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Abstract

Optical imaging is a vibrant research area, fueled by defenseand bio-medical appli-

cations. The non-ionizing nature of near-infrared and optical waves, coupled with the

possibility of performing functional imaging, has usheredin new interest in bio-medical

optical imaging. The technologically advancedstate of optical and infrared sourcesand

the availabilit y of fast and inexpensivedetectorshaveacceleratedthe research in this �eld.

The challengesencountered in optical imaging can usually be attributed to the phe-

nomenonof scattering. Scattering blurs the details of an object being imaged, thereby

reducing the achievable resolution. Many imaging schemeshave beendevisedto circum-

vent this degradation induced by scattering. In one such classof techniques called as

`Direct imaging techniques', the main aim is to reject scattered light and use only un-

scattered light for imaging. The criteria for rejecting and accepting di�eren t parts of

the radiation as scatteredand unscatteredcan vary, and this has given rise to di�eren t

imaging schemes. Of particular interest to us, in this thesis, are the continuous-wave,

direct imaging schemes,which usepolarization of the received radiation to discriminate

the unscatteredradiation from the scatteredpart. The emphasisin this thesis is on the

signalprocessingmethodologiesadoptedin such schemes.Throughout the thesis,wehave

used only linear polarization for our study. However, parallels can be drawn from this

study, to the caseof circular polarization for most of the situations discussed.

A classof continuous-wave, polarization baseddirect imaging techniques use simple

subtraction of setsof co-polarized and cross-polarized imagesto obtain an image corre-

sponding to the unscatteredcomponent of light. Theseschemesare calledaspolarization

x
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di�er ence imaging (PDI) schemes.There are other schemeswhich usepolarization mod-

ulation (either at the sourceor at the receiver), followed by sinusoidal estimation, to

discriminate betweenscatteredand unscatteredcomponents. Theseare called as polar-

ization modulation imaging (PMI) schemes.

In this thesis, we present a mathematical framework to analyze and compare these

apparently disparate imaging methodologies. Theoretically and through Monte-Carlo

simulations, we have studied the relative advantagesand disadvantagesof the PDI and

PMI schemesunder both white and colourednoiseconditions,concludingthat, in general,

the PMI scheme gives better estimates of the unscattered component. The results of

simulations and experiments corroborate our theoretical arguments. The PMI schemeis

shown to give asymptotically e�cien t estimatesof the unscatteredcomponent, whereas

the PDI schemeis shown to give biasedestimatesof the same.Moreover, it is shown that

PDI schemeis a particular caseof the PMI scheme. We have alsosuggestedthat the PMI

scheme,which modulates the received radiation rather than the incident radiation is a

more useful variant, sinceit can be easily adapted for passive imaging as well.

We conducted PMI experiments in the Optics lab of the Raman Research Institute,

Bangalore,wherein,weuseda 10mW , 632:8 nm, linearly polarized,He-Nelasersourceto

imageopaqueobjects through scatteringslabsof mono-dispersepolystyrenemicrospheres

dispersedin water. Polystyrene particles with diameters2:97 �m , 0:06 �m and 0:13 �m

were usedin our studies. An intensi�ed charge coupleddevice(CCD) camerawas used

to capture the images.Resultsshowed that imaging can be performedbeyond 40 optical

thicknesses,for particles of 0:13 �m diameter. For larger particles, the depth to which

imaging could be performed,wasmuch lesser.Experiments werealsoconductedto image

an object through mist, with successfulresults. An experiment usingan incoherent, white

light source,showed that using incoherent sourcescan yield better imaging results than

coherent sources.We attribute this to the speckle noiseinduced by coherent sources.

We have also analyzed schemeswhich use the degree of polarization (DOP) of the

scatteredlight as the visualization parameter. The expressionsfor DOP are available in
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the literature, only for the PDI scheme,and not for the PMI scheme.By simpletheoretical

analysis,we have shown that the DOP information canbe obtainedby PMI schemesalso.

We have comparedthe variousmethods of estimating the DOP information and conclude

that the PMI and the PDI schemesare better than all the other schemesconsidered.

We observe that the current PMI and PDI schemescannot discriminate di�eren t states

of linear polarization, which can occur in real data. We show that this can be achieved

by using the phaseinformation of the recordedsinusoidsin the PMI scheme,at no extra

computational cost,whenestimating the unscatteredcomponent. Wecall such schemesas

Polarization Orientation Imaging schemes(POI). However, the PDI schemeis incapable

of estimating the phaseof the sinusoids,which is its major drawback.

We studied the suitabilit y of using matched-�lter basedestimation techniquesto esti-

mate the variousvisualization parametersdiscussed,namely, the unscatteredcomponent,

the DOP and the phase. We found that the PMI and the PDI schemesshow superior

performancethan these schemes,except that the PDI scheme cannot estimate phase.

However, there are a few conditions when the matched-�lter basedtechniquescan give

better results, which we have mentioned.

We have shown that the three visualization parameterscan be fusedto form a colour

image, which givesa holistic view of the sceneand mentioned the advantagesof such a

rendition. We also report the advantagesof analyzing chunks of data and bootstrapped

data under various circumstances,to estimate the various visualization parameters. We

have alsobrie
y touched upon the possiblepost processingthat can be performedon the

obtained results, and as an example,shown the segmentation of a POI result.



Chapter 1

In tro duction to optical imaging

1.1 Imaging science

From the point of view of this thesis, we de�ne `imaging' as the creation of a visual

representation of somemeasurableproperty of a person,object, or a phenomenon.Thus,

`ImagingScience'becomesthe pursuit of scienti�c understandingof imagingor an imaging

technique. This inter-disciplinary branch strivesto view phenomenanormally invisible to

the human eye by translating them by somemeans,to a visually perceptible form.

What makesimaging a very interesting, diverseand an inter-disciplinary �eld is, that

the bearer of (or what conveys) the `measurableproperty' can take many forms. For

example, Ultrasound and X-rays are both used for imaging the interiors of the human

body; though both are used for the samepurpose, the information the two modalities

give can be di�eren t. Similarly, visible, infrared and radio waves are used for remote

sensingapplications depending on the featuresone is interested in. The intelligence in

designingnew imaging techniqueslies in perfecting the art of choosinga suitable bearer

of the `measurableproperty' for the application on hand.

In this thesis, we deal with only those techniques,where the properties of interest of

objects being imagedare carried by visible and near infrared waves. This �eld of imaging

1



CHAPTER 1. INTR ODUCTION TO OPTICAL IMA GING 2

is called as Optical Imaging. Wherever generalizationsto other regionsof the electro-

magneticspectrum are possible,a mention will be made.

Having narrowed down to someextent towards the area of interest of this thesis, we

delve deeper into optical imaging itself.

1.2 Optical imaging

Optical imaging hasdiverseapplications ranging from microscopy to astrophysics. Cam-

eras, optical telescopes, optical microscopes are all optical imaging devices. Optical

imaging is also a very important part of remote sensing. There are a few important

reasonswhich make optical imaging desirableand sometimesinevitable.

In general,the wavelengthusedfor imaging limits the achievableresolutionor details in

imagequality [1]. So,onewould like to usethe shortest wavelength at disposal to image

objects if one could do so. In the caseof remote sensing,one would have liked to use

wavelengthsbelow visible range for imaging, if earth were to re
ect thesewavelengths.

Radiations with wavelength below that of the visible range are absorbed strongly by

earth's atmosphere,or else,our existencewould have been in jeopardy. On the other

hand, the visible, infrared and radio wavesare easilyallowed to reach the earth's surface.

The re
ected waves of these wavelengths carry information about the composition of

the earth's surface. This makes the use of wavelengthsshorter than that of the visible

spectrum inviable for remotesensing.This reality hasmaderemotesensingto exceedingly

depend on visible, infrared and radio wavelengths.

