only K sinusoids where

K is small compared to the length of the signal. Such signals are known as

frequency-sparse. In practice, many real world signals are only piecewise-

stationary. Therefore, let x(t) be a continuous-time, real signal, made up

of segments, χs(t) such that

x(t) = χs (t) for ts−1 ≤ t < ts, ∀s = 1, 2, ...∞ (3.1)

where each χs(t) is stationary and also sparse on the Fourier basis. Further,

let each χs(t) be nearly bandlimited to [0 F ]. Clearly, the Nyquist rate of

x(t) is FNYQ = 2F . Let any χs(t) have at most K frequency components,

ωk such that 0 ≤ ωk ≤ 2πF . K is much smaller than the number of Nyquist

samples in the signal during the interval ls = [ts−1 ts].

K � lsFNYQ (3.2)

It is important to mention here, that a priori knowledge of K is helpful

in estimating the minimum number of measurements (given by 2.26 for

Gaussian measurements) required to reconstruct the signal.

Signals like x(t) shall hereafter be called piecewise stationary and

sparse (PSS) signals. Thus, each PSS signal is a concatenation of a se-

ries of stationary and sparse (SS) segments, each of which consists of

a different set of frequencies in [0 F ]. Real world non-stationary and non-

sparse signals can be approximated to PSS signals if each of the intervals ls
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is small compared to the duration of the signal under observation. For ex-

ample, speech signal, which is non-stationary, is routinely approximated as

piecewise stationary in linear prediction analysis as well as in spectrogram

based analysis[67].

Although the signal model presented above considers Fourier sparsity,

the compressed sensing schemes proposed in this thesis can be used on

signals with sparsity on any basis.

3.4 Sampling and Reconstruction of the Signal

Let ζ ∈ RN be a vector obtained by sampling the signal, within an SS

segment χs(t), during the time interval [τ1, τ2] where ts−1 ≤ τ1, τ2 < ts for

some s, at the Nyquist time instants, τ1, τ1 + TNYQ, ...τ1 + (N − 1)TNYQ

where TNYQ = 1/FNYQ. Hereafter, such a vector shall be called a recon-

struction segment (RS)1. Each SS segment will consist of several RSs

which may overlap. Instead of taking all the Nyquist samples within an

RS, if only M < N samples are taken at random, the measured vector, f

(2.12) can be written as

f = Φζ (3.3)

where the M × N measurement matrix Φ is constructed by randomly

choosing M rows from the N ×N identity matrix IN . A later sub-section

explains why M must have a minimum value. Since each RS, ζ is of finite

length, the frequency domain tool of choice for analysis and CS recovery

is the Discrete Fourier Transform (DFT)2.

This process is very similar to the Windowed Fourier Transform (WFT)

or the Short Time Fourier Transform (STFT) which is used to acheive

limited time-frequency localization. In order to improve the performance

1An implicit assumption made here is that an RS consists of an integral number of periods of each
frequency component in the signal. The validity of this assumption is questioned in sub-section 3.5.8 and
the means of addressing the issue for general signals is addressed in section 3.6

2The DFT of a length-N signal x is defined as X [m] =
∑N
n=1 x [n] e−j2πmn/N , 1 ≤ m ≤ N , with the

inverse transformation defined as x [n] = 1
N

∑N
l=1 x [n] ej2πmn/N , 1 ≤ n ≤ N .
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of the STFT, a tapered window (e.g. Kaiser, as used on speech signals to

get the spectrogram) is made use of (see sub-section 3.5.2). The factors

affecting the choice of the STFT window size are discussed in sub-section

3.5.3.

Given that Ψ = F−1, the inverse DFT matrix is the sparsity basis, equa-

tions (2.13-2.15) can then be recast as

f = ΦF−1c (3.4)

f = Θc (3.5)

where, Θ = ΦF−1 (3.6)

and c is the sparse vector of DFT coefficients. In order to account for

measurement and other noise, (3.4) is modified as in (2.27)

f = ΦF−1c + e (3.7)

where, as before e is a stochastic or deterministic error term with bounded

energy ‖e‖l2 ≤ ε and accordingly the solution is obtained in the lines of

(2.28)

ĉ = argmin
∥∥∥c′∥∥∥

1
such that

∥∥∥Θc
′ − f

∥∥∥
l2
≤ ε (3.8)

and finally, ζ = F−1ĉ (3.9)

where Θ is as given in (3.6). To facilitate a practical implementation of

(3.8), the following definition for any general vector is introduced.

Definition:. The root mean square value of a vector, v ∈ RD is defined as

rms(v) =

√
v2

1 + v2
2 + ...+ v2

D

D
(3.10)

where v1, v2, ... are the elements of v

47



3. Compressed Acquisition of Multiple Sparse Signals

Let the signal to measurement noise ratio be given as

SMNR = 20log10(
rms(f)

εmaxrms

) (3.11)

where εmaxrms is the upper limit of the rms noise. Then for a specified SMNR

value,

εmaxrms = rms(f)/10(SMNR
20 ) (3.12)

Instead of (3.8), we can use the alternate constraint,

1√
M

∥∥∥Θc
′ − f

∥∥∥
2
≤ εmaxrms (3.13)

where M is the number of elements in the vector,
(
Θc

′ − f
)
.

Or equivalently from the definition of rms above,

ĉ = argmin
∥∥∥c′∥∥∥

1
such that rms(Θc

′ − f) ≤ εmaxrms (3.14)

3.4.1 Simple Measurement Matrix

It is worth noting here that no specific measurement matrix has been used.

The measured vector is obtained by just randomly picking some of the

Nyquist samples. This kind of a sampling is represented in the reconstruc-

tion equations by a matrix that shall be informally called the ‘downsized

identity matrix’. This is very unlike using matrices with entries randomly

drawn from a distribution like Gaussian or Bernoulli (see sub-section 2.4.3)

which requires an elaborate setup for capturing the information domain

signal as projections on the measurement matrix.

The author of this thesis is aware that the downsized identity matrix is

not supported by a theoretical justification of satisfying RIP or of mutual

incoherence with the sparsity matrices employed in the various schemes

proposed. In spite of this, it has been used in this work owing to its

practical realizability - undersampling just reduces to omitting, uniformly

at random, the Nyquist samples in a signal. Verification of proof of per-
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formance using this matrix is left to observing the results of simulation

with synthetic test data as well as real world signals. It has already been

pointed out in sub-section 2.4.3 that verification of RIP is combinatorially

complex and has only been done for a few random matrices like Gaus-

sian or Bernoulli. Appendix C lists out arguments, supported by citations,

against the practical implementation of fully random measurement matrix

constructions like Gaussian or Bernoulli matrices. In addition, it is empir-

ically shown in the Appendix, through a large number of repeated trials,

that the probabilty of the downsized identity matrix having a lower mutual

coherence with a fixed sparsity matrix is comparable with that of a random

matrix of the same dimension1.

3.4.2 The CS Tuple

Before proceeding further, the elements of the CS tuple that was introduced

in section 2.8 must be identified to put the problem formulation in place.

Clearly,

• Ψ is the inverse DFT matrix F−1
N of order N

• Φ is a matrix obtained by randomly choosing M out of the N rows of

an identity matrix, IN of size N .

• Ξ is the noise constrained l1 minimization (3.8)

3.4.3 Overlapped Reconstruction Segments

The signals under consideration in this work are input to the system as

real-time streaming data that is piece-wise stationary and comprises a se-

ries of sparse and stationary segments. It is discernible that around the

transition between consecutive SS segments, the stationarity assumption

1If the outcome of a random undersampling turns out such that the samples are uniformly spaced,
then aliasing can occur. However, it is assumed that the probability of such an event is very small when
the number of samples in the reconstruction segment is not a small number.
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Figure 3.1: Overlapped reconstruction segments

is lost. In other words, a reconstruction segment in which a boundary

between two SS segments lies will not necessarily exhibit Fourier sparsity.

As a consequence, the CS based reconstruction of such an RS will fail. As

a remedy to this problem, reconstruction segments are made to overlap

(figure 3.1). Thus, each stationary and sparse segment is acquired and

reconstructed as a series of overlapping reconstruction segments. Every

new RS will have an overlap (specified as a percentage p of the size N of

the RS ) with the previous RS that has already been reconstructed. In the

region of overlap, numO = pN samples obtained from reconstruction of the

previous RS are utilized as they are. In the remaining non-overlapping por-

tion, numNO sub-Nyquist samples are obtained by actual analog to digital

conversion. Clearly, numO + numNO ≥M . Discussion on the appropriate

value of p and numNO is deferred to a later subsection. CS reconstruction

is then done on the vector comprising the overlapping and non-overlapping

samples to recover all the Nyquist samples in the RS. For all the RSs that
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lie fully inside an SS segment, the coefficient vector, ĉ in (3.14) will be

sparse. At the transition to a new SS segment, the RS (say the jth one)

will span two SS segments. As a result, the reconstruction will fail and the

coefficient vector will be non-sparse and in general, be different from that

of the preceding, (j − 1)th RS. Therefore,

‖ĉj − ĉj−1‖2 > δ (3.15)

where δ is a small threshold1. Using (3.15), the boundary between two

RSs can be detected. Once a transition is found, the RS that immediately

follows will not overlap with its predecessor, which is the one that had

fallen on a boundary and therefore suffered from a failed reconstruction.

Without an overlap, the RS then uses all the samples obtained from actual

analog to digital conversion. All the RSs that follow will continue to have

overlap.

By ensuring that the RSs overlap, the portion of the reconstructed signal

that is erroneous due to occurrence of boundaries is reduced to (1− p
100)N .

The parameter p, an input to the system, decides the accuracy of recon-

struction.

In the next section, an architecture for carrying out multiplexed acqui-

sition of multiple sparse signals is presented.

3.5 MOSAICS: Multiplexed Optimal Signal Acquisi-

tion Involving Compressed Sensing

If only sub-Nyquist number numNO of non-overlapping samples are taken,

then the remaining Nyquist sampling instants of the ADC can be utilized

to capture other signals with similar characteristics. This is the central

idea of the procedure for multiplexed sensing of more than one signal. In

this section, the operating principle of MOSAICS is explained.

1chosen specifically for each application
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3.5.1 System Input

Let S represent a set of γ signals, x(1),x(2), ...x(γ) of the model described

in section 3.3 to be input to the system. Let the signals be indexed by i.

The following a priori information about each signal x(i) is assumed to be

available:

• Bandwidth F (i) and consequently the Nyquist rate, F
(i)
NYQ = 2F (i).

This decides the operating frequency FMOS, more about which is given

in subsection 3.5.3.

• Fourier sparsity, K(i), i.e. the maximum number of non-zero frequency

tones in an SS segment of the signal. Only an estimate of the max-

imum number of frequency tones and not the exact number need to

be known 1.

• Minimum duration of an SS segment, L(i) where L for a PSS signal is

defined as L = inf {ls ∈ R : ls = ts − ts−1,∀s = 1, 2, ...∞} where ts−1

and ts are the starting and end points of a SS segment. Thus, L(i) is

the minimum duration in which the signal can be assumed stationary.

This a priori knowledge aids in deciding the size of a reconstruction

segment as explained in sub-section 3.5.3 and the segmentation is not

totally blind. However, only an estimate of the minimum assured

duration of stationarity, (out of all SS segments) and not the exact

value, is required.

• The number of samples in the reconstruction segment, N (i) and the

number of measurements, M (i) in each reconstruction segment. These

are derived parameters. Explanation of how these are derived is de-

ferred to the next sub-section as this requires a description of the steps

in the acquisition and reconstruction.

1For any signal i, the sparsity may vary from one SS segment to the other and K(i) can be taken to
be equal to an estimate of the maximum value out of all such segments
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• Maximum allowed duration µ(i) of erroneous reconstruction at the

transitions between SS segments. This decides the overlap percentage

(subsection 3.5.3).

• signal to measurement noise ratio of the ADC that is used

While the list appears to be formidable, for many real world signals, this

a priori information is easily available.

Figure 3.2: Multiplexed Signal Acquisition Involving Compressed Sensing

3.5.2 Steps in Execution

As shown in the figure 3.2, the system consists of two major blocks - the

acquisition block (AB) and the reconstruction block (RB) that operate si-

multaneously. The AB contains a single ADC that samples data at the

MOSAICS operating frequency, FMOS Hz. The system operates in a series

of contiguous acquisition cycles, with β analog to digital conversions taking

place in each cycle. At the start of each acquisition cycle, the sampling

pattern generator releases a sequence, of length β, consisting of random

integers between 1 and γ. At each tick of the clock operating at FMOS Hz,
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the sampling pattern generator outputs the next element in the sampling

pattern which, after being coded as binary, is fed to the analog multi-

plexer selection lines. The multiplexer, also driven by the clock, selects

the chosen channel, which is then sampled by the ADC. This ensures that

the sampling of the channels is randomly interspersed throughout the ac-

quisition which is required for successful reconstruction. These samples,

in each signal, belong respectively to the non-overlapping portion of the

reconstruction segment. Thus, while the overlapping samples from the

previous reconstruction segment are always available, numNO of the non-

overlapping samples are acquired through a series of contiguous acquisition

cycles. Though the ADC operates at a uniform sampling rate, the sampling

of the individual channels is non-uniform.

The ADC sample is deposited in one of the two buffers, which is desig-

nated as the acquisition buffer for that particular acquisition cycle. Each

buffer can hold β samples. At the end of each acquisition cycle, there is

a software controlled buffer swap - the acquisition buffer becomes the re-

construction buffer and vice-versa. During any acquisition cycle, the RB

operates simultaneously on the data available in the reconstruction buffer,

that was acquired in the previous acquisition cycle. The sampling pat-

tern of the previous acquisition cycle is also made available to the digital

demultiplexer in RB1 which segregates the samples in the reconstruction

buffer into the separate channels in the current cycle. At the end of every

acquisition cycle, a check is carried out for each signal, if the corresponding

measured vector f(i), i = 1...γ, for its current reconstruction window, con-

sisting of M (i) elements has been formed. In addition, a window pointer is

maintained, so that each of the M (i) elements in the reconstruction vector

of the signal i can be multiplied by the appropriate element of a smoothen-

ing window, like Kaiser, of size N (i). For all those signals, whose measured

vector is ready, the vectors f(i) are released to the corresponding convex

1There is no additional overhead in sending the sampling pattern to the RB as the implementation
can be on a single processor as suggested in sub-section 3.5.6
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optimization1 blocks (see equations (3.14) and (3.9)). De-windowing is

done on the reconstructed signal vector ζ(i) ∈ RN (i)

, by dividing the el-

ements of ζ(i) by the corresponding window elements. Depending upon

the value of N (i), the formation of measured vector, for different signals,

may consume different number of acquisition cycles. Consequently, the

formation of the reconstruction window for the different signals may not,

in general, be synchronized. Once a reconstruction window is completed,

the boundary detection logic (3.15) is applied for the channel to check if

the just completed reconstruction window had overlapped with a boundary

between two SS segments, in which case, the decisions described in section

3.4.3 are taken and conveyed to the digital demultiplexer block.

3.5.3 Derived Parameters

MOSAICS operating frequency , FMOS

The MOSAICS operating frequency must be greater than or equal to the

maximum of all the Nyquist rates of the individual signals.

FMOS ≥ 2(max
{
F (i), i = 1...γ

}
) (3.16)

Each tick at the MOSAICS operating frequency, FMOS represents a Nyquist

instant in the reconstruction segment of any signal.

Number of samples in reconstruction segment ,N (i)

It is convenient if the number of samples, N (i) in the reconstruction segment

is a multiple of the number β of sampling instants in an acquisition cycle

so that the formation of the measured vector f(i) always coincides with the

end of an acquisition cycle.

N (i) = α(i)β (3.17)

1To carry out the convex optimization, the cvx toolbox is used. This toolbox can be downloaded
from www.cvxr.com/cvx
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where α(i) is an integer. Larger the size, N (i) of the reconstruction seg-

ment, better will be the frequency localization achieved by the STFT and

smaller will be the number of times the computationally expensive convex

optimization is done during the acquisition of any of the signals. However,

it has an upper bound. The window should be narrow enough to make

sure that the portion of the signal falling within it is stationary. In other

words, it should not be so large that the boundary between two SS seg-

ments falls on it which will lead to failure of the sparsity assumption and

consequently the reconstruction itself. Given the minimum duration, L(i)

of an SS segment as input, the following must be satisfied.

N (i)

FMOS
≤ L(i) (3.18)

Eliminating α(i) from (3.17) and (3.18) and introducing the floor function,

integral values of N (i) are given by

N (i) = floor

(
L(i)FMOS

β

)
β (3.19)

where floor(ρ) is the largest integer that is smaller than ρ.

Percentage of overlap between consecutive RSs

The percentage of samples in an RS (except the one which just follows a

boundary between two SS segments), that overlap with the previous RS is

given by

p(i) = (N (i) − µ(i)FMOS)/N (i) (3.20)

Number of measurements in reconstruction segment , M (i)

From1 (2.26)

M (i) ≥ ceil
(

2CK(i)log(N (i)/2K(i))
)

(3.21)

1In the absence of a lower bound on the number of mesurements needed in the case of the simple
measurement matrix used, the corresponding one for the Gaussian matrix has been used. To handle this
issue, a sufficiently large value of 5 is used for the constant C [38] in the simulations
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The factor of 2 along with K(i) takes care of the mirror image in the DFT

spectrum for real signals. It is to be noted here that since a reconstruction

segment is formed with an overlap with the previous RS, the actual num-

ber of samples in the RS is much more than M (i) (which only indicates the

minimum required number). This only improves the reconstruction quality.