Similarly, sinceX-ray is an ionizing radiation, there hasbeena penchant amongradiolo-

gists for usingvisible wavelengthsfor imaging the interiors of the human body. Currently,

interest is growing in optical imaging and we may not be far from realizing diagnostic

optical imaging tools. Besidesthese, defenseneedshave further pushed the limits of

optical imaging. All thesediverseapplications have madethis �eld, a vibrant one.
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Although optical imaging can o�er solutions to many important imaging problems,

it is not easyto image using optical wavelengths. Optical radiation has beenknown to

be one of the most di�cult imaging probes. One important reasonis light scattering,

which manifests itself in most of the imaging conditions. Though the phenomenonof

absorption(which is closelylinkedto scattering) alsoa�ects imaging in certain conditions,

many a time, it becomesa useful property in imaging. The phenomenonof scattering

and absorption a�ect all imaging systemsto varying extents, and hence,have attracted

immenseinterest from researchersacrossdi�eren t disciplines.

In this thesis,weneglectthe e�ects of absorptionand considerimaginga�ected by scat-

tering only. More speci�cally, we deal with two-dimensionalimaging, and with imaging

techniquesthat deal with polarization information, apart from the intensity information.

Having narrowed down to the problem further, let us seesomeaspectsof light scattering.

1.3 Ligh t scattering

In this section,we dwell on a very simplistic picture of light scattering and look at the

way it a�ects imaging. The problem of imaging through light scattering media is also

termed as `Imaging through turbid media' [2] or `Imaging through turbidit y'. Note that

wearenot consideringthe e�ect of turbulenceinducedby wind etc., which wecomeacross

in literature related to atmosphericoptics. The e�ect of light scattering is the only topic

of interest in this thesis.

To understandthe reasonsthat make imaging under scattering conditionsa formidable

task, we considera simple case,where, we try to obtain the shadowgram of an opaque

object resting in a scattering medium, using active illumination (i.e., the light source

is controllable). If the object is in an environment in which the scattering e�ects are

negligible,shining light from onesidewould casta sharpshadow of the object on a screen

placed on the other side of the object. Fig. 1.1(a) shows such a simulated shadow of a

elliptical object.
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If the object is placed in a scattering medium, some light will enter the region of

geometricshadow of the object, due to scattering. If the scattering increases,more light

will stray into the region of geometricshadow. This decreasesthe contrast betweenthe

shadow and the surroundingbackground, introducinga blurring e�ect on the shadowgram.

Fig. 1.1(b) shows what could be the result of mild scattering. If the concentration of the

scatterersis increasedfurther, the blur keepsincreasing,till a point is reached, when the

shadow becomesindiscerniblewith respect to the background. Fig. 1.1(c) shows the e�ect

of increasein scattering on the shadowgram shown in Fig. 1.1(a). The imagesin Fig. 1.1

weregeneratedby a simulation of scattering.

Generally, to qualitativ ely assessthe e�ect of light scattering, researchersresort to the

photon picture of light. In this setting, light inside a scattering medium can be regarded

asconsistingof three di�eren t components, viz., the ballistic or the unscatteredphotons,

the di�use or the multiply scattered photons and the quasi-ballistic photons or weakly

scatteredphotons. Among thesecomponents, the ballistic photons which travel straight

and unscatteredare the oneswhich are capableof forming shadowgrams of an opaque

inclusion. The quasi-ballisticphotons,which undergoscatteringonly through small angles

can be imagined to meanderabout the forward direction like a snake and for this reason

are also called as `snake photons'. Though the snake photons also blur the imageof the

object slightly, they retain their direction to someextent and are hence,useful. The

(a) (b) (c)

Figure 1.1: E�ect of increaseof number of scattererson imaging - Simulated images.
(a) Shadow of an elliptical object formed with negligiblescattering (b) E�ect of mild
scattering. (c) E�ect of intesnsescattering.
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di�use photonscausemost of the blurring and are the onesto be avoided while imaging.

The composition of light collected by the receiver has been analyzed in di�eren t ways,

though, parallels can be drawn betweenthe description given above and the onesgiven

in [3, 4].

By a look at Fig. 1.1, it is evident that we could have obtained a sharp shadow of

the object, if we could have prevented light from entering the geometricshadow region,

i.e., if we could have retained the rays passingstraight through the medium and rejected

the scatteredrays. Someimaging methodologiesstrive to achieve this singlegoal, i.e., to

capture the ballistic and snake photons and avoid collecting the di�use photons. These

schemesare referredby a collective term, namely, `Direct imaging' schemes[5]. In scat-

tered polarizedlight, the ballistic and snake photonsretain their initial polarization state

to a greater extent, as comparedto the di�use photons. Hence,polarization of the scat-

tered photons can be used to distinguish the less scattered ones from the rest. Such

schemesare called polarization baseddirect imaging schemes.

There are many other imaging schemeswhich analyze the di�use intensity collected,

and theseare in generalcalled as Ìndir ect imaging' schemes.In theseschemes,imaging

is viewed as an inversesourceproblem and the wave equation is usedfor obtaining the

results. In this thesis,wehaveconsidereddirect, polarization basedimagingschemesonly.

In our work, we have looked at two-dimensionalimaging schemesonly and especially, the

transmissionmode imaging schemes.Three dimensionalimaging schemeshave not been

the subject of analysis in this thesis. But, a general review of the di�eren t schemes

existing to date and in particular, a review of polarization basedschemesis given in the

third chapter.

1.4 Organization of the thesis

The next chapter contains the essential background material related to polarization

optics and light scattering, that is neededto understandthe latter chapters. The chapter

following the preliminariescontains a reviewof the �eld of optical imaging. The emphasis
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is on continuouswave imagingusingpolarizedlight, the topic addressedin this thesis. The

review mainly concentrates on the analysismethods adopted in such imaging schemes.

The fourth chapter providesa mathematical framework for the analysisof variousimag-

ing schemes,using which, we assessthe advantages and disadvantages of the various

schemes. We have also proposedsomenew imaging schemesand processingtechniques

in that chapter. In the �fth chapter, we have illustrated the results obtained from actual

experimental data. The �nal chapter summarizesthe contributions of this thesis and

provides pointers for further research on the topic.



Chapter 2

Scattering of polarized ligh t

In this chapter, we give a gist of the terms from the �eld of polarization optics and

light scattering,usedfrequently in this thesis,alongwith the bare-minimum mathematics

related to them. The contents of this chapter have beencompiled by borrowing heavily

from [6].

2.1 Polarized ligh t

Sincethe thesisdealswith imaging using polarized light, we begin with the most basic

notions of polarization of light, its representation and measurement.

Polarization is a property which arisesout of the transversenature of the electromag-

netic (EM) radiation, and is related to the orientation of the plane of vibration of its

electric �eld. The magnetic �eld associated with the radiation is not taken into account

to denotepolarization.

The compelling needto study the vectorial nature of light is encountered whenonetries

to understandlight propagationin restricted medialike optical �b ersor in the presenceof

surfaceswith discontinuousrefractive indices(like scatteringmedia), wherethe boundary

conditions needto be taken into account. In the caseof a plane surface,it can be shown

that the component of the electric �eld perpendicular to the planeof incidence(TE wave)

and the oneparallel to it (TM wave) are completelyunrelated, and their behavior during

7
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re
ection and refraction phenomenaare independent. So, it looksasthough the EM �eld

can be treated as a superposition of two plane-polarized waves, which can form a basis

for generatingany other polarization state. Sincethe monochromatic plane wave is the

fundamental entit y in the description of polarized light, we examineit in greater detail.

2.1.1 States of polarization

Considera plane monochromatic wave, with angular frequency! and wave number k.