Number of conversions in each acquisition cycle , β

Consider the case of a particular acquisition cycle, at the end of which

the reconstruction window and therefore, the measured vectors of all the

γ signals are formed. The reconstruction block has to perform the con-

vex minimization on all the channels in the immediately next acquisition

cycle. Let the total time taken by the reconstruction block for all the

convex optimizations be TRBworst. This is the worst execution time of the

reconstruction block which has to be considered when designing the sys-

tem. The time taken by the reconstruction block is what is available to

the acquisition block for sampling the data that streams through the dif-

ferent analog channels. To cater for the worst case, the duration of the

acquisition cycle can be fixed at TRBworst which in turn implies that

β = FMOST
RB
worst (3.22)

TRBworst depends upon a number of factors:

• Number of signals, γ

• Maximum reconstruction segment size in all signals, N (i)

• Computational capability of the processor performing the convex op-

timizations

A large value of TRBworst, due to non-availability of computational resources

increases the length of the acquisition cycle which is not of very serious

concern, since the additional time in the acquisition cycle is not idle time
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and is utilized in taking new samples. Understandably, the time lag be-

tween acquisition and reconstruction is increased which could be accepted

if the requirements of the application permit so.

3.5.4 Effective Sampling Rate and Utilization Factor

Since γ signals are being acquired and reconstructed simultaneously, each

at the rate of FMOS samples per second, the effective sampling rate of a

MOSAICS unit is

F
(eff)
MOS = γFMOS (3.23)

In a non-multiplexed Nyquist setup, each signal would require a separate

ADC operating at the respective Nyquist rate. The rate of analog to digital

conversions would be

FNYQ = 2

γ∑
i=1

F (i) (3.24)

The benefit under MOSAICS can be quantitatively expressed as the Uti-

lization Factor (UF) defined as

UF =
FNYQ

F
(eff)
MOS

× 100 (3.25)

From (3.16) and (3.24)

UF =

∑γ
i=1 F

(i)

γ(max
{
F (i)

}
)
× 100 (3.26)

If the utilization factor is close to 100, then performance of MOSAICS is

optimal. Clearly, this will be true if F (i) have closeby values, that is all

the signals are similar to each other. In case this is not so, it is possible

to divide the signals into sets based on their bandwidths and allocate a

separate MOSAICS unit to each set. Thus a complete data acquisition

system can have more than one MOSAICS blocks to cater to varied signals.

58



3. Compressed Acquisition of Multiple Sparse Signals

Table 3.1: FREQUENCY CHARACTERISTICS OF THE SIGNALS IN TEST
SET I

SIGNAL 1 SIGNAL 2 SIGNAL 3 SIGNAL 4
Time(ms) Freq.(KHz) Time(ms) Freq.(KHz) Time(ms) Freq.(KHz) Time(ms) Freq.(KHz)

0–23.5 7.2, 8.4, 3.8 0–26.1 4.5, 5.1, 6.3 0–18.5 5.4, 8.1, 9.3 0–32.5 3.6, 6.0, 2.4

23.5-45.3 1.8, 2.3, 7.4 26.1–39.6 1.2, 3.5, 8.3 18.5-41.8 1.8, 4.2, 7.5 32.5-47.8 5.9, 7.1, 8.0

45.3-61.2 5.9, 8.1 39.6-53.2 6.4, 9.7 41.8-58.2 8.6, 9.3 47.8-65.6 2.3, 1.7, 3.2

61.2–78.2 3.9, 7.5, 8.2 53.2-76.5 5.3, 8.8, 9.1 58.2-75.2 2.5, 7.8, 9.1 65.6-78.7 3.5, 7.2

≥78.2 5.6, 6.1, 9.3 ≥76.5 1.6, 3.3, 7.5 ≥75.2 3.3, 6.6 ≥78.7 1.8, 3.1, 4.3

3.5.5 Simulations and Results

The performance of MOSAICS has been evaluated on two different sets of

synthetic test data. Details of the data sets, the assumptions, the plots

and observations are given in the next two sub-sections. The specifications

of the workstation on which the simulations have been carried out are as

follows:

• Processor: Intel, Xeon @2.67 GHz (2 processors)

• RAM: 4 GB (3 GB usable)

• OS: 32-bit Windows 7

• MATLAB: ver 7.9

All the simulations carried out in this research have been done on the same

computational platform.

3.5.5.1 Test Set 1

The time-frequency characteristics of four continuous time PSS signals are

shown in Table 3.1. Measurement noise is simulated by adding white Gaus-

sian noise at the SNR of 20 dB to each signal. [The MATLAB function

awgn is used for this purpose.] The values taken by various input and

derived parameters are given in Table 3.2(see footnote) 1.

1NOTE: continued on the next page
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Table 3.2: INPUTS AND DERIVED PARAMETERS FOR TEST SET I

Input parameters
Number of signals, γ = 4

Signal 1 Signal 2 Signal 3 Signal 4
Bandwidth (KHz) 9.3 9.7 9.3 8
FNY Q in KHz 72.6
Number of tones 3 3 3 3

L(i) in ms 10.0 10.0 10.0 10.0

µ(i) in ms 1.0 1.0 1.0 1.0

Derived parameters

N (i) 200 200 200 200
numO 180 180 180 180

M (i) 46 46 46 46
FMOS in KHz 20
β 20
Effective sampling
rate in KHz

80

Utilization factor 90.75

A snapshot of the reconstructed signal, during the time interval 35 - 50

1. Although FMOS from (3.16) is 18.4 KHz, the value of 20 KHz is chosen since this can be derived
from the system clock. This does not affect the reconstruction and only decreases the utilization
factor.

2. The effective sampling rate is computed considering a Nyquist rate of 72.6 KHz. However, in
practice even with a classical Nyquist setup it is not possible to make use of data converters that
can sample at fractional rates. For this example each of the ADCs must have a sampling rate of
20 KHz and FNYQ will thus be 80 KHz in which case the utilization factor will be close to 100
percent.

3. The minimum number of samples required for reconstruction for each signal is 46. Whenever
there is overlap with the previous reconstruction segment, 180 samples are already available. The
remaining 20 non-overlapping samples are acquired through a series of contiguous acquisition
cycles, since in each such cycle only a fraction of the sampling instants are available for any
particular signal. For instance if all the four signals have to be reconstructed to the same accuracy,
then within each acquisition cycle of 20 sampling instants, randomly chosen 5 instants are available
for each signal. Immediately after a boundary between two SS segments is detected, there can be
no overlap. In this case, a minimum of 46 samples have to be acquired through direct sampling
and will require more number of acquisition cycles than in the overlapping case.

4. The value of L(i) is chosen as 10 ms for all the signals, although the corresponding values are
different for each signal and are more than 10 ms, e.g. in case of signal 1 it is 15.9 ms (the SS
segment 45.3-61.2 ms). This has been done for the sake of simplicity and does not affect the
reconstruction since taking a smaller value is always a more conservative policy because of which
the size N (i) of the reconstruction segment is reduced (see equation 3.19). This will only help in
further ensuring that a PSS boundary is not missed.

5. Based on the assumption of a value of 1 ms for TRBworst, β gets a value of 20 (see equation 3.22)
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ms, is shown in figure 3.3. The plot shows the close match between the

original (black color) and the reconstructed signal (red color). Transition

from one SS segment to another (see 3.1) is manifested as an erroneous

reconstruction, for example around 45 ms in signal 1, 40 ms in signal 2, 42

ms in signal 3 and 48 ms in signal 4.

The erroneous reconstruction is confined to the non-overlapping por-

tion of the reconstruction segment that falls on the boundary between two

SS segments which for this test set is equal to 1 ms (this is equal to the

corresponding µ(i)), a figure that could be tolerated. A quantitative mea-

sure for the deviation between the original signal and the reconstruction is

measured by the Peak Signal to Noise Ratio defined as follows:

PSNR(orig, rec) = 20 log

[
max (orig)

rms (rec− orig)

]
(3.27)

3.5.5.2 Performance of MOSAICS with other reconstruction algorithms

The performance of MOSAICS is verified with three other compressed sens-

ing recovery algorithms - OMP, ROMP and CoSAMP through simulations

on the same set of signals. Figures 3.4, 3.5 and 3.6 give snapshots of the

reconstructed signals for these simulations (during the same time interval

of 35-50 ms as in figure 3.3). Table 3.3 compares the performance of the

different reconstruction algorithms with respect to the deviation from the

original signal and the execution time. The specifications of the compu-

tational platform have already been given at the beginning of sub-section

3.5.5.

The reconstruction accuracy obtained using these algorithms can be

compared with the accuracy of reconstruction of the signal from classical

Nyquist compressed data. The signal in each reconstruction window is

transformed into the Fourier domain. Only as many as coefficients in the

transformed vector as the assumed sparsity in the signal are retained and

the rest made zero and the original signal is recovered from this vector

61



3. Compressed Acquisition of Multiple Sparse Signals

by applying the inverse transform. The original and the reconstructed

signals are shown in figure 3.8. The corresponding PSNR values are listed

in the last column of Table 3.3. It is to be noted from the table that the

performances of BP and CoSAMP are not much behind that obtained in

classical compression.

In order to verify the consistency of reconstruction, MOSAICS was run

for 100 trials with each of the recovery algorithms, using the same set

of signals in each trial. Table 3.4 gives the mean and standard devia-

tion (separated by comma in each cell of the table) of the PSNR values

achieved in the 100 trials with each reconstruction algorithm for each of

the signals. Figure 3.7 gives the histogram plots of the PSNR values of the

reconstructed signal for signal 4. The histograms for the BP and CoSAMP

algorithms have a higher peak and are less spread out. Histograms of OMP

and ROMP have slightly lower peaks and are more spread out indicating

lower reconstruction consistency.

From these results, the following important observations can be made:

1. Independence from recovery algorithm - The basic functionality of

MOSAICS is demonstrated with all the identified recovery algorithms.

2. Accuracy with basis pursuit algorithm - Of all the recovery algo-

rithms, the best reconstruction accuracy is obtained with the BP and

CoSAMP algorithms. However, the performance of the other recovery

algorithms are comparable.

3. Execution time - There is a drastic reduction in execution time with

OMP, ROMP and CoSAMP which is ideally suited for real-time im-

plementation in embedded hardware. Of these algorithms, CoSAMP

guarantees higher consistency of reconstruction.
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Table 3.3: PERFORMANCE OF MOSAICS WITH DIFFERENT RECONSTRUCTION
ALGORITHMS AS PSNR VALUES (in dB).THE LAST COLUMN GIVES THE PSNR
FOR DECOMPRESSED DATA RECOVERED FROM NYQUIST SAMPLED COM-
PRESSED DATA. THE LAST ROW GIVES THE EXECUTION TIME FOR A SIMU-
LATED ACQUISITION TIME OF 80 ms

Signal BP OMP ROMP CoSAMP Decompr.
Signal 1 21.77 11.99 16.81 18.24 24.64
Signal 2 19.39 16.20 14.25 18.83 24.24
Signal 3 19.60 22.70 15.90 19.08 25.90
Signal 4 18.35 12.38 15.00 22.76 25.73
Execution time 253.6 sec 1.37 sec 1.79 sec 1.80 sec -

Figure 3.3: Reconstructed signal (red) over the original signal (black) for four channels
with reconstruction using basis pursuit
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Figure 3.4: Reconstructed signal (red) over the original signal (black) for four channels
with reconstruction using OMP

Figure 3.5: Reconstructed signal (red) over the original signal (black) for four channels
with reconstruction using ROMP
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Figure 3.6: Reconstructed signal (red) over the original signal (black) for four channels
with reconstruction using CoSAMP

Figure 3.7: PSNR histograms for signal 4 with four reconstruction algorithms
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Figure 3.8: Reconstructed signal (red) over the original signal (black) for four channels of
decompressed data obtained from compressed Nyquist samples

Table 3.4: COMPARISON OF MEAN AND STANDARD DEVIATION OF PSNR
FROM 100 TRIALS FOR VARIOUS RECONSTRUCTION ALGORITHMS

Signal BP OMP ROMP CoSAMP
Signal 1 19.96, 1.203 15.76, 2.627 14.79, 1.841 18.73, 1.292
Signal 2 19.93, 1.134 15.01, 3.152 14.88, 1.629 18.50, 1.310
Signal 3 20.44, 0.971 15.17, 2.204 14.36, 1.852 18.95, 1.089
Signal 4 20.73, 1.426 15.68, 2.767 14.28, 1.803 19.59, 1.587
Mean exec time 251.34s 1.18s 1.40s 1.48s

3.5.5.3 Test Set 2

The second test case consists of a set of three monotone signals, in which the

single constituent frequency is confined to a band away from zero frequency.

Such signals are typically found in Doppler radar echoes which are mixed

down to the Intermediate Frequency (IF) range (10-100 MHz). Table 3.5

gives the frequency characteristics of signals in the test set. The signals are

band pass in nature and the exact location of the tones in different intervals

is not known. Therefore, each signal is considered to have a bandwidth of 5

MHz, for example, the band in the case of signal 1 is 30-35 Hz. In a classical
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Table 3.5: FREQUENCY CHARACTERISTICS OF SIGNALS IN TEST SET II

SIGNAL 1 SIGNAL 2 SIGNAL 3
Time(µs) Freq.(MHz) Time(µs) Freq.(MHz) Time(µs) Freq.(MHz)

0–60 30.5 0-70 21.5 0–190 41

60–110 31.4 70-124 23.6 190-230 44.1

110–160 32.3 124–201 21.2 230–280 43.5

160-230 33.4 201-270 24.1 280-320 42.2

≥230 31.2 ≥270 22.8 ≥320 40.5

Nyquist setup one would need to use three ADCs each of sampling rate 10

MHz. Accordingly,

FNYQ = 30 MHz FMOS = 10 MHz F
(eff)
MOS = 30 MHz and UF1 = 100%

The reconstructed signals obtained as MOSAICS outputs are passed

through a low-pass (0-5 MHz) 20-tap filter and the Power Spectral Density

(PSD) of the filtered output is found. A snapshot of the PSD, during

the interval 0-60 µs, is shown in figure 3.9. The peaks are indicated by red

arrows. The peak frequency values for each signal during different intervals

are also listed in Table 3.6. It is clear that during each SS segment the

corresponding peak frequency is accurately detected. Due to the low pass

filtering, the low pass frequency is detected, for example, 30.5 MHz in the

original signal is manifested as 0.5 MHz in the filtered output. This result

suggests that MOSAICS is well suited in applications where exact recovery

of the signal after sampling is not as important as the mere detection of

the prominent frequency component.

3.5.6 Hardware Architecture for Realization of MOSAICS

It is proposed that the hardware design, shown in figure 3.10 consisting

of a single channel ADC and an analog multiplexer can be followed for

realization of MOSAICS. The digital demultiplexer, the convex optimiza-

1One has to accept the fact that the utilization factor does not reflect the effectiveness of the MO-
SAICS setup completely, since its computation depends upon the sampling rates of the ADCs available
for use in the classical Nyquist setup or in the MOSAICS setup. Since ADCs with fractional sampling
rates obtained through computations are not available, the value of UF will vary. In general, as mentioned
before, if the highest frequency components in the different signals are close by, the UF will be high.

67



3. Compressed Acquisition of Multiple Sparse Signals

Table 3.6: MOSAICS OUTPUT (FILTERED) FOR TEST SET II- HIGHEST
FREQUENCY COMPONENT

SIGNAL 1 SIGNAL 2 SIGNAL 3
Time(µs) Freq.(MHz) Time(µs) Freq.(MHz) Time(µs) Freq.(MHz)

0–60 0.5 0-70 1.5 0–190 1.0

60–110 1.4 70-124 3.6 190-230 4.1

110–160 2.3 124–201 1.2 230–280 3.5

160-230 3.4 201-270 4.1 280-320 2.2

≥230 1.2 ≥270 2.8 ≥320 0.5

Figure 3.9: PSD of Filtered MOSAICS output during 0–60 µs

tion blocks, the sampling pattern generator and the boundary detection

logic can be implemented in software running on the processor. Based on

the generated sampling pattern, the channel selection input is given to the

analog multiplexer through the address bus of the host processor. Many

commercially available ADCs have a built in multiplexer. The buffers 1

and 2 exist in the Random Access Memory (RAM). The Direct Memory

Access (DMA) is initialized by the processor to perform a direct memory

transfer from the ADC to the RAM. If multiple MOSAICS blocks exist in

a system, then they can share a common processor, RAM and DMA.
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Figure 3.10: Proposed hardware architecture for realization of MOSAICS

3.5.7 Concluding Remarks on MOSAICS

In this work, MOSAICS, a setup for acquisition and reconstruction of mul-

tiple sparse signals in a multiplexed fashion under a compressed sensing

framework has been proposed. The MOSAICS scheme has the following

features:

i) Single analogue-to-digital converter - A single ADC is used to acquire

more than one signal in a multiplexed fashion. This leads to a reduc-

tion in the number of components used - ADCs and the associated

passive components, in the design of the embedded hardware. This

in turn contributes to saving in cost, reduction in power consumption

and dissipation and compactness of design.

ii) Reconstruction algorithm independent - Any reconstruction algorithm

- Basis pursuit, Matching pursuit or their variants, can be used to

reconstruct the individual signals

iii) Design based on available and realizable components - MOSAICS

can be designed using commercially-off-the-shelf (COTS) components.

There are no components involved which have to be redesigned from

scratch. Any conventional ADC can be used to build the system.
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Table 3.7: FREQUENCY CHARACTERISTICS OF SAMPLE SIGNALS WITH
NON-INTEGRAL NUMBER OF CYCLES IN THE RECONSTRUCTION WIN-
DOW

Signal Frequencies (KHz) η
1 3.454, 4.746 34.5
2 4.628, 6.783 46.2
3 8.5, 9.1 85
4 3.4, 5.8 64

iv) Limited computational requirement - Since the acquisition and recon-

struction operate in parallel, the system can be built even with limited

computational capability in the host processor.

v) No explicit measurement matrix - Unlike traditional compressed sens-

ing hardware, the measurement involves plain random undersampling,

and there is no requirement of complex arrangement for realizing the

measurement matrix.

vi) Reconstruction of noisy signals - Even in the presence of measurement

noise, the reconstruction is fairly good.

3.5.8 Limitation of MOSAICS

On the downside, it is worth noticing a limitation of MOSAICS - the in-

ability to deal with those signals that do not have an integral number of

cycles of one or more than one frequency components, within the recon-

struction window. Consider one of the signals, x(i) that is given as input to

MOSAICS. Let the computed reconstruction segment size of x(i) be N (i).