The wave number k is de�ned as

k = 2� n
�
c

=
2�
�

(2.1)

where,n is the refractive index of the medium and � is the frequencyof the EM radiation

and � is the wavelength in the dielectric medium and is given by � = c=n� . Supposethe

wave is propagating along the z direction in a non-absorbingmedium. The electric �eld

E of the wave can be represented mathematically as

E = A cos(kz � ! t) + B sin(kz � ! t)

where,the real vectorsA and B are independent of position in the medium. The electric

�eld vector at any point lies in a plane,such that, the normal to the planewill be parallel

to the direction of propagation. In a particular plane, say z = 0, the tip of the electric

vector tracesout a curve:

E(z = 0) = A cos(! t) + B sin(! t)

The above equation describesan ellipse,or more aptly, the vibration ellipse,a sketch of

which is shown in Fig 2.1. If A = 0 or B = 0, the vibration ellipse is just a straight

line and the wave is said to be linearly polarizedor plane polarized. The non-zerovector

speci�es the direction of vibration. If j A j= j B j and A � B = 0, then the vibration ellipse

is a circle and the wave is said to be circularly polarized. In general,a monochromatic

wave is elliptically polarized.
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Figure 2.1: Vibration ellipsewith ellipticit y B=A and azimuth 


As can be observed from Fig. 2.1, a given vibration ellipse can be traced out in two

opposite directions, clockwiseand anti-clockwise. We adopt the convention, accordingto

which, an elliptically polarized wave is said to be right-handed if the vibration ellipse is

rotating in the clockwise senseas viewed by an observer looking towards the source.

Apart from the handedness,the ellipsecan be characterizedby its ellipticit y (the ratio

of the length of the semi-minor axis to the semi-major axis) and its azimuth (the angle

madeby the semi-major axis to the horizontal of the chosenframe of reference). In the

examplevibration ellipsesketched in Fig 2.1, the ellipticit y is given by B=A , the azimuth

is 
 and the intensity of the wave is given by I = A2 + B 2. The four parameters,viz.

handedness,ellipticit y, azimuth and the intensity, called as the ellipsometric parameters,

completely specify the state of polarization of a wave.

Generalizingthe above analysis,we can say that the correlation betweenany two or-

thogonal components of the electric �eld decidesthe polarization state of the light. If

the orthogonal statesare completely correlated, the light is totally polarized. If they are

completely uncorrelated, the light is said to be unpolarized. If they are partially corre-

lated, light is saidto bepartially polarized. Only a purely monochromatic sourcecanemit

totally polarized light. If a sourceexhibits spectral width, or, if a purely monochromatic

wave passesthrough depolarizing media that introducerandom phaseshifts betweentwo

orthogonal states of the basis, the light becomespartially polarized. This is what is

commonly encountered in practice.
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There are di�eren t ways of mathematically representing polarized light [7]. The Stokes

representation turns out to be the most convenient for our purpose,since it can easily

handle the representation of both fully and partially polarized light, both of which are

encountered in light scattering studies. Also, the practical measurability of the param-

eters of the representation and the additive nature of the Stokes parameters(which is

explained shortly), coupled with the Mueller matrix transformation methods to study

light scattering, qualify the Stokesrepresentation asan ideal choiceto study polarization

in light scattering. Hence,we study the Stokesrepresentation in somedetail.

2.1.2 Stok es vectors

Weintroducethe Stokesparametersalongwith their notations through the experiments

by which they can be determined. We assumethat a polarization insensitive detector is

usedto measurethe di�eren t intensitiesin the experiments and that the variouspolarizers

and wave plates are ideal and do not absorblight.

To de�ne the polarization states of the beam, we usea set of orthogonal axesêk and

ê? , which we refer to as`horizontal' and `vertical', respectively. Then, the electric �eld E

can be represented as

E = E0 exp(ik z � iwt); E0 = Ekêk + E? ê?

Now, wemake the following measurements on the givenbeamof light. Wehaveomitted

a scalingfactor in all intensity calculationsfrom �eld values,sinceit doesnot hamper the

understandingof the actual idea.

1. The intensity falling on the detector with no polarizersin the path is measured,and

the value is given by

EkE �
k + E? E �

?

2. Let a horizontal polarizer be introduced in the path of the beam. The intensity

transmitted will be EkE �
k . If a vertical polarizer is introducedinstead, the intensity
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measuredwill be E? E �
? . The di�erence betweenthe two measuredintensities will

be

I k � I ? = EkE �
k � E? E �

?

3. Let a polarizer be placed in the path of the beam, with its axis aligned at +45 �

to the horizontal. We introduce a new set of basis vectors ê+ and ê� which are

obtained by rotating the êk vector by +45� and � 45� respectively. The new basis

will be

ê+ =
1

p
2

(êk + ê? ); ê� =
1

p
2

(êk � ê? )

In this basis,the electric �eld vector E0 canbe written asE0 = E+ ê+ + E � ê� where

E+ =
1

p
2

(Ek + E? ); E � =
1

p
2

(Ek � E? )

The amplitude of the transmitted wave through the polarizer aligned at +45 � will

be E+ = 1p
2
(Ek + E? ), giving an intensity I + = (EkE �

k + E? E �
? + EkE �

? + E? E �
k )=2:

Similarly, the intensity transmitted through the polarizer aligned at � 45� will be

I � = (EkE �
k + E? E �

? � EkE �
? � E? E �

k )=2: The di�erence betweenthe two intensities

will be

I + � I � = EkE �
? + E? E �

k

4. Now, we introduce the right and the left circular polarizers. The respective basis

vectorsare given by

êR =
1

p
2

(êk + i ê? ); êL =
1

p
2

(êk � i ê? )

In this basis,the electric �eld vector E0 canbe written asE0 = ER êR + EL êL , where

ER =
1

p
2

(Ek � iE ? ); EL =
1

p
2

(Ek + iE ? )
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The intensity transmitted through the right and the left circular polarizerswill be

I R = (EkE �
k + E? E �

? + iE kE �
? � iE ? E �

k )=2 and I L = (EkE �
k + E? E �

? � iE kE �
? +

iE ? E �
k )=2, respectively. The di�erence betweenthe two gives

I R � I L = i (EkE �
? � E? E �

k )

With thesefour measurements, we can get the Stokesparametersor the Stokesvector as

I = EkE �
k + E? E �

? (2.2)

Q = EkE �
k � E? E �

? = I k � I ?

U = EkE �
? + E? E �

k = I + � I �

V = i(EkE �
? � E? E �

k ) = I R � I L

Observe that Q and U depend upon the choiceof the horizontal and the vertical axes,

but I and V do not. The sign of V signi�es the handednessof the ellipse; positive

stands for right-handednessand negative stands for left-handedness.The methodology

of transformation of the Stokes Vector, when the frame of referencechanges,has been

detailed in [6].

Table 2.1 shows the Stokesvectors for the commonly encountered polarization states.

The angleson the top of each of the linearly polarized vectors corresponds to the angle

madeby the polarization axis with the horizontal.