Suppose x(i) has a component with frequency f. Then the number of cycles

of this component in the reconstruction segment is

η = N (i) f

FMOS
(3.28)

The DFT coefficients of the signal are no longer sparse except in the

(contrived) case when the sinusoid frequencies are such that η is an inte-
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Figure 3.11: Reconstructed signal (red) over the original signal (black) for four channels.
The PSNR for the reconstructed signals are: signal 1:10.0 dB, signal 2: 15.74 dB, signal 3:
28.57 dB, signal 4: 26.36 dB

ger. Otherwise, which is the usual case, there is spectral leakage introduced

due to windowing (sinc convolution) and the signal representation in the

frequency domain is anything but sparse. In such cases the compressed

sensing reconstruction of the undersampled signal will fail. On closer in-

spection, it can be seen that in the case of signals whose frequency charac-

teristics are shown in tables 3.1 and 3.5, η, as given by (3.28),is an integer

for each frequency component. However, this may not be so for general

frequency sparse signals.

To illustrate this point, a MOSAICS reconstruction of such signals is

shown in figure 3.11. Table 3.7 gives the frequency characteristics of four

signals during an arbitrary interval of time. Assuming a MOSAICS operat-

ing frequency, FMOS = 20KHz and a uniform reconstruction window size of
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200 for all the four signals, it can be seen from the table that the calculated

values of the number of samples, η in a reconstruction window, is not an

integer for two of the signals (1 and 2). The corresponding reconstructed

signals shown in figure 3.11 are erroneous and the PSNR values for those

signals are considerably lesser than for the other two. Signals, which have

what shall hereafter be called as non-integral frequency components, will

be dealt with, in the next section.

3.6 Multiplexed Signal Acquisition for General Sparse

Signals

3.6.1 Introduction

Some interesting research efforts towards compressed acquisition of signals

sparse in the frequency domain, without any specific constraint of integral

number of cycles in the reconstruction window, have been reported in the

literature. These approaches accommodate all kinds of frequency-sparse

signals - even those signals with the so-called non-integral frequencies also,

and make available algorithms for reconstructing the original signals from

the undersampled measured vectors. In [68] this is addressed as a gen-

eral compressed sensing recovery algorithm. In this paper it is shown that

by simply changing the signal representation to a zero-padded DFT, the

DTFT of the signal is more closely sampled. Thus the DFT basis is re-

placed by a redundant frame of sinusoids known as a DFT frame. The DFT

frame provides a finer sampling of the DTFT coefficients for an observed

signal x. If w ∈ N denotes the frequency oversampling factor for the DFT

frame, the frequency sampling interval is defined as:

∆ := 2π/wN ∈ (0, 2π/N ] (3.29)
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Also let

e (ω) :=
1√
N

[
1 ejω/N e2jω/N e(N−1)jω/N

]T
(3.30)

denote a normalized vector containing regular samples of a complex sinu-

soid with angular frequency ω ∈ (0, 2π]. The DFT frame with oversampling

factor w is then defined as Ψ (w) := [e(0) e(∆) e(2∆) e(2π −∆)]T . The

corresponding signal representation c = Ψ(w)Tx provides wN equispaced

samples of the signal’s DTFT. Note that Ψ(1) = F, the usual orthonormal

DFT basis. The DFT frame Ψ(w) can be used to obtain sparse approxima-

tions for frequency-sparse signals with components at arbitrary frequencies;

as the frequency oversampling factor w increases, the K−sparse approxi-

mation provided by Ψ(w) becomes increasingly accurate. Unfortunately,

the classical algorithms, like those of compressed sensing, that aim to find

the sparse approximation of the signal in the frame Ψ(w) do not perform

well when w increases due to high coherence between the frame vectors

[69; 70] , particularly for large values of w.

µ(Ψ(w)) =
wN sin(π/wN)

π
→ 1 as w→∞ (3.31)

Because of this the maximum frequency oversampling factor is limited by

the sparsity, K. Coherence of DFT frame can be treated as another man-

ifestation of the spectral leakage problem which has been classically dealt

with by applying a tapered window function to the signal before applying

the DFT [13; 71]. However, windowing interferes with frequency resolu-

tion, making it difficult to resolve closely spaced frequencies. A more recent

alternative to classical spectrum estimation methods is a technique based

on eigen analysis of the signal autocorrelation matrix which gives the line

spectrum of the signal [71]. In order to find the dominant signal modes

in the frequency domain, such algorithms estimate the principal compo-

nents in the signal autocorrelation matrix and provide better resolution of

the parameters of a frequency sparse signal. Example algorithms include
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Pisarenkos method, MUltiple SIgnal Classification (MUSIC), and estima-

tion of signal parameters via rotationally invariant techniques (ESPRIT).

A line spectrum estimation algorithm L(x, K) returns a set of dominant K

frequencies for the input signal x, with K being a controllable parameter.

An algorithm based on MUSIC has been proposed in [68], for recovering a

signal consisting of a sparse set of integral as well as non-integral frequen-

cies and embedded in noise. The next sub-section gives a brief description

of the algorithm.

3.6.2 Signal Reconstruction Based on MUSIC

The method proposed in [68] is a greedy algorithm in which the K promi-

nent frequencies of a frequency sparse signal are estimated from an in-

termediate signal estimate, ˆ̂x by employing MUSIC algorithm, M(ˆ̂x, K).

Subsequently, the DTFT coefficients corresponding to the frequencies are

found, from which the final estimate of the signal is obtained. K is a con-

trollable parameter that determines the level of reconstruction accuracy.

The steps of the algorithm are as follows:

3.6.2.1 Initialization

The initial estimate of the reconstruction segment, ζ̂0 = 0

The initial residue, r0 = f 1

Iteration count, i = 1

3.6.2.2 Intermediate Signal Estimate

The residue is updated.

ri = ri−1 −Φζ̂i−1 (3.32)

1f is the measured vector in (3.3)
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where Φ is the measurement matrix.

An intermediate estimate of the reconstruction segment is obtained.

ˆ̂
ζi = ζ̂i−1 + ΦTri (3.33)

3.6.2.3 The MUSIC algorithm, M(x, K)

Given a signal vector x ∈ RN , let its P × P autocorrelation matrix be

denoted by A. Suppose the eigen decomposition of A gives P eigen val-

ues λ1, λ2, ..., λP and the corresponding eigen vectors, ϑ1, ϑ2, ...ϑP . The

algorithm evaluates a score function:

PMUSIC(ω) =
1∑P

p=K+1

∣∣∣e(ω)Tϑp

∣∣∣2 (3.34)

and returns the locations of the K largest score function peaks as the

frequencies present in the signal. A modification of MUSIC known as Root

MUSIC calculates the peaks from the zeros of a polynomial that depends

upon the noise subspace eigen vectors.

The intermediate estimate,
ˆ̂
ζi of the signal obtained in the previous step, is

given as input to the MUSIC algorithm:

{ωk}Kk=1 ←M(
ˆ̂
ζi, K) (3.35)

3.6.2.4 Estimation of DTFT Coefficients

Once the frequencies are known, the corresponding coefficients are esti-

mated by the Periodogram method [13; 71] which gives the Maximum

Likelihood Estimate (MLE) of the spectral coefficient for any known fre-

quency, ω, as the DTFT coefficient of
ˆ̂
ζ i, at frequency ω:

ĉk =
〈
e(ωk),

ˆ̂
ζ i

〉
(3.36)
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Table 3.8: FREQUENCY CHARACTERISTICS OF THE SIGNALS IN TEST
SET III

SIGNAL 1 SIGNAL 2
Time(ms) Freq.(KHz) Time(ms) Freq.(KHz)

0–23.5 3.68, 6.14, 7.23 0–28.1 1.23, 3.45, 6.10

23.5–49.3 2.45, 6.82, 7.95 28.1–38.2 2.56, 3.80, 5.72

49.3-62.8 2.96, 4.11, 8.34 38.2-56.5 2.10, 4.45, 6.53

62.8–77.4 3.64, 6.94, 8.59 56.5 74.5 5.13, 6.66, 7.60

≥77.4 1.54, 2.71, 9.2 ≥74.5 3.62, 6.30, 8.34

SIGNAL 3 SIGNAL 4
Time(ms) Freq.(KHz) Time(ms) Freq.(KHz)

0–18.5 7.42, 3.75, 8.42 0–32.5 4.52, 3.34, 6.7

18.5-41.8 2.13, 5.34, 8.54 32.5-47.2 2.92, 4.16, 9.2

41.8-58.2 3.74, 6.52, 8.30 47.2-65.2 1.46, 4.2, 5.62

58.2-75.2 1.55, 5.62 65.2-79.2 3.58, 6.23

≥75.2 3.34, 7.16 ≥79.2 1.89, 5.22, 6.46

3.6.2.5 Estimate the Signal

Finally the signal is estimated

ζ̂i ←
K∑
k=1

ĉke(ωk) (3.37)

The steps are repeated in an iterative manner, until some halting criterion,

like desired reconstruction accuracy, is satisfied.

3.6.3 Modification in MOSAICS

General sparse signals with the so-called non-integral frequencies are in-

corporated into the MOSAICS framework by substituting the convex opti-

mization step with the greedy reconstruction algorithm based on MUSIC

introduced in subsection 3.6.2. The new acquisition and reconstruction

scheme shall be called MOSAICS with MUSIC.
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Figure 3.12: Original signals (black) of test set III and a snapshot of the reconstruction
(red) using MOSAICS with MUSIC. The PSNR values for the reconstructed signals are: for
signal 1:16.30 dB, for signal 2: 17.23 dB, for signal 3: 15.63 dB, for signal 4: 19.42 dB

3.6.4 Simulation and Results

Simulation is carried out for an interval of 100 ms, on a signal set similar

to that in subsection 3.5.5 with the inclusion of ’non-integral’ frequencies.

The frequency characteristics of the signals in the set are given in Table

3.8. Since the signal set is very similar to that given in 3.5.5, except for the

inclusion of the non-integral frequencies the input and derived parameters

will be the same as in Table 3.2 and are not repeated here. White Gaussian

noise at a Signal to Noise Ratio (SNR) of 20 dB is added to the signal in

the buffer at the end of every acquisition cycle to simulate measurement

noise. A snapshot (figure 3.12) of the reconstruction during a small interval:

10-25 ms shows how closely the reconstructed signal matches with the

original signal. As before, there is a small but noticeable deviation at the
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boundary between the SS segments. The PSNR values shown below the

figure indicate a marked improvement in the reconstruction accuracy when

compared with the reconstruction for the top two signals, in figure 3.11.

3.6.5 Concluding Remarks on MOSAICS with MUSIC

The MOSAICS framework proposed in section 3.5, offers an efficient sens-

ing and reconstruction mechanism for sparse signals by using lesser number

of components in the embedded hardware. However, its inherent limitation

came to light, for the case when general sparse signals with ’non-integral’

frequencies are given as input. In subsection 3.6.2, it has been shown that

a greedy reconstruction algorithm based on MUSIC can alleviate the prob-

lem. The algorithm can seamlessly be incorporated into the MOSAICS

architecture. The new algorithm can be used on the same hardware design

that was proposed in subsection 3.5.6. Only the software that executes in

the processor has to be changed. Substitution of the reconstruction algo-

rithm by an alternative one suggests that within the MOSAICS scheme, one

can have different reconstruction methods for different signals depending

upon the characteristics of the signal. Thus, spectral compressive sensing

methods [68] based on MUSIC algorithm have been married together with

MOSAICS to deliver a better algorithm albeit more computationally inten-

sive owing to the introduction of MUSIC based reconstruction of the signal.

Implementation of the algorithm on modern fast processors running highly

optimized code can address the issue of computational complexity. With

the capability of handling non-integral frequency, the enhanced MOSAICS

algorithm provides a general purpose acquisition system for capturing mul-

tiple signals within a compact hardware design.
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3.7 The Frequency Detection Problem

3.7.1 Introduction

Many applications in science and engineering call for the detection of a

single frequency tone, usually a sinusoid, buried in noise. Radar, commu-

nications, seismology and biomedical fields are a few examples. In such

applications, although the unknown signal might have quite a few compo-

nent frequencies, the prominent frequency is of interest, opening up the

possibility of reformulating the problem as a sparse recovery problem, in

particular compressed sensing. Since the emphasis is primarily on the de-

tection of the prominent few frequencies, rather than the reconstruction of

the signal itself, there are two immediate ramifications:

i) Heavy undersampling can be tolerated

ii) Detection under low SNR1 may be possible

Thus, the MOSAICS with MUSIC scheme could be employed to detect a

few frequency tones (can be non-integral also) embedded in a noisy signal.

Detection of sinusoids buried in noise is an age-old problem which has

been addressed in innumerable number of publications [72; 73]. The work

presented in this thesis does not claim better performance than any of

these approaches. The emphasis here, is mainly to treat the problem from

a compressed sensing perspective in which a simultaneous undersampling

is performed on multiple signals.

3.7.2 Simulation and Results

The test set taken is similar to those in the previous two sections where

four signals are acquired in a multiplexed fashion. Table 3.9 gives the fre-

quency characteristic as well as the detected frequencies for each signal.

1Signal-to-Noise Ratio
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Table 3.9: FREQUENCY CHARACTERISTICS OF THE SIGNALS IN TEST
SET IV AND DETECTED FREQUENCIES, AT DIFFERENT SNR

SIGNAL 1

Time (s) Freq (Hz)
Detected Frequencies at various SNR in dB

-5 0 5 10 15 20

0–8 4.2 4.16 4.18 4.2 4.19 4.2 4.2

8–17 8.7 8.69 8.69 8.7 8.7 8.7 8.7

17–28 6.3 10.2 6.3 6.3 6.3 6.3 6.3

28–35 16.9 16.5 16.8 16.9 16.9 16.9 16.9

≥35 13.4 13.4 13.4 14.1 13.41 13.4 13.4

SIGNAL 2

Time (s) Freq (Hz)
Detected Frequencies at various SNR in dB

-5 0 5 10 15 20

0-7 5.6 5.75 5.57 5.6 5.6 5.6 5.6

7-14.8 11.9 11.5 11.2 11.2 11.1 11.2 11.2

14.8-23 7.9 7.9 7.87 7.9 7.9 7.9 7.9

23-31 17.5 17.5 17.5 17.5 17.5 17.5 17.5

≥31 14.9 18.3 14.9 14.9 14.9 14.9 14.9

SIGNAL 3

Time (s) Freq (Hz)
Detected Frequencies at various SNR in dB

-5 0 5 10 15 20

0-11.4 10.5 11.4 10.6 10.5 10.5 10.5 10.5

11.4–19 4.4 4.3 4.45 4.4 4.39 4.4 4.4

19-25 9.1 7.05 17.9 8.4 8.1 9.0 9.0

25-32.6 15.6 15.7 15.5 15.5 12.4 15.6 15.6

SIGNAL 4

Time (s) Freq (Hz)
Detected Frequencies at various SNR in dB

-5 0 5 10 15 20

0–9.5 8.5 16.8 8.5 8.5 8.5 8.5 8.5

9.5-16.7 11.2 11.1 11.1 11.2 11.2 11.2 11.2

16.7–29 18.4 15.2 19.5 19.3 18.35 18.4 18.4

29-37.5 15.6 9.32 15.4 17.4 15.2 14.8 16
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Figure 3.13: Snapshot of signal 2 of Table 3.9 at an SNR of 5 dB during 0–1 sec

The first and second columns in the table give the frequency character-

istic of the signals in various time intervals. The signals are monotones,

but in general MOSAICS with MUSIC will work with signals with a few

more component frequencies, as long as there is sufficient sparsity. The

subsequent six columns give the detected frequencies at various SNR levels

in dB. Additive white Gaussian noise at various SNRs from -5 dB to 20

dB is added to signal in the buffer at the end of every acquisition cycle

to simulate measurement noise. A snapshot of signal 2 at an SNR of 5

dB, is shown in figure 3.13 for the first one second of acquisition. The

table clearly indicates that as the SNR increases the frequency is detected

more accurately. However, even at very low SNR, the detection accuracy

is reasonably high.

3.7.3 Detection of FM carrier frequency

In order to put to test the frequency detection scheme using MOSAICS to

real world signals, FM modulated signals have been considered. To this

end, four different audio music signals sampled at 44.1 KHz, with 16 bit
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samples, have each been modulated with carrier signals centered at four

different frequencies: 87.5 MHz, 92.5 MHz, 98.3 MHz and 102.7 MHz. In a

simulation of 10 s, the carrier frequency in each channel is altered once in

every 100 ms, to a random value within ± 100 kHz of the center frequency.

Furthur, the modulated signals have been corrupted with additive noise

at an SNR of 5 dB. The objective is to ascertain whether it is possible to

detect the change in carrier frequency or ‘tune’ to it. Figure 3.14 shows

the detection of carrier frequency with time, in each channel, as scatter

plots (the red dots) about the changing carrier frequency (the solid blue

line in the middle). Figure 3.15, which plots the first 1000 samples of the

modulated signal in channel 1, has been included to give a feel of the level

of noise in the signals.

Figure 3.14: Detection of carrier frequency in FM signals with noise at 5 dB SNR. The
carrier frequency changes by 100 kHz on either side of the central frequency once in every
100 ms
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Figure 3.15: First 1000 samples of channel 1 at 5 dB SNR noise

3.8 Conclusion

Compressed sensing provides means of acquiring and reconstructing sparse

signals at rates substantially lower than Nyquist rates. The entire machin-

ery of compressed sensing works in a non-adaptive fashion. Majority of the

reconstruction algorithms operate on undersampled vectors, that represent

the entire signal. In this research, an attempt has been made to explore

compressed acquisition and reconstruction of continuous streaming data.

Full stationarity in practical signals is unrealistic and after obtaining an ini-

tial estimate of signal coefficients in the sparsity inducing basis, acquisition

and reconstruction becomes superfluous, as no new knowledge is gained.

Non-stationary signals cannot be captured well under a compressed sensing

framework, for sparsity assumption will not hold good even for any length
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of reconstruction. Assumption of piecewise stationarity is reasonable, for

any real world signal can be assumed to be stationary in a finite interval

of time that is small compared to the total duration of acquisition. With

such an assumption, compressed acquisition of non-stationary signals can

be managed, with the reconstruction error being confined to a very small

duration at the point where the signal transits from one stationary segment

to the other.

The issue of non-stationarity having been addressed, the next question

that was put forth is whether in a classical compressed sensing appara-

tus, is the full sampling capacity of the analogue-to-digital converter being

utilized ? Could the idle sampling instants of the ADC, resulting from

undersampling, be utilized to capture more than one signal ? This gave

rise to the idea of multiplexed acquisition of multiple signals, in which a

single ADC samples many signals. In typical embedded data acquisition

systems, this would reduce the number of components in the board design,

thereby contributing to reduction in size, power requirement and cost. The

MOSAICS (Multiplexed Optimal Signal Acquisition Involving Compressed

Sensing) scheme that has been proposed to capture this concept, can be

easily realized using COTS devices.

The MOSAICS scheme was able to handle signals with component fre-

quencies that had integral number of cycles in a reconstruction segment.

This limited the application of MOSAICS to practical real world signals.

To overcome this problem, the convex optimization in the signal recon-

struction was replaced by a greedy algorithm that depends on MUSIC to

detect the prominent frequencies. MOSAICS with MUSIC is able to handle

a wider class of signals.

Next, the improvised scheme was applied to a closely related problem of

detecting sinusoids buried in heavy noise. Since the detection of sinusoid

frequencies is a simpler problem as compared to signal reconstruction, it

can be managed well by compressed under-sampling, even with a few mea-
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surements on the signal heavily corrupted with noise. The benefits of the

multiplexed acquisition schemes introduced in this chapter are summarized

as follows:

1. Optimal utilization of ADCs

2. More compact embedded hardware designs with lesser number of

ADCs and the associated circuitry

3. Acquisition of continuous streaming data

4. Designs based on COTS components: no special design of the ADC,

conventional ADCs can be used

5. Proposed architecture is independent of the reconstruction algorithm

6. Signals with non-integral frequency components can also be handled

A pertinent question at this juncture is whether Fourier sparsity is the

only type of information redundancy in a set of signals. Individually, a

signal may not be sparse on any basis, yet there may exist some kind of

inter-signal relationship that may have the potential to cause information

redundancy. Can compressed acquisition machinery leverage upon this

redundancy in information, to reconstruct the signals, after a sub-Nyquist

sampling is performed on them? Exploration of such possibilities is the

content of the next chapter.
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Chapter 4

Compressed Acquisition of

Correlated Signals

4.1 Introduction

Very often applications in science and engineering encounter signals which

do not have adequate sparsity, to be candidates for compressed sensing.

Nevertheless, there arise situations in which a group of signals, not nec-

essarily sparse, but having similar characteristics, have to be sampled si-

multaneously. Although, individually each signal may be information-rich,

forbidding the use of an under-sampling strategy, there could be consider-

able redundancy of information in the group as a whole. In other words,

the knowledge of a few signals in the group, at any instant of time, could

enable us to predict other signals at that instant. Needless to say, a set of

correlated signals is the most straightforward example of such signals. Ap-

plications in which such signals are commonly found are distributed sensor

networks, multi-sensor data fusion and biomedical signals to name a few.

Signals from different sensors, sensing the same physical process, are inter-

related by virtue of spatial or temporal correlation. In some applications

sensors may be monitoring different physical parameters but may still be

related due to common phenomenon driving the signals. This is true for

some avionics flight data that are sent to ground telemetry stations for

post flight analysis.
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Distributed Compressed Sensing (DCS) is the name given to a whole

range of sampling and reconstruction algorithms that deal with the com-

pressed sensing of an ensemble of signals having intra- and inter signal cor-

relations. The DCS theory rests on the concept of joint sparsity of a group

of signals. In recent years, researchers have addressed DCS as a Multiple

Measurement Vector (MMV) problem. Chen and Huo [74] have given a

thorough elucidation of the MMV problem in which, given a matrix whose

columns are measured vectors that are projections of the source vectors on

an overcomplete dictionary, the source matrix is recovered. The authors

extend the classical single measurement vector (SMV) case to MMV, with

respect to recovery algorithms like convex optimization and orthogonal

matching pursuit. Zhang and Rao [75] have demonstrated their approach

based on a block sparse Bayesian learning framework, in cases where the

source vectors are temporally correlated, with good results. However, they

make a key assumption of common sparsity amongst measured vectors

(MV), which is valid only if the number of MVs is small. Reconstruction

of two correlated sequences, in which the second sequence is the sum of

the first sequence plus an additional innovation, has been handled deftly in

[76] by making use of the expectation maximization (EM) algorithm. The

method depends on the a priori knowledge of the spectral characteristics

of the innovation component.

In this research, the focus is on real-time acquisition of streaming data

from multiple sources that possess joint sparsity. Further, the reconstruc-

tion process does not have any a priori information about the signals.

The correlation structure is incrementally learnt by the system. Within a

relatively short period of time, the learning process is complete and subse-

quently, all the N signals are acquired using only M < N ADCs. Unlike

the methods proposed in the cited literature, the problem is treated as one

of Single Measurement Vector (SMV), in which a single MV comprises the

signal samples, at any instant from multiple sources. Before a detailed
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description of the proposed idea is initiated, a brief introduction to the

concept of joint sparsity is given in the next section.

4.2 Joint Sparsity

The notion of signal sparsity on any basis can be generalized to the joint

sparsity of an ensemble of signals. Joint sparsity of a set of signals, is nicely

captured by means of the Joint Sparsity Models (JSMs) introduced in [77].

The authors also give examples of applications in support of each of the

models. Some of the information in these papers is reproduced verbatim

below, to prevent loss of clarity.

4.2.1 JSM 1: Sparse Component + Innovations

Consider N signals x(i), i = 1...N . Let each x(i) ∈ RD 1. Let Ψ represent

a basis for RD in which x(i) can be sparsely represented. All the N signals

share a common signal component, Z and each individual signal has a

separate innovation component, I(i).

x(i) = Z + I(i) (4.1)

Z has a sparse representation on the basis represented by Ψ

Z = ΨcZ (4.2)

‖cZ‖0 = KZ (4.3)

1It is to be noted that undersampling each individual signal separately is not the objective; rather
the aim is to sample only a subset of the N signals in the ensemble at every sampling instant. Thus, the
vector that is reconstructed through compressed sensing has N elements and not D.
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KZ is small. Similarly,

I(i) = Ψc(i) (4.4)∥∥∥c(i)
∥∥∥

0
= Ki, i = 1...N (4.5)

Each of Ki is also small. Thus while the same sparse set of coefficients, cZ

represents the common component in each of the N signals, a different set

of coefficients c(i) represent the innovation component in each signal.

A practical situation well-modeled by JSM-1 is a group of sensors mea-

suring temperatures at a number of outdoor locations throughout the day.

The temperature readings x(i) have both temporal (intra-signal) and spa-

tial (inter-signal) correlations. Global factors, such as the sun and prevail-

ing winds, could have an effect on Z that is both common to all sensors

and structured enough to permit sparse representation. More local factors,

such as shade, water, or animals, could contribute localized innovations I(i)

that are also structured (and hence sparse). A similar scenario could be

imagined for a network of sensors recording light intensities, air pressure,

or other phenomena. All of these scenarios correspond to measuring prop-

erties of physical processes that change smoothly in time and in space and

thus are highly correlated.

4.2.2 JSM 2:Common Sparse Component

In JSM 2 all the N signals are constructed from the same sparse set of

basis vectors but with different coefficients. That is,

x(i) = Ψc(i), i = 1...N (4.6)

Each c(i) has non-zero elements only at the common set of indices, Ω ⊂
{1...D} with K = |Ω| being a small value. Hence, all signals have the

same l0-norm equal to K, and all are constructed from the same K basis

elements but with arbitrarily different coefficients.
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A practical situation well-modeled by JSM-2 is where multiple sensors

acquire replicas of the same Fourier-sparse signal but with phase shifts and

attenuations caused by signal propagation. Another useful application for

JSM-2 is MIMO communication [78].

4.2.3 JSM 3: Non-sparse Common Component + Sparse Inno-

vations

JSM 3 is an extension of JSM 1 in which the common component is not

necessarily sparse on any basis, which is to say that KZ may not be small

but Ki for i = 1...N are small. In this case individual CS reconstruction

of the signals is not possible.

A practical situation well-modeled by JSM-3 is where several sources

are recorded by different sensors together with a background signal that

is not sparse in any basis. Consider, for example, an idealized computer

vision-based verification system in a device production plant. Cameras

acquire snapshots of components in the production line; a computer system

then checks for failures in the devices for quality control purposes. While

each image could be extremely complicated, the ensemble of images will

be highly correlated, since each camera is observing the same device with

minor (sparse) variations.

Many other signal models have been considered by different authors

in the area of simultaneous sparse approximation [78; 79; 80]. In this

setting, a collection of sparse signals share the same expansion vectors

from a redundant dictionary.

Each of the JSMs proposes a basic framework for joint sparsity among

an ensemble of signals and are intentionally generic. In this research a

variant of JSM 3, which is named as JSM 4 is introduced.
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4.2.4 JSM 4: Non-sparse Common Component + Non-Sparse

Innovations

JSM 4 is an extension of JSM 3 with the additional generalization that

even the innovation components need not necessarily be sparse. In other

words, each of Ki need not be small. To compensate for this generalization,

it is assumed that the coefficients,c(i) of the innovation components in the

basis Ψ are small (say 10%) compared to those of the common component.∥∥c(i)
∥∥
∞

‖cZ‖∞
≤ 0.1,∀i (4.7)

where ‖v‖∞ denotes the maximum norm of a vector, v ∈ RD defined below:

Definition:. The maximum norm of a vector v is defined as

‖v‖∞ := max (|v1|, |v2|, ..., |vD|)

Thus, in a set of correlated signals, the innovation components can be

viewed as noise present in individual signals. Multiple correlated mea-

surements of a physical process polluted with measurement noise at the

individual sensors is a real world situation which can fit into this model.

4.3 Sparsity Inducing Basis

Inter-signal correlation having been identified as the property that could

cause information redundancy, a suitable sparsifying transformation that

captures this property needs to be chosen. Let X ∈ RT×N be the signal

matrix, whose columns are indexed by the N correlated signals and whose

rows index T successive sampling time instants, τ1, τ1 +TS, τ1 +2TS, ..., τ1 +

(T − 1)TS where TS = 1/FS. FS is the maximum sampling rate of each of

the N ADCs sampling each of the signals 1. Since X is real, its covariance

matrix denoted by ΣX is symmetric and its eigen vectors, en are orthogonal.

1FS ≥ 2F , where F is the real interval in which the constituent frequencies are present

92



4. Compressed Acquisition of Correlated Signals

Consequently, one can construct an orthogonal matrix Ψ = [e1, e2, ..., eN ],

such that

ΣXΨ = ΨΛ (4.8)

where Λ is a diagonal matrix consisting of the eigen values, λ1, λ2, ..., λN

corresponding to the eigen vectors, e1, e2, ..., eN . The transpose of the

matrix Ψ is known as the Karhunen Loeve Transform,

κ = ΨT (4.9)

that can be used to transform each vector from a set of correlated vectors

onto a basis in which they are highly decorrelated. KLT [81; 82] is a well

known reversible linear transformation that removes redundancy in signals

by decorrelating them. It has been extensively used in image compression

wherein the correlation between neighboring pixels is exploited.

Let yτ1+(p−1)TS represent the transpose of the pth row of the matrix X,

corresponding to the sampling instant τ1+(p−1)TS comprising the samples

from the signal sources. Clearly, yτ1+(p−1)TS can be expressed as

yτ1+(p−1)TS = Ψc (4.10)

where c is the coefficient vector1. On account of the correlation between

the signals, c will be sparse, or equivalently, |c|0 will take a small value.

Let yτ1+TTS be a column vector of samples from the N signal sources,

at the sampling time instant τ1 + TTS which is the next sampling instant,

after those that have been considered in the computation of ΣX. Suppose

at this time instant, samples from only M < N sources are taken. The

measured vector f is given by

f = Φyτ1+TTS (4.11)

where Φ, as before is the M × N measurement matrix comprising rows,

1c must be written with a superscript of τ1 + (p− 1)TS , however it is omitted here for simplicity
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randomly, picked up from the identity matrix, IN . Again from (4.10) and

(4.11),

ΦΨc = f (4.12)

Assuming that the correlation structure of the signal ensemble does not

change at the time instant τ1 + TTS, c will be sparse and a compressed

sensing reconstruction would be able to estimate it.

ĉ = argmin
∥∥∥c′∥∥∥

1
subject to ΦΨc

′
= f (4.13)

From ĉ, yτ1+TTS can be estimated using (4.10)

ŷτ1+TTS = Ψĉ (4.14)

4.3.1 The CS-tuple

The elements of the CS-tuple can be clearly identified as follows:

• Ψ is the transpose of the KLT matrix κ

• Φ is the downsized identity matrix, I
(M)
N

• Ξ is l1 minimization using basis pursuit1 (3.8)

4.4 ARCS:Acquisition and Reconstruction of Corre-

lated Signals

In this research work, a scheme is proposed for the acquisition and re-

construction of correlated signals. Given streaming data from N signal

sources as input, ARCS captures the data using only M < N analogue-

to-digital-converters. The acquisition starts off with only M signals and

after a relatively short duration is able to acquire all the N signals as the

1This is not essential since the proposed method is independent of the reconstruction algorithm
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correlation structure of the signals is incrementally learnt. The following

subsections give the details of the algorithm execution.

4.4.1 Objective of ARCS

The objective of ARCS is to acquire and reconstruct N correlated signals

using M < N ADCs after an initial learning phase.

4.4.2 Input

Input to ARCS is streaming data from N correlated signal sources of the

JSM-4 class. The constituent frequencies of the common component and

the innovation components are real numbers in the interval [0 F ]. Let

FS > 2F be the sampling rate of each of the M ADCs.

4.4.3 Initialization

At any sampling instant, the signals can be divided into two subsets:

• The familiar subset, F consists of all the signals whose correlation

structure has been learnt by ARCS.

• The stranger subset, S consists of all the signals whose correlation

structure is yet to be learnt by ARCS.

At the start of the acquisition, that is t = 0, F = {} and S consists of all

signals to be acquired.

4.4.4 Signal Acquisition and Learning

i) To start with, M signals are randomly chosen from S to form the set

K , the set of entrants. The M signals in K are sampled using the

M ADCs at a sampling period, TS = 1/FS. After T sampling instants,

a T ×M signal matrix, X(M) is formed. After several sampling cycles,
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the inverse KLT (4.8, 4.9,4.10) of X(M) converges 1. This completes

the first convergence cycle . Let the inverse KLT matrix be denoted

by Ψ(M). At this point, the M entrants are moved from the stranger

set to the familiar set,

S = S −K (4.15)

F = F ∪K (4.16)

and the cardinality of |F | = M .

ii) From the immediate next sampling cycle onwards, at every sampling

instant, one out of the M signals in F is randomly picked up to be

omitted2. The remaining M −1 signals in F are sampled using M −1

ADCs. Since only M − 1 signals are actually sampled, the full set of

M signals in F are estimated through a compressed sensing recovery

operation as given in equations 4.13 and 4.14. This is done using

the inverse KLT matrix, Ψ(M) calculated previously. The measured

vector, f consists of the M − 1 samples measured through ADC and

the measurement matrix Φ is derived from the Identity Matrix IM by

omitting the row corresponding to the signal that is not sampled.

iii) Since only M − 1 ADCs are used, there is one ADC free. Let α ∈ S

be a new stranger randomly chosen from S to form the set of en-

trants, K , now containing only one element. The free ADC is used

to sample α. Thus at each sampling instant, M − 1 signals in F are

obtained by direct measurement, one signal (that was omitted) in F

is estimated through compressed sensing reconstruction and another

stranger signal, α is obtained by direct measurement. In other words

with only M ADCs, samples of M + 1 signals are obtained. With suc-
1Inverse-KLT convergence is detected, when the RMS difference between the vectors formed out of

the corresponding eigen values at successive time instants is below a small threshold.
2There is no hard and fast rule that one has to take only one signal out. The scheme will work even if

more than one are taken out and replaced by new ones. The intention behind taking one out is to ensure
that the system learns the correlation in the signals smoothly.
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cessive sampling cycles, the signal matrix X(M+1) with M+1 columns,

and increasing number of rows, is formed.

iv) After several such sampling cycles, the inverse-KLT, Ψ(M+1) of order

M + 1 converges and the newcomer,α is moved from the stranger

set, S to the familiar set, F as in (4.15) and (4.16). At this point,

|F | = M + 1. This completes another convergence cycle .

v) From the next sampling cycle onwards, two out of the M + 1 signals

in F are omitted out of direct measurement, which means again only

M − 1 familiar signals are measured using M − 1 ADCs. Samples

in F are estimated through compressed sensing reconstruction. The

one ADC left is used to sample another stranger. This continues until

convergence of the inverse-KLT of order M+2 after which the stranger

is again admitted into F as in (4.15) and (4.16).

vi) This process continues until all the signals are transferred from S to

F . After this, the KLT convergence step is no longer required. M out

of the N signals in F are sampled using only M ADCs. Samples of the

remaining N −M signals are estimated through compressed sensing

with the help of the inverse KLT matrix of order N .

A detailed listing of the algorithm is given in Appendix B.

4.5 Simulation and Results

The performance of ARCS has been evaluated through simulation. The fol-

lowing subsections give a description of test signals, the derived parameters

required as input to ARCS and the simulation results.

4.5.1 Test Signals

The ARCS system that has been simulated has M = 5 ADCs. The in-

put to the system consists of N = 10 signals of the JSM-4 class, each of
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which have Ki frequencies in the innovation component and the common

component has KZ frequencies1. For the common as well as the innovation

components, the frequencies are real numbers in the interval 5 − 10 Hz.

FS is equal to 20 Hz (see footnote for section 4.3). The amplitudes of the

constituent frequency components are real numbers chosen randomly such

that (4.7) is satisfied.