One important observation that has to be madehere is that the Stokesvectorsdo not

form a vector space. To realize this, it is su�cien t to notice that the Stokes vector of

the linear polarized state at 45deg is not the sum (ignoring scaling) of the Stokesvector

perpendicular and parallel to the referenceframe. The Stokes vector representation of

other commonly encountered polarization statesare given in [7, 8].
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Table 2.1: Stokesrepresentation of the fundamental statesof polarization

0� 90� +45� � 45� 
2

6
6
4

1
1
0
0

3

7
7
5

2

6
6
4

1
� 1
0
0

3

7
7
5

2

6
6
4

1
0
1
0

3

7
7
5

2

6
6
4

1
0

� 1
0

3

7
7
5

2

6
6
4

1
cos(2
 )
sin(2
 )

0

3

7
7
5

Linearly polarized light

Right Left2

6
6
4

1
0
0
1

3

7
7
5

2

6
6
4

1
0
0

� 1

3

7
7
5

Circularly polarized light

In the caseof an ideal, strictly monochromatic wave, the four parametersare depen-

dent, and it can be shown that I 2 = Q2 + U2 + V 2. The Stokesparametersof a quasi-

monochromatic beam(which, in general,is partially polarized)areobtainedby taking the

time averagedquantities over an interval long comparedwith the period, in which case,

it can be shown that I 2 � Q2 + U2 + V 2. The equality holds if the light is completely

polarized. Accordingly, we can de�ne

Overall degreeof polarization (DOP) =

p
Q2 + U2 + V 2

I
(2.3)

Degreeof linear polarization (DOLP) =

p
Q2 + U2

I
(2.4)

Degreeof circular polarization =
V
I

(2.5)

Next, we review the terminology usedin light scattering, relevant to this thesis.
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2.2 Ligh t scattering

The physical basisfor scattering by any systemcan be traced to the heterogeneity of

the system,either at the molecularlevel or on the scaleof aggregationof many molecules.

Sinceheterogeneity is a rule rather than an exception in the real world, scattering is an

omnipresent phenomenon. The study of light scattering beginswith the understanding

of scattering by single particles within the framework of EM theory, basedupon which,

the more complicatedphenomenaare studied.

When an obstacleis illuminated by an EM wave, electric chargesin the obstacleare set

into oscillatory motion by the electric �eld of the incident wave. The acceleratedcharges

re-radiate EM energy in all directions. This secondaryradiation is called the radiation

scatteredby the obstacle.Essentially , we can put it as,

scattering = excitation + re-radiation.

If the frequencyof the scatteredlight is the sameasthat of the incident light, then the

scattering event is called as elastic or coherent scattering. If the incident EM energy is

transformedinto thermal energy, then the processis calledasabsorption. Scattering and

absorption are not mutually independent processes,though, depending on the situation,

one may be more prominent than the other. In this thesis, we deal only with scattering

by particles and neglectthe e�ect of absorption.

Particles in a collection are electromagnetically coupled. Each particle is not only

excited by the external �eld, but also by the resultant �eld scattered by all the other

particles. Sincethe �eld scatteredby a particle dependson the total �eld to which it is

exposed,a rigorous theoretical treatment of scattering by many particles is a formidable

task.

Considerablesimpli�cation results, if we assumesingle scattering, i.e., the number of

particles in the collection is su�cien tly small and their separation su�cien tly large, so

that, in the neighborhood of any particle, the resultant �eld due to scattering by all the

other particles is small comparedwith the external �eld. With this assumption,the total
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scattered �eld is just the sum of the �elds scatteredby the individual particles, each of

which is acted on by the external �eld in isolation from the other particles. It is di�cult

to state precisegeneralconditions under which the singlescattering criterion is satis�ed.

Next, we study the caseof singlescattering in somedetail.

2.2.1 Single scattering

The essential problem in scattering theory is to �nd the scattered �eld as a function

of direction, for the given incident �eld and scatterer. Let us considerthe caseof light

of arbitrary wavelength being incident on an arbitrarily shaped particle. The total 
ux

scatteredby the particle in all directions can be consideredto be the 
ux of the incident

wave falling on a virtual area� s calledas the scattering cross-section of the particle. i.e.,

Fscat = � sFin

whereFscat and Fin refer to the total scatteredand incident 
ux, respectively. Similarly,

the absorption cross-section � a is de�ned as the virtual area over which the real overall

absorptionof the incident wavewould occur. The extinction cross-section � ext , (a measure

of the overall extinction su�ered by the incident wave in the direction of transmission),is

the sum of scattering and absorption cross-sections.i.e.,

� ext = � s + � a

For non-absorbingparticles, � ext = � s:

Thesecross-sectionsdepend upon the particle size, shape, orientation, wavelength of

the incident light, the relative refractive index (RRI) betweenthe scattering particle and

the surrounding medium (m) and the polarization state of the incident light. The size

parameter(x) of the scattering particles takesinto account the relative dimensionsof the

sizeof the particle and the wavelength (� ) of the incident radiation.
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e.g. for a sphericalscattering particle of radius a, x is de�ned as

x =
2� a
�

(2.6)

The samerelation can be written asx = ka, wherek is the wave number of the radiation

in the medium surroundingthe particle (seeeqn2.1). Though extinction dependsonly on

the scattering amplitude in the forward direction, it is the combined e�ect of absorption

in the particle and scattering in all directions by the particle. In our work, sincewe used

spherical scattering particles, we restrict further discussionsto scattering by spherical

particles only.

Mie theory helpsto computethe scatteringpropertiesof sphericalparticles. The theory

calculatesthe angular dependenceof the scattered intensity for light polarized parallel

and perpendicular to the scatteringplane(the planecontaining the incident and scattered

rays). From this, the intensity for any polarization can be calculated.

For particles much smaller than the wavelength, the scattered intensity is distributed

moreor lessuniformly in all directions, in which case,the scattering is said to be isotropic

(this is also referred to as Rayleigh scattering). On the other hand, for particles larger

than the wavelength, light is scattered preferentially in the forward direction and the

scattering is called as anisotropic (or Mie scattering).

The reasonfor anisotropy can be attributed to the interferencebetweenthe scattered

waves. For particlesmuch smallerthan the wavelength(Rayleighscattering), the scattered

waveswill be in phasein all directions and hence,we seenearly an isotropic distribution

of intensity around the particle. However, for large scatterers, the forward scattered

waves interfere constructively and the others interfere nearly destructively, resulting in

anisotropic distribution of intensity around the scatterer.

The anisotropy is speci�ed in terms of the anisotropy parameter g (dimensionless),

or the scattering indicatrix (or scattering diagram) [9]. The term phase-functionis also

usedsometimesto denote the samequantit y. We shall use the terminology `anisotropy
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parameter' in further discussions. The anisotropy parameter, g, is a measureof the

amount of light retained in the forward direction after a single scattering event and is

mathematically given as g = hcos(� )i , where � is the de
ection taken by a photon after

scattering. g is a function of the radius of the sphericalparticle, the wavelength of the

incident light and the refractive index contrast betweenthe particles and the surrounding

medium. It varies from nearly 0 (isotropic scattering) to 1 (strictly forward scattering).

Table 2.2 gives the anisotropy values for the spherical particles used in our imaging

experiments. In all the experiments, the wavelength of the sourceusedwas 0:6328�m .

The refractive index of the scattering polystyrene sphereswas 1.59. The polystyrene

sphereswere dispersedin water (refractive index = 1.33). Hence,the RRI betweenthe

scattering spheresand the surrounding medium is 1.1955.

It hasbeenobservedthat scatteringby a singleparticle or collectionof identical particles

doesnot decreasethe degreeof polarization of fully polarized incident light, though the

nature of polarization of the scattered light may change[6]. But, upon scattering by a

collection of non-identical particles, the incident polarized light can be renderedpartially

polarized due to depolarization. Thesefeaturesare independent of the speci�c nature of

the particles. This is true, only if the assumptionof singlescattering is valid. It hasalso

been observed that the scattering near the forward direction is always coherent due to

the presenceof unscatteredlight.

Table 2.2: Anisotropy valuesof sphericalpolystyreneparticles of di�eren t sizes,usedin
our imaging experiments

Radius(� ) Sizeparameter (x) Anisotropy(g)
0.03 0.396 0.027
0.065 0.858 0.128
1.485 19.6 0.81
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When light is scatteredby a collectionof particles, onecannot simply add the scattered

intensities from the individual particles to obtain the resultant intensity in a given par-

ticular direction. In such cases,the total scatteredintensity is determinedby the square

of the absolutevalue of the total electric �eld.