Figure 4.1: Reconstructed signal (shown in red color) is plotted against the original signal
for four channels, 1, 4, 6 and 8 during the interval 35-40sec. The corresponding PSNR values
in dB are: 25.6, 23.3, 22.6 and 24.0.

4.5.2 Simulation

The acquisition and reconstruction are simulated for a duration of 100

seconds. Snapshot (figure 4.1) of the reconstruction (red color) is plotted

against the original (black color) for four out of the ten signals, in the

1Ki and KZ are each equal to 50 in the simulations
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time interval 35-40 sec. The reconstructed and the original signals show a

very close match. It is asserted here, that the same degree of matching is

exhibited for all the signals, throughout the simulation of 100 sec; although

the plot for only four signals, in a 5 sec interval, is shown for brevity. The

selection of the four signals chosen for display is also arbitrary.

In figure 4.2 is shown what can be called the ‘Learning curve’ of the sys-

tem. This curve shows how the ten signals are incrementally introduced to

ARCS and the correlation structure of the signals is learnt. Since initially,

the number of signals picked up from the stranger set is equal to the num-

ber of ADCs (M = 5), at around 6 sec, the first inverse-KLT convergence

of the first five signals takes place (each of the signals 1, 2, 3, 4, 5 are in-

dicated by a square of different color). Subsequently, as each new signal is

introduced there is an inverse-KLT convergence on a close-to linear learn-

ing curve. All ten signals are learnt by the system by 40 sec, subsequent

to which all of them together are acquired with only five available ADCs.

After this point, the acquisition and reconstruction continue without the

inverse-KLT convergence step and there is no more learning taking place.

The cvx toolbox has been used to carry out the l1 minimization.

4.5.3 Robustness of ARCS

In order to probe into the robustness of ARCS, the common component in

the same test data is changed twice to have a different set of constituent

frequencies and amplitudes in the middle of the simulation, at sampling

time instants of 60 sec and 80 sec. The innovation components remain

unchanged. As a result of this non-stationarity, the Fourier sparsity is lost.

However, for compressed sensing since it is the signal correlation (which

is still maintained even after change in the frequency spectrum) that is

made use of, the reconstruction quality does not deteriorate as indicated

by the corresponding PSNR values for four signals (in the portion after

introduction of the non-stationarity) in Table 4.1. Since the correlation
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Figure 4.2: Under the ARCS scheme 10 correlated signals are acquired using 5 ADCs.
The curve shows how the correlation structure is incrementally learnt by the system. The
y-axis gives the total number of signals learnt at any time. The colored squares represent
each of the signals. At 0 s all the signals are strangers; at around 6 s signals 1, 2, 3, 4, 5
are introduced; at around 12 s signal 6 becomes a familiar signal and the total number of
familiar signals is 6. This continues until around 41 s when signal 10 becomes familiar.

structure has already been learnt by the system before the instant the

non-stationarity is introduced, the reconstruction proceeds fairly well.

4.6 Conclusion

ARCS is a technique for real time capture and reconstruction of a set of

streaming signals with joint correlation properties, using fewer analog to

digital converters. This section is concluded with a listing of the advantages

Table 4.1: PSNR VALUES (IN dB) OF THE RECONSTRUCTED SIGNAL IF THE
COMMON COMPONENT IN THE ORIGINAL SIGNAL IS REINITIALIZED

Signal 1 Signal 4 Signal 6 Signal 8

After 60 sec 22.7 21.8 24.3 23.5
After 80 sec 25.8 22.7 21.1 21.5
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offered by ARCS.

i) Support for non-sparse signals - It has been demonstrated through

simulation, that a collection of signals, even though individually non-

sparse, can be compressively sampled and reconstructed employing

fewer ADCs. The JSM-4 model that has been introduced does not

impose sparsity constraint on either the common component or the

innovation components.

ii) Robustness with respect to non-stationarity - Once the correla-

tion structure of the signals is learnt by ARCS, even if the frequency

characteristics of the common component change, ARCS is able to

reconstruct the signals.

iii) Invariance to CS recovery algorithm - ARCS does not depend on

any particular compressed sensing recovery algorithm used. Although

ARCS employs l1-minimization with basis pursuit, CS recovery can

equally well be done by other methods like matching pursuit, which

could be faster but possibly less accurate. Essentially, the execution

time of ARCS depends on the CS recovery method used. Thus, a

faster algorithm can equally well be plugged into ARCS, to speed up

its execution.

iv) Practical measurement matrix - As with other compressed acqui-

sition strategies proposed in this research, the measurement matrix

Φ is very straightforward. At every sampling instant, it is just the

downsized identity matrix, in which some of the rows are absent cor-

responding to the signals that are omitted from measurement. Thus

the measured vector comprises samples of some of the signals obtained

from direct measurement by ADCs. With this arrangement, the sam-

pling architecture is quite simple and general, thereby having the po-

tential to support a variety of applications.
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Although the performance capability of ARCS has been demonstrated with

the help of simulation results, it is meaningful to explore the possibility

of employing the technique to some practical application. This research is

directed towards design of compact avionics data acquisition systems; how-

ever, the scope of using ARCS in an unrelated area of biomedical signal pro-

cessing need not be overlooked, if there is a promise. Signals captured from

the human scalp through multiple electrodes of Electro-EncephaloGraph

(EEG) are known to be heavily correlated. Is it possible to perform an

EEG clinical trial, using fewer EEG amplifiers than in a system that is ig-

norant of the inter-signal correlation ? The remaining part of this chapter

is an attempt to answer this question.

4.7 Compressed EEG Acquisition using Estimated

Channel Correlation

4.7.1 Electroencephalography

Electroencephalography [83; 84] is the neurophysiological measurement of

the electrical activity of the brain using electrodes placed on the scalp (fig-

ure 4.3). The resulting record (signal) is known as electroencephalogram

(EEG) and each EEG channel represents an electrical signal (post-synaptic

potentials) from a large number of neurons. The EEG is a non-invasive

procedure used for diagnostic purposes. Instead of electrical currents, the

voltage differences between different parts of the scalp (brain) are observed.

EEG measurements allow both time–domain and frequency analysis. The

following important frequency bands have been identified in the EEG sig-

nal:

• delta: 0.1 - 3.5 Hz (deep sleep, pathological when awake )

• theta: 4 - 7.5 Hz (creativity, falling asleep)
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(a) 10-20 system. Courtesy: Wikipedia (b) 10-10 system Courtesy: Physionet

Figure 4.3: EEG electrode placement systems

• alpha: 8 - 13 Hz (relaxation, closed eyes)

• beta: 14 - 30 Hz and more (concentration, logical and analytical think-

ing)

• gamma: 30 - 100 Hz (simultaneous processes)

These values have been taken from [85] and shall be used in reporting the

results of simulations.

4.7.2 Standards for EEG electrode placement

The first internationally accepted standard for electrode placement is the

10/20 system (figure 4.3a) that describes head surface locations via relative

distances over the scalp between cranial landmarks. The primary purpose

of this standard is to provide a reproducible method for placing a relatively

small number (typically 21) of EEG electrodes for various trials. With the

advent of multi-channel EEG systems, the need was felt for extending

the 10/20 system to higher density electrode settings for use in research

and diagnosis. This led to the introduction of the 10/10 system (figure
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4.3b) by Chatrian et. al. in 1985, consisting of 64 electrodes, as a logical

extension of the original 10/20 system. While electrodes are placed at

distances of ten and twenty percent along certain contours over the scalp

in the 10/20 system, they are placed at distances of ten percent along

the medial-lateral contours in the 10/10 system. Also, new contours are

introduced in between the existing ones. The 10/5 system with even higher

electrode density was proposed by Oostenveld and Praamstra in 2001. An

elaborate description and comparison of all these systems is given in [86].

4.7.3 Background work on compressed sensing of EEG signals

Although EEG signals exhibit characteristic spectral peaks for different

states of the brain, they are not in general sparse in the frequency domain.

Since EEG analysis in many applications (e.g. brain electrical activity

mapping) is governed by the availability of information about the spectral

content in various bands, accuracy requirement of signal reconstruction per

se, at such locations may be relaxed. It is important to mention here sig-

nificant work, that has been reported previously, on the frequency analysis

of EEG signals. Time-frequency analysis of EEG data based on adap-

tive periodogram technique has been proposed in [87]. Identification of

the signal components through decomposition of data into time-frequency-

space atoms (based on the Wigner-Ville distribution) using parallel factor

analysis has been proposed in [88]. Time-frequency spectral estimation of

multichannel EEG using smooth, time-frequency localized versions of the

Fourier functions has been reported in [89].

In [90], the authors have exploited the joint sparsity of EEG signals on

the Gabor frame and have achieved a low normalized mean square error.

However in this work, the different trials have been treated as different

electrodes with the assumption that in both cases the same underlying ac-

tivity is measured. In [91], the authors have suggested a novel approach of

structuring individual signals into groups and exploiting the group sparsity
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by computing the l1,2 norm. However their approach involves the use of the

unconventional random sampling based acquisition architecture and does

not exploit the joint sparsity of a group of signals. In [92], the authors have

demonstrated the use of fast ICA as a preprocessing step before compressed

acquisition of EEG signals to achieve a low reconstruction error. In [93],

the authors have demonstrated a novel method of automated EEG anal-

ysis that segments and extracts EEG features, classifies and groups them

according to various patterns, and then presents them in a compressed

fashion to permit real-time viewing of several hours of EEG. In [94] the

authors have exploited the sparsity of EEG on the slepian basis for low

rate sampling and compressed sensing reconstruction. In [95], compressed

sensing reconstruction of EEG exploiting sparsity on a Gabor frame with a

Gaussian measurement matrix has been quantitatively presented. In [96],

the authors propose a novel approach of application of compressed sensing

in wireless telemonitoring of EEG through body are networks. In [97], the

authors have presented a continuous biomedical signal acquisition system

in which the sparsified measurements of signals are wirelessly transmitted

to a fusion center through body sensor networks with emphasis on lower

sampling rate at each sensor location. A compressed sensing framework

that exploits both the temporal and spatial correlations to efficiently com-

press EEG signals in wireless body sensor networks is proposed in [98]. The

first study [99; 100] that addressed the use of CS in EEG signal compres-

sion for telemedicine applications focused on surveying existing sparsifying

dictionaries and reconstruction algorithms and testing different combina-

tions of these elements to determine which one yielded the best results.

The conclusion was that the applicability of single-channel CS for EEG

signals depended on the intended application and the tolerable reconstruc-

tion error.

The objectives of the work done in these citations can be more or less

classified into one of the following:
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1. Compression of the EEG signal for subsequent storage or transmission

efficiency

2. Reduction in sampling rate in individual channels by making use of

intra-signal sparsity.

4.7.4 Inter-channel correlation in EEG

Nearby scalp channels of multi-channel EEG exhibit high correlation be-

cause EEG signals are not produced in the scalp or the neurons (brain)

directly under the recording electrodes. Instead, as suggested in [101], they

are a consequence of partial synchrony of local field potentials from dis-

tinct cortical domains - each domain, in the simplest case, being a patch

of cortex of unknown extent. At any electrode, the EEG recording is a

weighted linear mixture of underlying cortical source signals. The strong

correlations observed between EEG recordings at nearby electrodes can

be attributed to the spatial mixing of EEG source signals by volume con-

duction. Significant research effort has gone into exploring the correlation

between EEG recordings at electrodes on different areas of the scalp. In

[102; 103; 104], heavy correlation, sometimes as high as 0.9, has been re-

ported between anterior-posterior EEG signals in the alpha band (8-13

Hz). Very high coherence in the delta band has been reported in [105]

between posterior temporal lobe regions. Inter-hemispheric coherence in

the gamma band has been studied in normal adults in [106]. Existence of

very high correlation in the alpha band between temporal regions of the

human brain has been reported in [107].

The primary interest in understanding inter-channel correlation in multi-

channel EEG is to identify information redundancy in a measurement in-

volving the full set of electrodes. If the channels are correlated, is it always

mandatory to make recordings at all the electrodes, particularly those in

close vicinity ? This conjecture is motivated by supporting literature cited

above that provides evidence of correlation between nearby EEG channels.
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The Karhunen-Loeve transform (KLT) has already been used in the ARCS

setup (section 4.3) as a sparsifying transform for a set of correlated signals.

In ARCS, the correlation structure of the signals is incrementally learnt by

the system during acquisition. However, in the case of EEG signals, the

KLT matrix can be computed beforehand. Consider the scenario, where

the electroencephalogram of a patient undergoing treatment or a subject

voluntarily involved in research, has to be frequently taken. The first few

sessions can constitute the training phase in which measurements from all

the defined set of electrodes are taken and used to compute the inverse

KLT matrix. Once the correlation is learnt, one could do away with mea-

surement at more than fifty percent of the electrodes and yet be able to

estimate the EEG spectral signature at the locations of the missing elec-

trodes. An immediate implication for the design of a scheme with a limited

number of amplifiers is reduced cost and setup time. On the other hand,

it may also be possible to reconstruct channels that are noisy or missing

altogether due to electrode movement, etc.

4.7.5 Compressed Sensing of EEG Signals

The significant focus of the work done in this thesis is not to make use

of the intra-signal sparsity; rather it is to exploit the inter-signal sparsity.

Undersampling in this case is across the channels. In other words, at any

instant, with samples from only a subset of the channels, the samples from

the entire set of channels are reconstructed.

This, it is anticipated will lead to reduction in the number of electrodes

used in a recording session, with the following practical implications:

1. In clinical recording of EEG, a large number of channels (21 upwards)

are recorded. In recording of sleep EEG, the above recording continues

for a long time also. It will be of great use, if there is a way of

reconstructing one or more channels lost or not properly recorded due

to electrode movement, drying up or discontinuity.
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2. Ambulatory EEG [108] is carried out for an extended period (up to 72

hours) in which the patient can move about freely during the record-

ing and data is stored in a pocket recorder. Thus, EEG recorded on

a subject at rest, using a dense set of electrodes in the neurological

clinic, can be used for training. Subsequently when the subject is in

motion, all the channels need not be monitored. This can result in less

number of electrodes and consequent reduction in weight of the am-

bulatory EEG recorder. Sub-section 4.7.10 demonstrates the results

of simulation in which the signals at the locations of the electrodes in

the 10-10 system are reconstructed using samples of the signals at the

locations of 10-20 electrodes.

3. Reliability in clinical applications such as topographic mapping of

brain electrical activity (BEAM) could be increased by ensuring that

any missed or noisy channel can be predicted (recovered) reasonably

well from the other channels, thereby creating redundancy in the num-

ber of channels recorded. Here there is no intentional sub-sampling of

the channels.

4. In sleep studies, it is possible that data is missing on some channels,

either due to noise or due to undesirable movement by the subject.

In this case, the loss of data, treated as undersampling, can be han-

dled by recovery through compressed sensing. Once again there is no

intentional sub-sampling of the channels.

5. Deviation (due to loss of correlation) beyond a threshold between the

signal values estimated through compressed sensing and the actual

measurements can be used to detect the onset of seizure in epileptic

subjects. In this case too, there is no intentional sub-sampling.

Before proceeding further, it is prudent to be aware of the limitations of

such a proposition.
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4.7.6 Limitations

One cannot ignore the fact that the inter-channel correlation may be weak

and time varying. However, in applications such as EEG brain electrical

activity mapping, where we are mainly concerned with the relative signal

content in various frequency bands, accuracy of signal reconstruction per

se, at such locations can be relaxed. The focus of this work is restricted to

providing empirical evidence of obtaining approximate signal reconstruc-

tion and a reasonably good estimate of the spectral content in all the

channels of EEG by recording over a limited number of channels. Some of

the implications of such an effort on clinical diagnosis and research have

been listed previously in subsection 4.7.5. It is definitely desirable to be

able to detect small changes in the correlation pattern, which might have

diagnostic significance. However, no experiments have been carried out in

this work to verify that this can be accomplished by the method proposed

here.

4.7.7 A note on sparse PCA

The name KLT has been synonymously used with classical principal com-

ponent analysis (PCA) by the signal processing community. In the light

of this, it is very pertinent to mention that the method proposed in this

work is not the same as the sparse PCA approach [109; 110]. In classical

PCA the matrix Ψ (see equation 4.8) is formed out of the eigen vectors of

the autocorrelation matrix. In other words, one tries to maximize ψTnΣXψn

subject to ‖ψn‖2 = 1.

On the other hand, the sparse PCA approach seeks sparse principal

components that span a low dimensional space. The matrix Ψ is found by

solving an optimization problem with a sparsity constraint on its entries.

Equivalently, one tries to maximize ψTnΣXψn subject to both ‖ψn‖2 = 1 and

|ψ|0 = K where K is the parameter that controls the sparsity. As in regular
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PCA (or KLT), in this work also the sparsity constraint is not imposed

on Ψ. Instead, the sparsity constraint is applied on the vector c
′

in the

minimization in the equation (4.13) that also involves the matrix Ψ formed

using the standard PCA with the help of plain matrix algebra. Thus,

throughout the process of acquisition and reconstruction of the signals,

the matrix Ψ, referred to as the KLT matrix and calculated previously

from the training data set, remains unaltered.

4.7.8 The Physionet database

The simulation has been carried out on signals in the publicly available

Physionet database [111]. Detailed description of the database is given in

[1]. This data set consists of over 1500 one- and two-minute EEG record-

ings, obtained from 109 volunteers. The subjects performed different mo-

tor/imagery tasks (see Table 4.2) while 64-channel EEG was recorded, at

a sampling frequency of 160 Hz, using the BCI2000 system [112]. The

placement of the electrodes is as per the international 10-10 system (ex-

cluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and

P10). Each volunteer has performed, in a sequence, a set of 14 tasks: two

baseline tasks followed by four different tasks repeated three times. Thus,

the total number of records in the database is 109× 14 = 1526.
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4.7.9 The experiments

In order to compare the reconstructed signals with the original, a fractional

spectral measure (FSM)[113] is used for each of the significant frequency

bands - delta, theta, alpha, beta 1. FSM is the ratio of the sum of the

absolute values of the 512-point DFT coefficients within a band to the

corresponding sum in the 0–30 Hz (until the end of the beta band). Thus,

FSM for the ith band is

FSMi =

∑
Fj∈band i

(abs(Fj))∑
Ft∈0−30Hz

(abs(Ft))
(4.17)

where i denotes one of the bands:delta, theta, alpha and beta. For example,

for theta band, the numerator in the equation above is equal to the sum

of the absolute values of DFT coefficients in the frequency range 4–7.5 Hz.

A size of 512 has been chosen for the DFT so as to get a good frequency

resolution of 0.3125 Hz in the DFT spectra, given that the sampling fre-

quency of the data is 160 Hz. The FSM values for the original and the

reconstructed signals are compared. The experiment comprises the follow-

ing steps, that are categorized into the training and the testing phases for

the sake of clarity:

4.7.9.1 The Training Phase

Step 1: At random, choose six subjects to be included in the test set –

say, 1, 8, 41, 61, 77, 104

Step 2: For each subject, pick a record corresponding to one of the tasks

1, 2, 3 and 4, representing different motor/imagery tasks, to be utilized for

training.

1Since the records in the physionet database have been sampled at 160 Hz, looking at frequencies
above 80 Hz may not be of much use. Therefore, while reporting the results the gamma band has not
been considered. Also the signal power in the gamma band for the simulation records was far too low to
justify any consideration
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4. Compressed Acquisition of Correlated Signals

Step 3: For the record that is picked, compute the inverse KLT matrix for

the channels (twenty in number) - Fc5, Fc3, Fc1, Fcz, Fc2, Fc4, Fc6, C5

C3, C1, Cz, C2, C4, C6, Cp5, Cp3, Cp1, Cpz, Cp2, Cp4 for all samples in

the record.

It is worth mentioning here that this way of computing the inverse KLT

matrix (on all the samples in the record) led to performance improvement

in the subsequent testing phase, as against the calculation of inverse KLT

from the mean of inverse KLT matrices of successive (non-overlapping) win-

dows of 1000 observations in the record. The chosen channels correspond

to a set of closely spaced electrodes on the scalp (see figure 4.3b).

4.7.9.2 Testing phase

Step 4: For each of the subjects 1, 8, 41 and 61, one of the records 7

to 10, that corresponds to the same motor/imagery task as the record

which was used for computing the inverse KLT matrix, is used as the test

record. For example, if record 3 is used in the training phase, then record

7 (that corresponds to the same motor/imagery task, see table 4.2) is used

for testing. Similarly, if the training record is 4, the testing record will

be 8 and so on. In the case of subjects 77 and 104, the motor/imagery

task that is chosen as the test record is different from the one used in the

training phase. For example, for subject 77, records 3 and 14 are chosen

for training and testing respectively. Similarly, for subject 104, records

4 and 13 are chosen for training and testing, respectively. This is done

with the objective of observing the robustness of the method. At each

successive time instant during 0-10 sec of the test record, a sub-sampling

of channels is carried out, that is, only a subset consisting of ten channels

is measured. This subset is different for each subject and the members of

the subset are picked up arbitrarily. The samples from the ten channels

form the measured vector, f. The remaining ten are estimated through l1

minimization (4.13) using the cvx toolbox [114]. The mean inverse KLT
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4. Compressed Acquisition of Correlated Signals

matrix is used in the compressed reconstruction algorithms.

It is important to note here that the records used for training and testing

are different. Thus, although all the channels of a training record are used

for training, only a subset of the channels in the testing record are sampled

at any instant during testing.

Step 5: Compute the DFT1 for the original and reconstructed signals.

Step 6: Compute the fractional spectral measure for the original and the

reconstructed signals and compare.

It is to be noted that, for any subject, all the EEG channels are sam-

pled only during the initial training sessions. Subsequently, on the same

subject, only a subset of channels need to be sampled and the rest can be

reconstructed.

4.7.9.3 Results

Figure 4.4 shows the plots of the reconstructed and the original signals for

nine channels (only 9 out of 10 reconstructed channels are shown due to

space constraint; channel 1 is not shown) for subject 104. The original

and reconstructed signals have a close match in the signal as well as the

frequency domains. It is known that unlike the case of signals like ECG or

nerve action potentials, the exact EEG signal amplitude at any instant is

not clinically significant. Thus, the reconstruction quality obtained with

the proposed method is good enough to be used for most EEG applications.

4.7.9.4 Comparison of performance using other reconstruction algorithms

In order to demonstrate that the proposed scheme is independent of the CS

reconstruction algorithm employed, two other recovery algorithms: OMP

(Orthogonal Matching Pursuit) and CoSAMP (Compressed Sampling Match-

1In order to compute the DFT, the entire signal is divided into segments of length 512, with a fifty
percent overlap. The last segment is padded with sufficient number of zeros. To each segment, a 512-point
Hamming window is applied. A 512-point DFT of each windowed segment is calculated. The absolute
values of the DFT coefficients are averaged over all the segments.
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4. Compressed Acquisition of Correlated Signals

ing Pursuit)1 have been used in place of basis pursuit. A comparison of

the FSM values of the original and reconstructed signals for record 10 of

subject 61 is given in Table 4.3. The values in the table indicate that the

performances of all the recovery algorithms are comparable, though the

basis pursuit approach performs marginally better. The results of simula-

tion for all the six subjects: 1, 8, 41, 61, 77 and 104 are given in graphical

form in figures 4.5,4.6 and 4.7. The figures plot the FSM values, in differ-

ent bands, for each of the EEG channels reconstructed through CS with

a different color and line style used for each recovery method. The legend

for the various plots is given at the top of each page. There is consider-

able overlap between the plots for the various recovery methods and they

closely follow the original (black color) for a majority of the subjects.

Comparison with classical compression - These results have been

compared with a classical, lossy compression scheme (see bottom right sub-

table in Table 4.3). For this purpose, at any instant during acquisition,

the samples of the EEG channels that have been left out of measurement

are not recovered with the help of compressed sensing. Instead at every in-

stant, a vector consisting of one sample from each channel is reconstructed

by applying the inverse KL transform on a vector that retains only the

top half of the transform domain coefficients. It is to be noted here that

the comparison is with a classical compression that is inter-channel and

not intra-channel. The plot (green) of FSM values very closely follows the

original in the figures 4.5,4.6 and 4.7, as expected.

Figure 4.8 gives a summary of the comparison between various recov-

ery algorithms (the lossy compression and decompression scheme is given

by the brown colored bar) with respect to the percentage error (of FSM

between the original and reconstructed signals) in various EEG bands, av-

eraged across all the subjects.

Comparison of execution time - The average execution time taken

1For this purpose, open source Matlab code available on the Internet has been used.
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4. Compressed Acquisition of Correlated Signals

across all the subjects for a simulation of EEG acquisition of 10s is 161.7

s for basis pursuit, 0.67 s for OMP and 1.23 s for CoSAMP. The computa-

tional platform is the same as that for which the specifications have been

given at the beginning of sub-section 3.5.5.

4.7.10 Reconstruction of signals at 10-10 locations from mea-

surements at 10-20 locations

Using recordings on channels in the international 10-20 system of electrode

placement, it is possible to estimate, with fair accuracy, the spectral content

of channels in the denser 10-10 system. To illustrate this, the inverse KLT

matrix has been calculated for subject 64 in the physionet database, using

channel numbers 8 to 14 of the 10-10 system, i.e. C5, C3, C1, Cz, C2, C4

and C6 that fall in a straight line on top of the scalp. For testing, data from

channel numbers 9, 11 and 13 (i.e C3, Cz and C4) at the 10-20 electrode

locations only have been sampled. Even then it was possible to reconstruct

the remaining four channels - C5, C1, C2 and C6 (see figures 4.3a and

4.3b) that belong to the 10-10 system. Figure 4.9 compares the FSM

values of the original signal and those reconstructed using basis pursuit

recovery algorithm. (The average error in the delta band is as low as

3.0% (or equivalently the spectral fidelity is about 97%). The plots of the

reconstructed channels vs the original along with the corresponding DFT

magnitudes are shown in figure 4.10. The results establish the effectiveness

of the proposed technique to reconstruct 10-10 system signals from the

recorded 10-20 system signals.

4.7.11 Conclusion

A novel approach of subsampling EEG channels, by measuring only a sub-

set of electrodes and reconstructing the remainder through compressed

sensing, has been presented. Empirically it has been demonstrated that if

the correlation amongst the channels is captured with good accuracy, then
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4. Compressed Acquisition of Correlated Signals

by recording at only a few locations on the scalp, it is possible to estimate

the relative signal content in different frequency bands with reasonable ac-

curacy. Thus, if it is a matter of only knowing the relative spectral content,

measurement of only a few EEG channels suffices, provided the correlation

is previously captured in the inverse KLT matrix using data recorded in

an initial training session. However, this training requirement limits the

applicability of this technique only to those cases, where repeated record-

ings are required from the subject for monitoring or follow up. Hence, this

is not applicable for one-time testing of an occasional patient.

The method proposed is suitable for real time data capture since the

computationally intensive reconstruction can be done offline. Through

simulation, it has been shown that the relative frequency content can be

estimated within an accuracy of 15%. It has also been shown that record-

ings on the 10-20 system can be used to estimate the signals on electrodes

in the 10-10 system with more than 90% spectral fidelity. Further, simula-

tion results demonstrate that the performance of the proposed method is

independent of the reconstruction algorithm employed. The reconstruction

accuracy with BP, OMP and CoSAMP recovery algorithms are comparable

though BP is marginally superior to the rest and is considered to be more

consistent. OMP and CoSAMP, on the other hand, are very fast compared

to BP and are suitable for real-time acquisition.
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4. Compressed Acquisition of Correlated Signals

Figure 4.5: Comparison of FSM values of the 10 recovered channels for subjects 1 and 8
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4. Compressed Acquisition of Correlated Signals

Figure 4.6: Comparison of FSM values of the 10 recovered channels for subjects 41 and
61
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4. Compressed Acquisition of Correlated Signals

Figure 4.7: Comparison of FSM values of the 10 recovered channels for subjects 77 and
104
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4. Compressed Acquisition of Correlated Signals

Figure 4.8: Comparison of performance with various reconstruction methods averaged
over several subjects in different EEG bands

Figure 4.9: Comparison (with the original) of FSM, in different bands, of the 10-10 system
EEG channels reconstructed through compressed sensing using only recordings done on the
10-20 system. Recovery algorithm used: Basis Pursuit
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Chapter 5

Other Compact Embedded Designs

for Sparse Signals

5.1 Design with Low-Order Anti-Aliasing Filters

The ideas proposed up to this point concentrate on reduction in the number

of ADCs in the design of an embedded system for the data acquisition of

a collection of signals that exhibit some form of information redundancy.

Decrease in the count of ADCs undoubtedly offers a multitude of benefits,

viz. reduced power consumption, size and cost. Situations may arise in

which an extra ADC in itself, on the embedded board, will not be so much

detrimental to the benefits mentioned above as much as the associated

electronics. Thus, it could be possible that even though only M < N

ADCs are used for the acquisition of N signals, they may require so much

additional circuitry that the advantage offered by reduction in the number

of ADCs appears to be marginal. A pertinent question in this regard

is whether it is worthwhile to consider usage of as many ADCs as the

signals, but minimize the active and passive components associated with

each measurement channel ?

Traditionally, the restriction imposed by the Nyquist sampling theorem

has been handled by the use of analog, low pass, anti-aliasing (AA) filters

at the front-end of data acquisition to ensure that frequency components

in the signals, that are above half the Nyquist rate are cut-off. These
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filters, built out of passive and active analog components in most embed-

ded designs, lead to significant utilization of space, power dissipation and

increased cost. The number of components used is directly related to the

filter order, which in turn depends on the sharpness of the transition needed

from passband to stop band. Historically, several formulas [115; 116; 117]

have been proposed and are being used to calculate the order of the filter

as a function of the sampling and the cut-off frequencies. It is very clear

that higher the sampling rate, the more relaxed are the restrictions on the

filter.

While substantial research has already been done in designing optimal

filters for signals with general frequency characteristics, what remains to be

explored is if one could further optimize filter design with some additional

a priori knowledge of the signal, like for example, the signal having a

sparse spectral support. While employing an equal number of ADCs as

the number of signals, a design which achieves a sampling rate higher than

the specified sampling rate of the ADC for each signal would permit the

use of a low order AA filter. In continuation to the ideas proposed in this

research, two other designs that exploit signal sparsity in a different way,

are proposed in this chapter.

Figure 5.1: AA filters at the front-end of a data acquisition system
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5.1.1 The Filtering Problem

Consider a set of signals xi, 1 ≤ i ≤ S with constituent frequencies in the

band [0, F ]. The front-end of a Nyquist data acquisition architecture for the

signal ensemble is shown in figure 5.1. The specified sampling rate, FADC

of the analog to digital converters (ADC) for acquiring each signal must

satisfy FADC ≥ FNYQ = 2F , FNYQ denoting the Nyquist rate. If the anti-

aliasing (AA) filters used have a sharp transition from passband to stop-

band, then the analog signal is captured reasonably well, since no frequency

higher than F will be allowed. In other words, (FSTOP − FPASS) /FNYQ,

where FPASS and FSTOP are the pass band and stop band cut-off frequen-

cies, must be a small positive value. However, this necessitates the use of

a high order filter, a requirement which is detrimental to desirable features

like compactness, minimal power consumption and lower cost, typically

expected in most embedded designs. Employing the same ADCs, if it

were somehow possible to sample the signals at finer sampling intervals,

for example at 2FNYQ, then FSTOP can be greater than F , and lower or-

der AA filters could be used. If the signals comprise only a sparse set of

frequencies, it would be possible, under a CS architecture to reconstruct

the signals using limited number of samples taken on a finer and uniform

sampling grid.

5.1.2 Compressed Acquisition and Reconstruction

Let the N signals that are to be sampled and reconstructed be piecewise

stationary and sparse of the type introduced in section 3.3. The acquisition

architecture that is made use of is MOSAICS that was proposed in section

3.5 with a MUSIC based reconstruction algorithm suggested in sub-section

3.6.2. The notion of reconstruction segment (RS) introduced in section 3.4

is redefined to suit the requirement of the sampling scheme proposed in

this section.
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Figure 5.2: Compressed sensing architecture for acquiring signals at a higher sampling
rate than the specified sampling rate of the ADC while using low order AA filter

Definition:. A reconstruction segment (RS) of order γ with respect to the

sampling of a signal is defined as the vector, ζ(γ) ∈ RN×1 obtained by

uniformly sampling a PSS segment, at γ times the specified sampling rate,

FADC of the ADC, during a finite interval τ1 ≤ t ≤ τ2 lying within the

segment. Clearly, N = b(τ2 − τ1) γFADCc. A PSS segment can be acquired
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and reconstructed as a series of reconstruction segments.

5.1.2.1 The CS Tuple

This is same as that given in subsection 3.4.2.

5.1.2.2 Phase Shifted Sampling

A block diagram of the proposed architecture is given in figure 5.2. Given

the specified sampling rate of each of the N ADCs as FADC , let each ADC

operate on clocks which have the same period T = 1/FADC , but are phase

shifted from each other by ϑ. In other words, if the acquisition starts

at time t, the ith ADC, 0 ≤ i ≤ N − 1, operates at the time instants:

t+iϑ, t+iϑ+T, t+iϑ+2T... and so on. If we choose ϑ = T/N , we have a data

acquisition system, employing N ADCs, operating on a uniform sampling

grid with a sampling interval of T/N or equivalently an effective sampling

frequency FEFF = NFADC . Thus all the ADCs taken together offer a

finer uniform sampling grid, of order γ = N , to the N input signals which

can permit samples to be taken at intervals N times smaller than that

offered by the ADCs if they were not phase-shifted. During acquisition,

time instants are randomly chosen from the finer grid provided by all the N

ADCs together to collectively sample the N analog signals. This requires

each ADC to be able to multiplex between the different analog signals in

real time, which is practically realizable due to the presence of built-in

multiplexers in commercially available ADCs. The shaded section in figure

5.2, which is the analog section, consists of N ADCs together with the

corresponding N multiplexers. N analog signals are input to the system.

Each of the signals, after passing through AA filter, is routed to every

analog multiplexer.

The rest of the design (the unshaded region) is digital and can be im-

plemented in a small size, low cost FPGA or a processor. The Digital

Clock Manager (DCM) is a very standard block commonly implemented
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in commercially available FPGAs. The DCM generates N phase shifted

versions of the input clock of FADC Hz, in the range 0 to (N − 1) 2π/N ,

which are input to the ADCs. The DCM also generates another clock

whose frequency is NFADC , which is input to a modulo-N counter and a

modulo-N random number generator. The modulo-N random number gen-

erator outputs a random number between 0 and N − 1 at every tick of

its clock input for choosing the analog signal to be sampled. By using a

proper seed, care is taken that over sufficiently long interval of acquisition,

each analog signal gets an equal share of the time instants when it is sam-

pled. The modulo-N counter releases counts from 0 to N −1 in succession,

such that the demultiplexer routes the number of the analog signal to be

sampled to the analog multiplexers of successive ADCs, in synchronization

with their respective clocks. The analog multiplexer of the ADC, which

gets a clock tick, routes the chosen analog signal to the ADC. Thus while

each of the individual ADCs operate at their specified sampling rate of

FADC , the collective acquisition takes place at NFADC Hz.

The process of acquisition and reconstruction of the signals takes place

in a series of acquisition cycles. There are two digital buffers which store

the samples collected by all the ADCs together. During any acquisition

cycle, one of the buffers is active, into which the ADCs deposit the samples

collected by them in succession. The other buffer, which contains the

samples collected in the previous acquisition cycle, is read by the separator.