I (t; r ) /j E1(t; r ) + E2(t; r ) + E3(t; r ) + : : : j2;

whereE i (t; r ) are contributions to the total electric �eld from di�eren t scattering events.

We can observe that the interferencee�ects betweendi�eren t �elds are also taken into

the summation, apart from the individual contribution from each of the �elds. When

scattering becomessevere,we say the light is multiply scattered. Next, we brie
y review

the conceptsof multiple scattering, a detailed treatment of which is given in [10, 11].

2.2.2 Multiple scattering

In a medium consisting of a large number of scatterers, the incident �eld undergoes

recurrent random scattering beforeit exits the medium. In such multiple scattering me-

dia, light is assumedto propagatedi�usiv ely. The interferencee�ects are assumedto be

scrambled due to many random scatteringevents (except in specialcaseslike backscatter-

ing). The position and time dependent intensity is described by the di�usion equationor

someother simpli�cation of the radiative transfer equation. Basedon certain assumptions

and observations, a multiple scattering medium is usually characterizedby a few length

scales.The characteristicsof di�eren t media are usually comparedon the basisof these

length scales.

The meanfreepath (MFP) is onesuch length scale,usedto characterizethe scattering

process.For instance,the scattering mean free path, ls, is de�ned as the averagedistance

betweentwo successive scattering events, and is given by

ls =
1

n� s
(2.7)
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where n is the number of scatterersper unit volume (number density) of the scattering

medium and � s is the scattering cross-sectionof the individual scatterers. Similarly, the

absorption and extinction meanfree paths can be calculatedby substituting � a and � ext

in the above equation instead of � s.

The de�nition of di�usiv e transmissionis itself basedon theselength scales[11]; e.g.

Light transmissionthrough a semi-in�nite scattering slab of thicknessL is consideredto

be di�usiv e, if the following inequality is satis�ed.

� � ls � L � la

where � is the wavelength of the incident radiation, ls and la are the scattering and

absorption meanfree paths of the scattering slab, respectively. The various length scales

usedto describe radiative light transport and their signi�cance have beendetailed in [11].

In the di�usiv e regime, a wave can be assumedto have undergonescattering after

traveling, on an average,a distance of ls; but it hardly meansthat the direction of the

wave travel is randomized. Due to the anisotropy of scattering, the wave may propagate

in the near forward direction even after several scattering events. To accommodate this

characteristic of scattering, a transport mean free path (TMFP) is introduced, which is

de�ned asthe averagedistancethat the light travelsbeforeits direction of propagation is

randomized. The TMFP, denotedby l � is given by

l � =
ls

(1 � g)
(2.8)

Clearly, for isotropic scattering l � � ls since g ! 0, which seemslogical, because,the

wave can be scatteredinto any anglewith almost uniform probability over 4� steradian.

When the scatteringmediumis takento bein the form of a semi-in�nite slabof thickness

L alongthe direction of incidenceof light and in�nite in extent in the transversedirection,

we can obtain a convenient measureof the scattering encountered by light, as given by
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the optical thicknessof the medium, which is de�ned as

� =
L
l �

(2.9)

Consider the propagation of light through a semi-in�nite slab of thicknessL along

the + Z axis. The incoming beam decays exponentially due to multiple scattering. The

unscatteredbeamat a depth z in the medium is given by the Beer-Lambert's law as [12]

I (z) = I 0 exp(�
z
ls

) (2.10)

whereI 0 is the incident intensity of the beam. This exponential decay of the unscattered

photons gives an idea of the di�cult y involved in performing direct imaging in highly

scattering media. The ratio of unscattered to scattered photons decreasesvery rapidly

as the penetration depth increasesand puts a limitation on the depth up to which direct

imaging can be performed.

2.2.3 Mueller matrices and ligh t scattering

Most of the interactions of polarized light with optical elements can be expressedas a

linear relationship; i.e., the output Stokesparameterscan be obtained by a linear combi-

nation of the input parameters.The sametechniquehasbeenusedto study scatteringtoo.

Mueller matriceshave beenextensively usedfor this purpose. In any co-ordinatesystem,

each optical component in a particular orientation can be mathematically represented by

its appropriate, real, 4 � 4 transformation matrix called the Mueller matrix..

The elements of the Mueller matrix M depend upon the properties of the interacting

element, frequencyof light and in caseof scattering, on the scattering angle. The Mueller

matrices of someof the standard optical elements are given in [8, 7, 6]. If we denotethe

Stokes vector (SV) of the input light as Sin and the vector obtained after transmission

through the optical element as Sout , then, Sout = M Sin , where M is the representativ e
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Mueller matrix of the element. In the caseof multiple optical elements arranged in a

cascade,the total e�ect of the cascadeis determined by the product of the individual

Mueller matrices, in the correct order.

e.g. The Mueller matrix of an ideal linear polarizer whosetransmissionaxis makesan

angle � with respect to the horizontal is given by

M (� ) =
1
2

2

6
6
6
6
6
4

1 cos2� sin2� 0

cos2� cos2 2� cos2� sin2� 0

sin2� cos2� sin2� sin2 2� 0

0 0 0 0

3

7
7
7
7
7
5

Now, if light with input SV Sin = (I i Qi Ui Vi )T is incident on this polarizer, yielding

the output SV (I o Qo Uo Vo)T , then the input and output intensities are related as

I o =
1
2

(I i + Qi cos2� + Ui sin2� ) (2.11)

Thus, if a linearly polarized wave is incident on a polaroid rotating at an angular

frequency! , then, the transmitted intensity is of the form

I o =
1
2

(I i + Qi cos(2! t) + Ui sin(2! t)) (2.12)

where, ! t = � is the instantaneousanglemadeby the polaroid passaxis with the plane

of polarization of the incident light. Since, for a plane polarized light, I i = Qi and

Ui = Vi = 0, we are left with

I o =
1
2

I i (1 + cos(2! t)) = I i cos2 ! t (2.13)

This expressionis called as Malus' law.

Mueller matriceshavebeenextensively usedin the computation of Stokesvectorsemerg-

ing asa result of scattering and are referredto asScattering matrices or Phasematrices.
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The advantage of the Mueller matrix formalism is that, it gives a simple meansof de-

termining the polarization of the scatteredlight, given any arbitrary polarization of the

incident light. Scattering can depolarize the incident beam, mix its polarization states

and change its direction. The elements of a scattering matrix depend on the size and

shape of the scatterer, the refractive index contrast between the scatterer and the sur-

rounding medium, the angleof scatteringand the azimuth of the scatteringplane. Details

regarding the derivation of the scattering Mueller matrix can be seenin [6].

The Stokes parametersof the light scattered by a collection of randomly separated

particles are the sum of the Stokes parametersof the light scattered by the individual

particles. Therefore, the scattering matrix for such a collection is merely the sum of

the individual particle scattering matrices. For any particle or collection of particles

symmetric about the direction of incidenceof the beam, the elements of the scattering

Mueller matrix, should be independent of the azimuthal angle � .

If unpolarized light is incident on one or more particles, the Stokesparametersof the

scatteredlight can be shown to be in general,partially polarized. This result shows that

scattering is a mechanismfor polarizing light. The degreeof polarization of the scattered

light depend on the scattering direction and has been found to be maximum when the

scattereddirection is normal to incident direction.

A detailed study of Mueller matrices of spherical scatterershas beengiven in [6]. It

hasbeenshown that the matrix contains only four independent elements. Theseelements

can be calculated preciselyusing Mie theory. The relevant mathematicsand algorithms

for programming have alsobeengiven in [6].

With this, wecometo the conclusionof all the preliminariesneededto dealwith studies

on scattering of polarized light by sphericalparticles, which is the main work reported in

this thesis.