The separator separates the samples into the individual signals with the

help of the random sequence generated by the modulo-N random generator,

that is fed to it at the end of an acquisition cycle. For any signal, as

soon as time corresponding to an RS of order γ has elapsed, the collected

samples are fed to the CS reconstruction block, the output of which is

the reconstructed signal. The reconstruction algorithm is the one based

on MUSIC (subsection 3.6.2) that can accommodate the so-called ‘non-

integral’ frequencies also. The length of the acquisition cycle, which decides
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Table 5.1: FREQUENCY CHARACTERISTICS OF TEST SIGNALS

SIGNAL 1 SIGNAL 2
Time in ms Frequencies in KHz Time in ms Frequencies in KHz
0–12.5 3.68, 8.14, 13.46 0-14.1 1.23, 3.4, 7.9
12.5–29.3 2.82, 3.95, 11.4 14.1-28.2 2.56, 3.8, 13.5
29.3–42.8 1.5, 4.11, 5.8 28.2-46.5 4.45, 6.53, 10.9
42.8–57.4 2.54 8.59, 14.5 46.5-59.5 3.13, 6.66, 12.54
≥57.4 1.54, 2.71, 7.8 ≥59.5 3.62 8.34 12.81

the size of the buffers, must cater for the estimated worst case execution

time of reconstruction in that cycle in which all the signals have a complete

RS available for reconstruction.

Figure 5.3: Magnitude response of FIR filter of order 8

5.1.3 Simulation and Results

For simulation, the simple test case of acquiring two signals with the fre-

quency characteristics shown in Table 5.1 has been taken. Each signal is a

concatenation of PSS segments with durations greater than 10 ms. Within

each PSS segment, there are three frequency components. For both signals,
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Figure 5.4: Reconstructed signal (red color) vs original signal (black color) for two signals.
The deviations are 20.8 dB and 21.5 dB

the region of interest to the application is 0 − 5 kHz, the content above

which can be filtered out. In a classical data acquisition setup, we need

to employ an AA filter with a cut-off at around 5 KHz and sample at a

rate above the Nyquist rate of 10 KHz. For a sampling rate of 12 KHz and

FPASS and FSTOP equal to 4.5 KHz and 5.5 KHz respectively, this calls for

the usage of a equiripple FIR filter of order 30. As N = 2, with the efficient

data acquisition scheme proposed in this work, using two ADCs each with

specified sampling rate of FADC = 10 KHz 1, we get an effective sampling

rate of FEFF = 20 KHz. This in turn implies that we can afford to choose

FPASS = 4.99 KHz and FSTOP = 9.9 KHz, while preserving the signal

content below 5 KHz, without any aliasing effect. The order of the AA

filter with the relaxed frequency specifications is only 8. The magnitude

response of such a filter is shown in figure 5.3.

The reconstructed signal is plotted against the original signal in figure

5.4. The close match between the reconstructed and the original for both

the signals is an empirical evidence of performance. The deviation in the

1Note that in the classical setup, the ADC sampling frequency of 12 kHz considered is slightly higher
than the Nyquist frequency of 10 kHz to provide some tolerance, while in the case of compressed sensing
setup this is not required as the effective sampling frequency of the two ADCs together is 20 kHz which
is much higher than the Nyquist frequency
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reconstruction for signal 1 at around 12.5 ms and the same for signal 2 at

around 14.1 ms can be justified by the existence of PSS boundaries.

5.1.4 Performance of the proposed scheme with increase in the

number of signals

The computational load increases only linearly as the number N of input

signals increases, since the reconstruction of each signal is independent of

the other. On the other hand, with increasing N , the effective sampling

rate FEFF = NFADC of each signal increases due to the availability of an N

times finer sampling grid. The increase in FEFF far above the Nyquist rate

of each signal, will only be of marginal benefit since after a point the reduc-

tion in the order of the AA filter, due to relaxed frequency specifications,

will not be significant.

5.1.5 Application to Real World Signals

The above scheme has been applied to the acquisition of test data consisting

of four channels of voltages proportional to the deflection of four control

surfaces in the actual flight of an aerospace vehicle. The frequencies of the

command signals lie in the band [0 12.5Hz] demanding a minimum of 25

Hz of Nyquist rate acquisition. An anti-aliasing filter with FPASS = 10 Hz

and FSTOP = 15 Hz needs to be of order 25. Employing four ADCs each

with FADC = 25 Hz, an effective rate of FEFF = 100 Hz is achieved. This

requires an AA filter of order 6 with FPASS = 12.5 Hz and FSTOP = 40

Hz. Simulation has been done using the CoSAMP recovery algorithm. In

general, the reconstruction accuracy achieved was better when the DCT

matrix (see figure 5.5) was used as the sparsity matrix than with the DFT

matrix (see figure 5.6), even though the trend reverses for the SNR of 10

dB. Table 5.2 gives the PSNR of the reconstructed signals, with DCT and

DFT sparsity matrices, at various noise levels.
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Figure 5.5: Reconstructed signal (red color) vs original signal (black color) for four chan-
nels of voltage proportional to deflection of control surfaces. DCT was used as the
sparsity matrix. Additive noise at 20 dB SNR was added to the original signal.

Figure 5.6: Reconstructed signal (red color) vs original signal (black color) for four chan-
nels of voltage proportional to deflection of control surfaces. DFT was used as the
sparsity matrix. Additive noise at 20 dB SNR was added to the original signal.
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Table 5.2: PSNR OF THE SIGNALS OF CONTROL SURFACE FEEDBACKS AT DIF-
FERENT NOISE LEVELS

Sparsity matrix: DCT Sparsity matrix: DFT
SNR in dB 5 10 20 30 5 10 20 30
Deflection 1 10.17 15.46 25.21 32.81 8.38 17.85 23.67 26.34
Deflection 2 10.31 14.73 25.24 32.28 8.0 18.03 22.76 25.98
Deflection 3 10.34 15.09 24.49 32.73 8.7 18.30 23.70 26.72
Deflection 4 9.82 15.35 24.63 31.59 8.6 17.92 22.98 24.02

5.1.6 Conclusion

In this work, an architecture for capturing sparse signals has been pro-

posed in a way that reduces the order of the AA filter at the front end.

The AA filter being part of the analog circuitry, this enhancement can

have a significant reduction in the number of passive components used

for realizing the filter, thereby scoring on compactness, power dissipation,

cost, reliability and maintainability. Although the scheme is based on the

sparsity assumption, it has enormous potential to be applied in a general

situation too, provided the number of frequency components of interest to

the application is limited. Simulation has been carried out for a two sig-

nal ensemble and results have been reported. However, in a more general

setting, one can have multiple signals, for example more than five signals,

in which case, the focus is more on achieving a higher effective sampling

rate rather than a reduction in the filter order. The blocks in the design

have been chosen such that most of them can be realized in a low cost field

programmable gate array (FPGA) that is invariably already included in

most embedded designs for handling glue logic. The same is true for the

multiplexers which are part of most commercially available ADCs.

5.2 Design for Better Resolution

The resolution of an ADC indicates the number of discrete values it can

produce over the input range of analog values. For example, an ADC with
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a resolution of 8 bits can encode an analog input to one of 256 different

levels. The minimum change in voltage required to guarantee a change in

the output code is called the least significant bit (LSB) voltage. Given that

the maximum voltage swing in the input is V and the resolution is b bits,

the LSB is given by

LSB =
V

2b
(5.1)

Thus, higher the resolution of the ADC, smaller is the LSB and better

is the fidelity of the signal acquisition. An ADC is characterized by a large

number of other parameters, which have considerable impact on the fidelity

of the sampled signal; however the focus here is only on the resolution. The

conventional approach of improving the resolution of the ADC is to employ

a pipelined architecture (figure 5.7) in which there are more than one stage

of conversions. Initially a coarse conversion at a lower resolution b is carried

out to obtain a coarse digital estimate of the signal. The coarse estimate

is converted into analog using a digital to analog converter. The difference

between the input and the coarse analog estimate is amplified and the

error is converted using another low resolution converter. The bits from

the first and the subsequent conversions are added to get a fine estimate

of the signal sample that is at a resolution as many times the resolution of

a single stage, as the number of stages.

In a compressed sensing setup (figure 5.8), only sub-Nyquist number

of samples of a sparse signal would suffice for capturing the signal. Here

a single ADC is used in both the stages of a two stage pipeline ADC

architecture. For example, if the error signal is available at the input

of the single ADC, then using a built-in multiplexer (not shown in the

figure), the ADC can switch over to the error input in the immediate next

sampling cycle after the one in which the coarse estimate was taken. This

is possible because the immediate next cycle could possibly be idle under a

compressed sampling setup. Thus a high resolution sampling of the signal

could be done by using a general purpose, low resolution ADC with a
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multiplexer and a Digital to Analog Converter (DAC) of equal resolution.

The only aspect that needs to be taken care of is that coarse samples be

not taken at successive sampling instants since the immediate cycle after

a coarse sampling is done must be available for measuring the error signal.

Although a true random choice of sampling instants (which is required for

compressed sensing) is one that does not impose any such restriction and is

ideally suited for error-free reconstruction, the restriction mentioned above

requires that the next sample must be taken at any instant other than

the immediate next one. This deviation from true randomness does not

significantly affect the quality of reconstruction as seen through simulation.
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5.2.1 Simulation and Results

To simulate the idea, simplistic models of ADC and DAC have been used.

The n-bit analog to digital conversion is modeled as a straightforward pro-

cess of converting the input analog value (a real number between -10 and

+10) to one of the 2b discrete levels (integers). The digital to analog con-

version does the reverse - the analog voltage corresponding to a discrete

level is calculated.

A test signal x is given as input to n-bit ADC model sampling uniformly

at a rate above Nyquist. The analog signal, x
(n)
nyq corresponding to the

discrete levels at the output of the ADC are calculated and saved. The

same test signal is then applied to a second model in which the following

sequence of operations are carried out:

i) An n-bit ADC performs coarse compressive sampling, i.e. sampling is

done in sub-Nyquist number of cycles chosen randomly without vio-

lating the condition mentioned in the previous section.

ii) The discrete output is applied to an n-bit DAC model.

iii) The analog output of the DAC is subtracted from the test input signal

to get the error signal

iv) The error signal is multiplied by a gain and fed as input to the same

ADC in the immediate next sampling cycle that is relieved from mea-

suring the actual signal.

The analog samples corresponding to the discrete levels at the output of

the ADC are calculated. These samples (sub-Nyquist in number) are then

used to reconstruct the full signal, x
(2n)
cs with the help of l1 minimization

using the cvx toolbox. The Signal to Quantization Noise Ratio (SQNR) is
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calculated as follows:

SQNR(2n)
cs = 20log10

rms(x)

rms(x− x
(2n)
cs )

(5.2)

SQNR(n)
nyq = 20log10

rms(x)

rms(x− x
(n)
nyq)

(5.3)

Table 5.3: SQNR VALUES (dB) AFTER n-BIT NYQUIST SAMPLING AND 2n-BIT
COMPRESSIVE SAMPLING

n-bit Nyquist 2n-bit CS
n=4 14.4 38.5
n=6 26.4 59.0
n=8 38.4 85.8
n=9 44.0 96.9
n=10 50.5 114.6

Figure 5.9: a)100 Samples from a Nyquist sampled 4-bit ADC and b) 100 Samples from
a 8-bit compressively sampled ADC. In both case the reconstructed signal is shown in red
and the original signal in black

A sparse signal having only three frequency tones: 3 KHz, 7 KHz and 8

KHz has been used as the test signal. The SQNR values for different values
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of n for the Nyquist sampled n-bit ADC and the compressively sampled

2n-bit ADC are given in Table 5.3. In figure 5.9 are shown how the output

of a 4-bit ADC and an 8-bit compressively sampled and reconstructed

signal compare with the original signal. In the case of 8-bit compressively

sampled ADC, there is a close match, while for the 4-bit ADC, there is a

marked deviation.

5.2.2 Application to Fetal ECG Acquisition

The performance of the scheme proposed above has been additionally veri-

fied by simulation with fetal ECG captured directly from the fetal head and

from the maternal abdomen taken from the Physionet database [111; 118].

The signal characteristics are given as follows:

• Bandwidth: 1 Hz - 150 Hz

• Sample resolution: 16 bit

• Sampling frequency: 1 KHz

• Voltage range: -3.2768 mV to +3.2768 mV

• Smallest voltage: 0.1 µV

• Dynamic Range: 96.33 dB

Figure 5.10 gives the plot of 1000 samples of ECG captured using an 8-

bit ADC operating at Nyquist rate (top figure) and again the same 8-bit

ADC operating in compressed sensing scheme at 16-bit resolution (bottom

figure). Clearly, in the 8-bit acquisition, there is loss of information and the

SQNR of the reconstructed signal is 7.0 dB, while in the 16-bit case it is

16.3 dB. Figure 5.11 gives the results with ECG captured on the maternal

abdomen.

In this simulation experiment, an interesting observation deserves to

be reported. At lower dynamic ranges (e.g. voltage range:-0.5 mV to 0.5
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mV and smallest voltage: 0.1 µV), the 8-bit Nyquist acquisition performs

better than 16-bit CS reconstruction because 8 bits are sufficient to fully

capture the signals over the entire dynamic range, while in the case of

the CS acquisition, the inherent reconstruction inaccuracy creeps in. As

the dynamic range is increased up to a voltage range of -4.0 mV to +4.0

mV, there is loss of information in 8-bit Nyquist acquisition and 16-bit CS

reconstruction using the same single 8-bit ADC performs better. Figure

5.12 (see footnote 1) compares the 8-bit Nyquist acquisition with 16-bit

CS acquisition at different dynamic ranges, with the voltage range varying

from 1 mV to 8 mV, increased by 0.2 mV at each step.

Figure 5.10: a)1000 samples of fetal ECG sensed at the fetal head using a Nyquist sampled
8-bit ADC. b) 1000 samples of fetal ECG reconstructed from a 16-bit compressively sampled
ADC. In both cases the reconstructed signal is shown in red and the original signal in black.
Voltage range is -3276.8 µV to +3276.8 µV.

It is pertinent to mention here, that ECG has often been regarded a

signal sparse on the wavelet basis [119; 120] for compressed sensing. In

the simulations, of which the results are presented here, only Fourier spar-

1ECG signals, in general, have a high dynamic range (voltage range:-4.0 mV to 4.0 mV and smallest
voltage: 0.1 µV). The ECG records that have been used in these experiments also have a high dynamic
range, as mentioned above in the signal characteristics. It is only to show the comparison of the 8-bit
and the 16-bit cases that the dynamic ranges of the data in the records have been lowered.
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Figure 5.11: a)1000 samples of fetal ECG sensed at the maternal abdomen using a Nyquist
sampled 8-bit ADC b) 1000 samples of fetal ECG reconstructed from a 16-bit compressively
sampled ADC. In both cases the reconstructed signal is shown in red and the original signal
in black. Voltage range is -3276.8 µV to +3276.8 µV.

Figure 5.12: Comparison of SQNR between 8-bit Nyquist and 16-bit CS acquisition at
different input dynamic ranges for fetal ECG captured directly at the fetal head
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sity has been considered. The main objective here is to test the scheme

that has been proposed in the previous section on a real signal rather

than synthetic data. Undoubtedly, on a wavelet basis the results could be

better. It is also appropriate to cite other contributions in the area of ap-

plication of compressed sensing to ECG signals. Effects of quantization of

the coefficients in a random measurement matrix, for compression before

transmission, on the reconstructed signal in the presence of sparsity have

been studied for ECG and EMG in [121]. The authors in [122] propose to

use the block sparse Bayesian learning framework to compress/reconstruct

nonsparse raw FECG recordings. The focus in these works is towards sig-

nal compression as against usage of a low resolution ADC that has been

presented above.

5.2.3 Conclusion

To conclude, using a general purpose, low resolution ADC, a DAC of the

same resolution and a summer, one can acquire a sparse signal with double

the resolution of the ADC, without having to use a dedicated pipeline

ADC. It is true that pipeline ADCs are currently inexpensive and can

sample any general signal (sparse or non-sparse) in view of which usage

of the compressed sensing based architecture may not be fully justified.

However, the design proposed here could be integrated into a complete

embedded system for data acquisition of many sparse signals in which one

odd signal, that requires data conversion at a high resolution, could be

sampled using this scheme.
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Chapter 6

Conclusion of Thesis

This research has been a modest endeavor to deliver compact, power-

efficient, reliable and less expensive designs for embedded data acquisition

systems by leveraging upon the inherent information redundancy in the

input signals. Redundancy most commonly manifests as signal sparsity

on some basis. After a survey of a plethora of sparse sampling strategies,

compressed sensing was identified as a promising technique suitable for

being employed in embedded applications. The sensing methods and the

reconstruction algorithms in compressed sensing have been studied. The

l1- minimization and the greedy orthogonal matching pursuit algorithms

were found to be the ones best suited for the kind of signals encountered

in embedded data acquisition. Information available in literature about is-

sues like stability of reconstruction, choice of the appropriate measurement

matrix and robust compressive sensing has been presented. The notion of

CS-tuple, with which any compressed acquisition scheme can be identified

has been introduced.

Next, it was suggested that if compressed sensing of a signal involves

use of only sub-Nyquist number of ADC sampling cycles, why not use the

idle cycles of the ADC to sample other similar signals ? This gave rise to

the idea of multiplexed sensing of more than one signal. With the help of

the MOSAICS architecture it was shown how this is possible. Description

was given of various input and derived parameters that are involved in the
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operation of MOSAICS as well as the factors affecting the performance of

the system. It was shown how streaming data from pseudo stationary and

sparse signal sources could be captured and reconstructed as a series of

overlapping reconstruction segments. Evidence of the fact that MOSAICS

is independent of the CS recovery algorithm used was provided by show-

ing that the scheme operates equally well with different algorithms: BP,

OMP, ROMP and CoSAMP. With the help of MOSAICS a comparison of

the performance of these algorithms with respect to accuracy and consis-

tency of signal recovery has been done. In addition the results have also

been compared with classical compression and decompression. A scheme

was proposed for implementing the MOSAICS architecture using easily

available off-the-shelf computer hardware. The limitation of MOSAICS in

dealing with the so-called ’non-integral’ frequencies was brought out and

a remedy using an algorithm based on MUSICS for signal reconstruction,

in place of the erstwhile l1- minimization, was suggested. It was then il-

lustrated how the same recipe could be used to detect sinusoid frequencies

buried in heavy noise even with high undersampling and how this could be

applied to the detection of a time-varying carrier frequency in a noisy FM

signal. In all the sensing mechanisms proposed, the measurement matrix

used was a trivial one - samples were just randomly picked up from the

source signal, something that can be practically realized without difficulty.

This is unlike classical compressed sensing where the measured vector is

taken as a projection of the signal vector on to a measurement matrix.

It was then pointed out that it is not necessary that sparsity be possessed

by the individual signals. Inter-signal correlation between non-sparse sig-

nals also contributes to information redundancy opening up the possibil-

ity of acquiring the signal ensemble using ADCs, lesser in number than

the number of signals. ARCS, a method for sensing a streaming set of

signals was proposed in which there is no a priori knowledge of the inter-

signal correlation and the correlation structure is incrementally learned as
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stranger signals become familiar, along a fast learning curve. If there

is a huge database already existing of the correlated signals that have to

be acquired, then the associated inverse-KLT matrix can be pre-calculated

from a training set. The correlation information thus learnt can be used

to sense and reconstruct a collection of similar signals using lesser num-

ber of ADCs. Making use of inter-channel correlation was shown to be

effective in the case of EEG signals taken from the Physionet database,

wherein the relative power in various spectral bands could be estimated

from measurements done only on a subset of EEG channels. Here again

the proof of performance of the proposed scheme was verified with three CS

recovery algorithms. The reconstruction accuracies of each algorithm has

been compared with the simulation results of classical lossy, compression-

decompression.

Reduction in the number of ADCs is one of the ways in which an em-

bedded design could be made compact. Associated with any ADC, there

is also a lot of other electronics which occupies considerable real estate on

the embedded hardware. Anti-aliasing filter is an example of such circuitry,

which requires many passive or even active components for realizing the

filter if it is expected to have a sharp transition from passband to stop-

band. It was shown that one can achieve an effective sampling rate that

is equal to the individual sampling rate of each ADC multiplied by the

number of ADCs, provided the ADCs sensing a set of signals are driven by

phase-shifted clocks. Application of this idea to the compressed acquisition

of voltages (at low to high SNRs) proportional to in-flight control surface

deflections of an aerospace vehicle and subsequent recovery using DCT and

DFT basis has been demonstrated. Instead of using a high-end ADC to

achieve higher conversion resolution for each sample, it was demonstrated

that it is possible to do the same using a general purpose, low resolution

ADC, DAC and a summer, if the signal is compressively sampled. It has

been shown that this design can be employed for increasing the dynamic
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Table 6.1: CHARACTERISTICS OF SIGNALS TO BE ACQUIRED UNDER A COM-
PRESSED SENSING SETUP

Signal number Characteristics ADC used
1,4,5,7,11,12,21 frequency: 0–35 KHz, ADC 1 (80 KHz)

minimum length of PSS segment: 3 ms 8 channel multiplex

14,15,20 frequency: 0–35 KHz, ADC 2* (80 KHz)
minimum length of PSS segment: 10 ms 4 channel multiplex

8,9,16 frequency: 0–15 KHz, ADC 3 (40 KHz)
minimum length of PSS segment: 5 ms 4 channel multiplex

2,6,19 frequency: 0–15 KHz, ADC 4 (40 KHz)
minimum length of PSS segment: 1 ms 4 channel multiplex

3,10,13,22 frequency: 0–3 KHz, ADC 3 and ADC 4
correlated signals

17,18 frequency: 0–18 KHz, ADC 1, ADC 2
sharp cut-off from passband to stopband

*The input clock of ADC 2 is phase shifted with that of ADC 1

range in the acquisition of fetal ECG signals. Variation of the reconstruc-

tion performance as the voltage range of the ADC varies has been shown.

An informal justification of the advantages of using the downsized iden-

tity matrix as the measurement matrix in place of Gaussian or Bernoulli

matrices has been given, along with citations from the literature, in Ap-

pendix C. With the help of simulations, it has been shown that the perfor-

mance of the down-sized identity matrix is comparable with Gaussian or

Bernoulli matrices.

6.1 Integration of proposed methods

Although the operation of the schemes suggested in this thesis have been

demonstrated in separate setups for signals with specific properties, it is

possible to encounter an application, which has a mix of signals of various

types. To tackle such a problem, one should be able to evolve a design

in which the different techniques proposed could be synergistically merged

using common hardware components. An illustration of how this could be

done for a fictitious application follows.

148



6. Conclusion of Thesis

Consider a set of 22 PSS signals having different characteristics as shown

in Table 6.1. Given that there exists information redundancy in this collec-

tion of signals either due to inherent sparsity or inter-signal correlation, it

is desired to construct a design employing the minimum number of ADCs

with the associated circuitry. Applying the CS based designs proposed in

the previous chapters, it is possible to arrive at an architecture comprising

just 4 ADCs. The last column of the table gives the names of the ADCs

to which the signals are assigned. As suggested in chapter 3, signals with

same bandwidth are placed into a single MOSAICS block. Thus there are

two MOSAICS blocks one with ADC 1 and the other with ADC 2 to cater

for the signals of bandwidth 0–35 KHz. Two separate ADCs are used for

these signals because of the different minimum lengths of PSS segment.

The same is the case for the signals: 8, 9, 16, 2, 6, 19, with bandwidth

0–15 KHz, which are divided into two separate MOSAICS blocks operating

with ADC 3 and ADC 4, respectively.

There are four signals, 3, 10, 13 and 22 that are correlated. ADC 3 and

ADC 4 are assigned to two out of these four signals. By measuring two

out of the four signals, the other two can be found out if their correlation

is known a priori or is found during real time operation as explained in

Chapter 4. Although ADC 3 and ADC 4 are already part of MOSAICS

blocks, one in every four sampling cycles in each of these ADCs operating

at 40 KHz is reserved for two of the four correlated signals. This provides

a sampling rate of 10 KHz for each of the four correlated signals sufficient

to meet the requirement of their bandwidth of 0–3 KHz.

Finally there are two signals 17 and 18 of bandwidth 0–18 KHz, that

need high order anti-aliasing filters due to a sharp transition between pass-

band and stopband. One in every four sampling cycles of ADC 1 and ADC

2 is reserved for each of these signals. Thus, individually, ADC 1 and ADC

2 offer 20 KHz to these signals. However, since the clock input to ADC 2

is made to have a phase shift with respect to that of ADC 1, as explained
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in chapter 5, an effective sampling rate of 40 KHz is available for each of

the signals. This helps in relaxing the specifications of their respective AA

filters.

Various hardware resources like computational units, memory and DMA

blocks can be commonly shared by the reconstruction engines responsible

for recovering the different groups of signals.

6.2 Summary of findings in the thesis

The salient ideas and findings that have emerged out of this research are

listed below:

i) Signals sampled by embedded data acquisition systems have informa-

tion redundancy in the form of sparsity which can be exploited to do

sub-sampling.

ii) Such systems can be made more compact, less power-hungry, more

reliable and cost effective in a sub-sampling scheme.

iii) ADC sampling capacity can be more efficiently utilized in a compressed

acquisition by multiplexing between various signals – MOSAICS.

iv) This can be used for any general signal with arbitrary frequencies as

also for detection of sinusoids buried in noise.

v) A set of correlated signals can be collectively sampled using lower

number of ADCs. This idea can be used for EEG acquisition.

vi) Each of a set of sparse signals can be sampled at a higher effective

sampling rate when driven by phase-shifted clocks so as to push the

stop band cut-off to higher frequencies.

vii) A high resolution ADC, for sparse signals, can be designed from com-

monly used components.
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viii) It is possible to design an acquisition system to capture an ensemble of

signals that has different kinds of sparsity by combining several of the

proposed compressed acquisition schemes while using shared hardware.

ix) Most of the schemes are independent of the reconstruction algorithm

used. The results of simulation using different recovery algorithms are

reasonably comparable.

x) The acquisition apparatus in all the cases is quite simple and straight-

forward and can operate on continuous streaming signals.

This thesis concludes at this point with the assertion that compressed

sensing methods can be effectively used to derive maximum benefit from

sub-sampling, if many signals are acquired simultaneously. Also, with mild

assumptions related to stationarity, it is possible to capture in real-time,

continuous and streaming signals. Compressed embedded data acquisition

systems can be realized using simple, general-purpose, off-the shelf elec-

tronic components.
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Appendix A

Embedded hardware design

Factor Impact Design techniques
Power consump-
tion

Design of power sup-
ply, voltage regula-
tors, dimensioning of
interconnect and cool-
ing

• Use of ASICs instead of general pur-
pose processors
• Parallelism
• Dynamic Voltage Scaling
• Dynamic power management
• Reduction in number of components

Compactness Reduction in weight
and dimensions as
part of the total
system

• Miniaturization of capacitors on the
PCB
• Component embedded PCBs - ICs, re-

sistors, capacitors, and inductors em-
bedded into PCBs
• Reduction in number of components

Heat dissipation
and uniform
temperature
gradient

Cooling requirements
• Effective heat and high current routes

for optimal convective heat transfer
• Use of thermally conductive planes
• Reduction in number of components

Reliability Human safety and re-
duced MTTF (Mean
Time To Fail)

• Fault-tolerant architectures
• High component level reliability
• Reduction in number of components

leading to lesser interconnect

Table A.1: DESIGN CONSIDERATIONS FOR EFFICIENT DESIGN OF EMBEDDED
SYSTEMS
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Algorithm ARCS

Input
N : number of correlated signal sources

M : number of available ADCs

Ts : Sampling period

Streaming data from the N signal Sources

Output
S : Signal matrix

Variables:
fam : set of familiar signals

str : set of stranger signals

entr : set of entrant signals

f : column vector with M or M − 1 elements

Ψ(n) : Inverse KLT matrix of dimension n

τ : threshold for KLT convergence

Φ : Measurement matrix

k : count of the sampling cycle during a convergence cycle. This

count gets reset to 1 every time the inverse KLT converges

time : current acquisition time

acquisition time : total time of acquisition

e : vector of eigen values of the covariance matrix of S

δ : l2 norm between successive vectors of eigen values

n : number of signals introduced to ARCS
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Method:

1. n←M, k ← 1, entr← {1, 2..M}, fam← {}
2. while time ≤ acquisition time do

3. if n = M then

4. S(k, 1 : n)←M samples from each of the signals in entr

5. CALL INVKLTCONVERGE

6. else

7. if n < N then

8. f← samples, at the kth instant, of M−1 randomly chosen signals

from the set fam

9. Φ ← Matrix consisting of those rows of the identity matrix of

order n 1 corresponding to the chosen signal numbers

10. ẑ← CONV EXOPT (Φ,Ψ(n−1), f, n− 1)

11. S(k, 1 : n− 1)← ẑ

12. S(k, n)← sample of the signal in entr

13. CALL INVKLTCONVERGE

14. else

15. f ← samples, at the kth instant, of M randomly chosen signals

from the set fam

16. Φ ← Matrix consisting of those rows of the identity matrix of

order n corresponding to the chosen signal numbers

17. ẑ← CONV EXOPT (Φ,Ψ(n), f, n)

18. S(k, 1 : n)← ẑ

19. end if

20. end if

21. time← time+ Ts, k ← k + 1

22. end while

23. return

end ARCS

1Note that n is incremented in INVKLTCONVERGE
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Subroutine CONVEXOPT(Φ, Ψ, f, n)

Method:

1. ĥ← argmin(||h||1) subject to ΦΨh = f

2. v← Ψĥ

3. return v

end CONVEXOPT

Subroutine INVERSEKLT(array)

Method:

1. C← Covariance Matrix of array

2. [V E]← Eigen vectors and Eigen values of C

3. return (V, E)

end INVERSEKLT

Procedure INVKLTCONVERGE

Method:

1. if k > 1 then

2.

[
Ψ(n), ek

]
← INV ERSEKLT (S)

3. δ ← ‖ek − ek−1‖2

4. if δ < τ then

5. k ← 1, n← n+ 1, ek ← −∞, S← NULL

6. fam← fam ∪ entr, str← str− entr, entr← {α} , α ∈ str

7. else

8. ek−1 ← ek

9. end if

10. end if

11. return

end INVKLTCONVERGE
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Appendix C

Justification for using the downsized

identity measurement matrix

The following arguments advocate the usage of deterministic measurement

matrix as against fully random matrices:

1. In [123; 124] the authors have suggested the use of a measurement

matrix consisting of M rows of an N -by-N orthonormal matrix, se-

lected uniformly at random. The main result of [123] says that given

a measurement matrix UΩ formed by picking up rows, uniformly at

random, from an orthogonal matrix U, it is possible to recover a sig-

nal x ∈ RN that is sparse |x|0 << N from a vector f = UΩx. UΩ is

an M × N matrix consisting of the rows of U indexed by the subset

Ω ⊂ {1...N} of size |Ω| = M .

Now, UΩ = IΩU, where IΩ is a matrix consisting of the rows of the

identity matrix I(N), indexed by Ω. IΩ is nothing but the down-sized

identity matrix, Φ, that has been used all along as the measurement

matrix in this research. In place of U, the inverse of DFT, DCT or

KLT matrices, identified as Ψ the sparsity matrix, have been used at

various places in the thesis, as the need be.

Thus, the sensing matrix Θ = ΦΨ is a matrix consisting of rows

picked up uniformly at random from an orthogonal matrix and is

therefore capable of recovering a sparse vector c (e.g. a sparse vector
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C. Justification for using the downsized identity measurement matrix

of Fourier coefficients as in Chapter 3) from limited measurements,

f = Φx = Θc in the signal domain. Once c is recovered, x can be

obtained from x = Ψc.

2. Although theoretically powerful, the practical relevance of using com-

pletely random matrices like the Gaussian and Bernoulli matrices is

limited since we do not have the liberty to choose the type of mea-

surements that will be used to acquire the signals [123].

3. It is quite costly to use random matrices in practical sensing appli-

cations as they require very high computational complexity and huge

memory buffering due to their completely unstructured nature [123].

The following from [125] is quoted verbatim, “For example to process

a 512× 512 image with 64K measurements (25% of the original sam-

pling rate), a Bernoulli matrix requires nearly gigabytes of memory

and giga-flop operations, which makes both sampling and recovery

very expensive and in many cases, unrealistic”. In this paper too,

the authors cite the use of a sensing matrix consisting of a uniformly

random subset of rows of an orthonormal matrix in which the partial

Fourier matrix is a special case [126].

4. The condition specified in equation 2.25 of sub-section 2.4.2 for guar-

antee of obtaining the sparsest solution to equations (2.13), (2.14)

and (2.15) is true from a worst-case standpoint [59]. Thus, for a given

µ(Θ), a small fraction of signals with K substantially above the bound

specified by (2.25) can still be successfully reconstructed. Or equiv-

alently, for a given K for all the signals under test, even if µ(Θ) is

somewhat higher, successful reconstruction can take place. In [59] it

is suggested that considering the average performance of CS as a func-

tion of K, an average measure of coherence (possibly like the one in

equation 2.24) is more likely to describe its true behavior.

The implication of this argument is that a deterministic matrix like the
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downsized identity matrix, which has been used in this research does

have a fair chance of passing the test of being a good measurement

matrix, in spite of the fact that there exists no proof of it satisfy-

ing the RIP or being mutually incoherent with the sparsity matrices

employed.

C.1 Empirical comparison of down-sized identity ma-

trix and gaussian matrix

This section attempts to empirically estimate the probability of the down-

sized identity matrix having a lower mutual coherence with the inverse

KLT matrix than a random Gaussian matrix.

1. For this purpose, the inverse KLT matrix Ψ(8) of 8 signals taken from

EEG dataset used in Chapter 4 is computed.

2. Next, down-sized identity matrices of dimension 3 × 8 (3 rows, 8

columns) are considered. There exist 56 such matrices, Φ(i), 1 ≤ i ≤
56. The mutual coherence µΦ(i)

of each matrix, Φ(i) with Ψ(8) is com-

puted using equation 2.23 in sub-section 2.4.2.

3. Each µΦ(i)
is compared with the mutual coherence µG(j)

, j = 1...10000

of 10000 random Gaussian matrices of dimension 3×8. A count of the

number of times, µΦ(i)
< µG(j)

, j = 1...10000 is found which is used to

compute the probability, pΦ(i)
which is equal to this count divided by

10000.

4. pΦ(i)
is computed for each of matrices Φ(i), 1 ≤ i ≤ 56. Thus, for all

the 56 matrices together, totally there are 560000 comparisons done.

Figure C.1 plots the probabilities pΦ(i)
, 1 ≤ i ≤ 56 for each of the 56

matrices as a bar graph. It can be seen that for many of the downsized

identity matrices Φ(i), the probability is close to 1, that is, with a great
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certainty the matrix has a lower µ with the given Ψ(8), than any Gaussian

matrix. Of course, there are two matrices where the probability is less than

0.1.

The surprising observation from this experiment is that, for the inverse

KLT matrix used, the number of 3 × 8 downsized identity matrices, that

have a lower mutual coherence than their Gaussian counterparts is 38 out

of 56 (more than half) from a probabilistic standpoint.

However, there is no claim made from this simple experiment that the

down-sized identity matrix is a better measurement matrix than its Gaus-

sian equivalent, which is backed by theoretical proof. The effort made

here is to point out that the absence of theoretical support does not con-

firm the failure of a general measurement matrix in performing good CS

reconstruction.

Figure C.1: Probabilities of 56 down-sized identity matrices pΦ(i)
having a lower mutual

coherence with a given inverse KLT sparsity matrix, Ψ(8) as compared to random Gaussian
matrices of dimension 3× 8
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C.2 EEG reconstruction with Gaussian measurement

matrix

For additional assurance that the performance of the down-sized identity

matrix is comparable with other random matrices, the experiment on sub-

ject 1, record 7 has been repeated using the Gaussian measurement matrix.

Comparison of the FSM values is shown as a plot in figure C.2. The average

percentage FSM error in various EEG bands is - delta: 8.7%, theta: 6.3%

alpha: 8.6% beta: 22.2%. These results show that reconstruction accura-

cies with the Gaussian measurement matrix and the down-sized identity

matrix are comparable.

Figure C.2: Comparison of FSM values between reconstructed and original signals for
Subject 1, Record 7 using down-sized identity matrices, indicated in the legend as DIM
and the gaussian measurement matrix. With both the measurement matrices the CoSAMP
recovery algorithm has been used.
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