Chapter 3

Imaging through scattering media:

A review

The literature related to imaging techniquesof interest to us can be found in diverse

�elds from astrophysics to microscopy. Due to the vast expanseof literature, we do not

emphasizeon any particular �eld of application, but we concentrate on somecommon

ideasand techniquesthat permeateall thesediverse�elds. Any modi�cations that can

be incorporated basedon the knowledgeof the speci�c domain of application can push

the utilit y of these techniques further. However, there is no denying that biomedical

applications have taken a lion's sharein this review.

In this review, we concentrate on direct imaging techniques that use CW monochro-

matic, polarized light sourcesto obtain two-dimensionalimagesof objects hidden in a

semi-in�nite slab of scatteringmedia,by usingpolarization information apart from inten-

sity information.

We adopt a top-down approach to get to the imaging schemesof interest to us. So,

�rst, we begin with a brief overview of the �eld of optical imaging.

23
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3.1 A brief overview of optical imaging

In recent times, researchers have shown great interest in optical imaging schemesfor

biomedical applications, apart from its use in defenseand atmospheric optics. As a

testimony to this, onecan cite journals that have earmarked someissuesto highlight the

progressmadein the �eld. Someof thesespecial issuesare [13, 14, 15, 16].

There is an increasingacceptanceof the possibility that optical imaging can play a

complementary role to the existing biomedical imaging techniques,and in due course,it

may evenbecomea main-streamimaging technology[17]. The main advantagesof optical

imaging schemesascomparedto other imaging modalities for biomedicalapplicationsare

� The non-ionizing character of visible and near-infraredradiation.

� The abilit y to perform very fast detection of optical signalsdue to the presenceof

fast and a�ordable detectors,coupledwith the possibility of being able to leverage

a host of contrast agents to imagedynamic processes[18, 19].

Researchers have beensuccessfulin bringing optical imaging techniquesnearly on par

with other establishedimaging techniques,at least for imaging soft tissueslike breast [20]

and neonatalhead[21]. The polarization basedtechniqueshave alsofound a niche appli-

cation areain skin tissuepolarimetry [16]. A broadoverviewof the variousoptical imaging

schemesbeing developed for medical imaging applications hasbeengiven in [5, 22].

Coming to the applications of optical imaging in other �elds, onecan seeoptical tech-

niques being used for imaging through rain and fog [23], through haze [4], underwater

imaging [24] and many more.

There are interesting results [25, 26] which claim that a strong multiple scatteringwall,

far from being a hindrance to imaging, could serve as a thin lens, which can produce

a high resolution image of an arbitrarily shaped three-dimensionalobject hidden in it.

Simplecorrelation techniquesappliedon the speckle patterns re
ected from the scattering

medium are shown to do the trick.
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Though the problem of imaging through scatteringmedia lookssimilar to that of imag-

ing through turbulence, there is no consensusas to whether the tools usedfor the latter

are applicableto the problem on hand. Someresearchershave mentioned that the point-

spreadfunction analysis,which is the basisof speckle interferometry is not applicable to

the problem of imagetransfer through multiply scattering media, due to the vanishingly

small angleof isoplanaticity for multiple scattering [25]. But, ample e�ort has goneinto

the analysisof point-spreadfunction of multiply scatteringmedia [9], and there obviously

seemsto be someuseof it, contradicting the view of [25]. This, and many other inconsis-

tencieswhich we comeacrossas we proceed,emphasizethe fact that the �eld of optical

imaging is yet to �nd conclusive answers to many basic problems, and this makes it a

very fertile �eld for research.

Combining the results of di�eren t optical imaging techniquescan yield better results

than what could be obtained by employing any one technique in isolation [26], and at

times, it may be inevitable too.

In this thesis, we are concernedwith imaging schemesthat closelyresemble the tech-

nique of polarization discrimination described in the articles [5] and [27]. We have stud-

ied continuous-wave (CW), polarization basedimaging schemesonly and not pulsebased

imaging schemes.

Though in [5], the polarization discrimination schemehasbeensaid to be able to image

not more than about a centimeter of soft tissue,the logical extensionof what canbe done

with intensity aloneseemsto havebeenunderplayed. Sincepolarization data is a superset

of intensity data, one can hope to useall the intensity basedtechniquesand also seeif

more information could be obtainedby polarization. Essentially , polarization data should

in no way hamper what could have beendone with intensity alone. If this argument is

valid, polarization basedschemeshave much more to o�er to the �eld of imaging.

In short, the polarization basedschemeswill be useful in those circumstances,where

the scattering is neither so less,that only intensity would su�ce for imaging the hidden
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object, nor sohigh, that no polarization information is left at the receiver to get additional

information about the hidden object. Many defenseapplications fall into this category,

e.g., target detection in fog, rain, snow or haze. In fact, the development of polarization

discrimination imagingtechniquecanbeattributed to research in underwater imaging[28].

In many such applications,the sourceinformation will betotally unknown (ascomparedto

medicalimagingschemes,wherethe sourceswill becompletelyknown). In such situations,

polarization information can complement the intensity information.

An important issueis the comparative performanceof CW imaging schemesand pulse

basedimaging schemes.The latter schemesuseultra-short pulsesand high speedgating

techniquesto capturethe ballistic component of the scatteredlight [29, 30,5]. The method

that weareinterestedin, usesCW sources,and banksupon polarization of the unscattered

light and spatial �ltering to do away with scatteredphotons[28, 27, 31]. Though the ultra-

fast shuttering techniquesare very e�ectiv e and simple, they are prohibitiv ely costly, as

comparedto the CW techniques. So, it is important to know if the CW methodologies

can give performancescomparableto that of the shuttering techniques.

It hasbeenexperimentally shown that CW basedschemescanachieve the samelevel of

di�usiv e light rejection as pulseschemes[32, 33]. However, the article doesnot compare

the schemesvarying the pulse widths or the receiver acceptanceangles,and other pa-

rametersthat a�ect the imaging performance.Nonetheless,it is an extremely important

result. One should only be worried whether the generalizationof the results to all pulse

widths and acceptanceanglesat all wavelengthsis really valid, which is unlikely to be

the case.However, many CW polarization basedimaging schemesbank upon this result

to vindicate their performancevis-a-vis the pulsedimaging schemes[27, 31].

Even otherwise,CW polarization basedschemesare worth studying, because,there are

many circumstances(mainly in atmosphericoptics), wheresunlight is the source,and the

information about speci�c objects (usually man-madeobjects) in a scenecanbe obtained

by analyzing the polarization information of the sunlight re
ected from the scene.
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Next, we review someCW polarization based,direct imaging schemes.

3.2 Polarization based direct imaging schemes

Any polarization basedactive, direct imaging schemecan be visualized to consist of

�v e main sections,shown as di�eren t blocks in Fig. 3.1. We seeas to what parameters

in each of thesesectionsa�ect the imagequality.

Figure 3.1: A block diagrammatic approach to polarization basedimaging techniques

� Source and polarization state generation optics

The sourcecan be coherent or incoherent. It can be monochromatic or polychro-

matic. The polarization state generatorscan either be integrated into the source,

as in the caseof polarized laser sources,or could be a separatesection, consisting

of polarizersand wave-plates,to generatethe desiredstatesof polarization.

� Semi-in�nite scattering slab with hidden inclusion

The scattering slab is characterizedby its thicknessL or optical thickness� , the

density of the scatterersspeci�ed in terms of ls or l � , the sizeof the scatterersspeci-

�ed in terms of the sizeparameterx or the anisotropy parameterg, and the relative

refractive index (RRI) m betweenthe scatterersand the surroundingmedium. The

opaqueinclusionis usually assumedto be totally absorbingand re
ection from it are

neglected. For applications like biomedical imaging, the subject of interest can be

the variation of someparameteracrossthe slab. In such cases,there is no separate

inclusion to be imaged.
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� Collection and polarization analysis optics

This usually consistsof a spatial �ltering section comprising lensesand apertures

and a polarization analysissectioncontain polarizersand/or wave-plates.This part

of the setup discriminatesphotons basedon their direction of arrival and the state

of polarization, so that, to the extent possible,only the unscattered photons are

allowed to reach the detector. This unit is characterized by the focal lengths of

the lensesbeing used,the sizesof the apertures, orientation of polaroids and wave

plates, etc.

� Detector

The detector is usually either a scanninglock-in ampli�er or a chargecoupleddevice

(CCD), though it can take other forms too. In casea CCD is used,its gain, signal

to noiseratio (SNR) at various gains, the spatial resolution, quantization depths,

sensitivity and integration time etc., a�ect the �nal results.

� Data analysis and in terpretation

Data analysisand interpretation are basedon measurements of features that dis-

criminate regions of the scattering medium from that of opaque inclusion. The

modeling of the scattering phenomenonplays a major role in deciding the analysis

and interpretation algorithms.

We segregatethe review accordingto theseblocks. For better 
o w in the presentation,

we begin the review by studying the in
uence of the scattering slab parameterson the

performanceof imaging. After that, we review the literature associated with Sourceand

polarization state generation optics. Later, we review the Collection and polarization

analysis methodologies. Finally, we review di�eren t polarization based, CW imaging

schemesalong with their associated processingtechniques.

3.2.1 E�ect of scatterers on imaging

In general,light scatteringby a collectionof particles canbe categorizedinto three pos-

sible regimes,basedon the amount of unscatteredlight present in the received radiation,

and the polarization memory of scatteredlight [34, 12, 35].
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� Regime 1

When scatterer concentration is low, a signi�cant amount of unscattered light is

detected,and also,a major part of the scatteredlight maintains its original polar-

ization. Under such circumstances,polarization basedimaging techniquesare really

not necessary, since,intensity basedtechniquesfollowedby imagerestoration should

su�ce.

� Regime 2

When scattererconcentration is such that no unscatteredlight is detectable,but the

scatteredlight is still partially polarized,the polarization propertiesof the scattered

light dependon the particle size. In this regime,the DOP of scatteredphotonsvaries

with the number of scatteringevents undergoneby the photons. Hence,DOP canact

as a discriminant for segregatingshort and long path photons. Thus, polarization

basedschemesare advantageousin this regime.

� Regime 3

When scatterer concentration is too high, unscatteredlight is not detectable,and

also,all the scatteredlight is nearly totally depolarized. In such adversescattering

conditions,neither intensity based,nor polarization baseddirect imaging techniques

are useful. To be able to image in this regime, one must use indirect imaging

techniqueslike optical coherencetomography [36], di�usion optical tomography [18]

or other methods [5, 37].

We summarizethe above discussionin Fig. 3.2 by reproducing the sketch given in [12].

Henceforth, all the advantages and applications of polarization based imaging that

we mention, will pertain to scatter concentrations where, the imaging condition can be

categorizedas belongingto regime2 or 1.

Though the classi�cation of the scattering regimesas shown above looks attractiv e,

there are no clear boundariesbetweentheseregimes;rather, there is a gradual transition
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Figure 3.2: Summary of scattering regimes

from oneregimeto another. Hence,this classi�cation is hardly of any use,unlesswede�ne

somemeasuresthat determinethe scattering regimeto which a collection of particles be-

longsto. Towards this end, a few mesoscopiclength scaleshave beende�ned [35, 38, 39].

But, the major problem with these de�nitions is that, there is no way of theoretically

calculating them from the slab parameters.Thesevaluesare determinedonly experimen-

tally. This restricts their utilit y to being usableonly as a priori knowledgein designing

new imaging systems.

The following subsectionsdiscussthree important parametersof the scatterers that

determinethe scattering regimeand in
uence the quality of imaging.

3.2.1.1 The volume and densit y of scatterers

The scattering slab thicknessL, which represents the volume and the density of the

scatterers(which in turn decidesthe valuesof ls (eqn2.7) and l � (eqn2.8)), determinesthe

scattering regime [11] and the amount of unscatteredlight left in the received radiation

(eqn 2.10). The calculation of the DOP in scatteredlight alsoutilizes theselength scales

and is given in [40]. The characteristic length scalesof depolarization for slab geometry

have also been de�ned in [40]. These parametersgive a �rst hand information about
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the scattering regime that one may encounter, and also about the grossbehavior of the

scatteredlight.

3.2.1.2 The size of the scatterers

Though the sizeof the scatterersis a very important factor, it canhardly beascertained

in most of the applications. This stressesthe needto model the scatterersbasedon the

application on hand, to obtain good results[41]. Wenow list a few important observations

regarding the e�ect of sizeof the scattererson imaging, assuminga �xed wavelength. In

the ensuingdiscussion,we usethe terms Rayleigh and Mie regimesto refer to situations

where, the particle sizesare much smaller and larger than the incident wavelengths,

respectively.

1. The spatial resolutionachievableusingpolarization basedtechniquesdependsheav-

ily on the scattering anisotropy of the medium [42].

2. The sizeof the scatterersin
uences the ballistic propagation and depolarization in

scattering media [35].

3. As the diameter of the scattering particle increases,the number of scattering events

required to degradethe ballistic propagation decreases[35, 43].

4. The transport meanfreepath length of the scatteredpolarizedcomponent increases

with the particle diameter [35, 43, 38].

5. For small sizeparameters,the characteristic length of depolarization is independent

of the RRI [44].

6. Imaging through sampleswith large scatterersis restricted to lower optical thick-

nessesthan for sampleswith smaller scatterers[35].

7. For media with very high anisotropy parameter, polarization basedtechniquesdo

not yield any advantage over polarization-insensitive techniquesfor the purposeof

imaging [41, 34, 12, 35].
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3.2.1.3 The relativ e refractiv e index of the scatterers

We list a few important observations on the e�ect of RRI on imaging.

1. Di�eren t media with similar ls and g valuescan exhibit distinctly di�eren t polar-

ization characteristicsif the RRI are di�eren t [44].

2. For small sizeparameters,the depolarization length is independent of the RRI [44].

3. For large RRI and large sizeparameters,the anisotropy factor is diminished. This

behavior is due to the increaseof backscattering as the RRI increases[44].

4. Irrespectiveof the sizeparameter,the circular depolarization length dependsstrongly

on the RRI [44].

With this, we completethe review of the e�ect of the scattering slab on imaging. We

now analyzethe e�ect of sourceand polarization optics on the imaging performance.

3.2.2 E�ect of source parameters and polarization optics

The important variables that need to be consideredhere are the wavelength of the

source,its polarization state, its spectral width and coherence.We neglect the e�ect of

coherencein this review. We have already seenthe in
uence of wavelength (by way of

sizeparameter) on imaging performance. Hence,we restrict our review to analyzeonly

the e�ect of polarization state of light on the imaging performance.The key results have

beenlisted below.

1. Depolarization of scattered light depends on the initial polarization of the pho-

tons [42].

2. Few scattering events are neededto randomize circular polarization in Rayleigh

regime[42, 45, 46, 40] and linear polarization in Mie regime[42]. Many scattering

events are required to randomizecircular polarization in Mie regime[42, 45, 46, 40].

3. In dilute suspensionsof microspheres,whereindependent scatteringcanbeassumed,

the DOLP decreasesas the scatterer concentration increases.However, for dense
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suspensions,the DOP increaseswith the scattererconcentration, and further, pref-

erential propagation of linear over circular polarized light is observed [45, 46].

4. For biological tissues,the widths of the point-spread functions do not depend on

whether the incident light is linearly or circularly polarized [41].

5. Polarization discrimination of ballistic and snake photonsbasedon circularly polar-

ized light givesrise to a wider point-spread function than the onebasedon linearly

polarized light [41].

6. Circularly polarized light cannot be used to discriminate between weakly and

strongly scattered photons for media containing spheresof large diameter. The

converseis true in media containing small spheres[41].

7. The DOP decays at the samerate for both incident linear and circular polarization

states for small detector apertures and it is independent of the anisotropy parame-

ter [41].

8. In Rayleigh regime,the depolarization ratesfor both the incident linear and circular

polarization statesare nearly the same.

9. Circular depolarization length strongly dependson the RRI and systematically de-

creasesafter each scattering event, whereas,linear depolarization length decreases

with the randomization of directions. This is true, independent of the sizeparame-

ter and the refractive indicesof the scatterersand the sizeof the receiver's �eld of

view [44].

10. The criterion to choosethe initial polarization state of the probe beam, when the

optical properties of the scattering medium are known, is addressedin [39]. For

Rayleigh scatterers,linear polarization hasbeenrecommended,and for Mie scatter-

ers, circular polarization hasbeensuggested.

With this, we complete the review of the ways in which the polarization state of the

input light a�ects imaging performance. It should however be remembered that only in

active imaging schemes,we can choose the polarization state. Many applications use
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passive imaging schemes,in which case,the above review will not be able to help predict

the imaging performance. Now, we review the literature related to the fourth sectionof

the schematic given in Fig.3.1.

3.2.3 E�ect of spatial �ltering and detector characteristics

The variables in the detector section that a�ect the imaging performanceare, the

parametersof the spatial �lter, like, focal lengths of the lensesand the sizesof aper-

tures [47], the detector sensitivity, resolution (both spatial and quantization levels in the

caseof CCDs), noisecharacteristics,gain and the polarization analysisoptics.

The detector unit plays an important role in the caseof CW imaging, since,apart from

polarization retained in the unscattered or lessscattered photons, which are weighted

appropriately by the polarization optics, what really helps in rejecting di�use photons

is, the spatial �ltering. The amount of light retained after spatial �ltering is very low.

Hence,detectorssensitive to very low light levels are needed.Studies reveal that polar-

ization gating methods are superior to the pinhole gating method whensignal strength is

weak [48].

The polarization analysisopticswill usually consistof polarizersand wave-plates(either

�xed or variable), to weigh the collectedradiation accordingto the state of polarization.

Essentially , they work as gates that allow only particular kind of polarization and at-

tenuate other polarization states heavily. The action of polarizers and wave-plates on

radiations of di�eren t polarizations is well expoundedin [7]. However, the e�ect of spatial

�ltering on scatteredlight is lesswell documented. We now look at somedetails of it.

In spatial Fourier �lters, adjustments of the aperture sizeat the Fourier plane can be

madeto act asa variable temporal gatefor light emanatingfrom the scatteringmedia[47].

The above study dealswith pulsedimaging schemes.However, the conclusionsarrived at,

that the di�usiv e component of the scatteredlight can be removed by anglegating using

spatial �ltering, holds even in the caseof CW imaging.



CHAPTER 3. IMA GING THROUGH SCATTERING MEDIA: A REVIEW 35

In the samevein, there have beenexperimental and theoretical studieson the detection

of ballistic and rejection of di�use light in trans-illumination confocal and heterodyne

imagingsystems[49]. From thesestudies,expressionsfor optimum pinholesizefor ballistic

light detection and di�use light rejection for confocal imaging have beenderived.

For large detector apertures, even for small optical depths, the blurring e�ects due to

multiple scattering becomeevident, since,light from wide anglesare collectedand in this

case,the polarization-di�erence imagingschemeshavebeenfound to bemoree�ectiv e[41].

Detectorswith high sensitivity and gain are usually neededfor direct imaging. As for any

other application, detectorswith high spatial resolution and greater quantization levels

are desirable.

Next, we reviewsomepolarization based,CW direct imaging techniquesand associated

processingalgorithms.

3.2.4 Imaging schemes and pro cessing algorithms

There are mainly three variants of CW polarization basedimaging schemes,depending

upon the parameter of visualization adapted in the scheme. The �rst scheme is based

on orthogonalpolarization di�erencing. The secondschemeusespolarization modulation,

�nally leadingto sinusoidalamplitude estimatesasthe visualizationparameter. Thesetwo

schemesare in fact interchangeable,and aswe will seein the following chapter, the former

is a particular caseof the latter. The third group of schemesis basedon the principles of

ellipsometry, wherein the schemesmake useof Mueller matrix estimatesof the scattering

medium for the purposeof visualization. In this survey, we have emphasizedon the �rst

two classesonly. However, we have mentioned someof the aspects of the schemesbased

on ellipsometry.

To beginwith, we present the PDI schemes.The �rst few schemeshave beenexplained

in detail, and for the onesthat follow later, we mention only the di�erences, since, the

di�erences betweenthe implementations are very little.
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3.2.4.1 Polarization di�erence imaging schemes

Oneof the earliestworks on PDI schemesis reported in [28, 3]. Thesearticles elucidate

the ideasbehind PDI, the algorithm employed for reconstruction of the target and the

SNR analysis. There is a brief mention of the possibleapplicationsof the technique in [3],

which vary from polarization basedmicroscopy to runway lighting systems.

The experimental setup usedin [28] is a passive PDI system. The polarization infor-

mation obtained after re
ection from the target is usedfor reconstruction of the target

image. The actual imaging was performedas follows.

A polarizer/analyzer pair was usedto record imagesparallel and perpendicular to the

�xed analyzeraxis denotedas I k and I ? , respectively. Thesetwo formed the orthogonal

polarization state images. In order to reducethe noisevariance at each pixel, a set of

128 such imageswere obtained at each polarization state, addedand suitably scaled. It

is shown that the polarization di�erence image I k � I ? , when enhanced,could give the

featuresof the aluminium target, along with the locations of the two abradedpatchesin

it. Following the processingbehind the technique, it wasnamedaspolarization-di�erence

imaging.

The reasonbehind the successof the systemis hypothesizedas follows. The imageI k

is formed due to both the scatteredand the unscatteredlight, whereas,the image I ? is

formedpredominantly by the scatteredlight (sincethe unscatteredlight would beremoved

by the polarizer-analyzercombination). So, when we subtract I ? from I k, what we are

left with, is the image formed due to unscatteredlight alone. In short, the polarization

di�erence image is the result of common-mode rejection, i.e., the scattered light, which

is common to both I ? and I k, is rejected by the act of di�erencing. In fact, this is the

argument usedin all PDI schemesand is perfectly valid. The e�cacy of the systemhas

beenexplainedon the basisof the observed degreeof linear polarization (ODLP ), which

is de�ned for a region as

hODLP i r egion =
hI P D

r egion (x; y)i

hI P S
r egion (x; y)i

(3.1)
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whereI P D (x; y) = I k(x; y) � I ? (x; y) and I P S(x; y) = I k(x; y) + I ? (x; y)

Vindicating the applicability of the technique to real, natural settings, it is mentioned

that the PDI schemewas found to give encouragingresults for experimental conditions

with ODLP � 0:01, which is much lower than what onecan expect from object surfaces

in natural environment.

This schemeis very simple, passive and potentially very fast. Besidesthis, the same

analogy can be carried forward to any wavelength of the electromagneticspectrum. In

casethere is a need,further processinglike histogram equalizationetc. can be performed

on the PDI results. The only possiblebottleneck could be the low light levels that one

usually encounters in scatteringconditions,which may slow down the processof acquiring

images.This stressesthe needfor having highly sensitivedetectorslike intensi�ed CCD or

its variants for the successof the scheme.Sincethe processingat each pixel is independent

of the other pixels, the whole schemecan be parallelized,making the analysisvery fast.

For assessingskin lesionsin super�cial epidermaland papillary dermal layers,an imag-

ing modality which usesa video camera,wherein the mechanism of contrast is governed

by the re
ectance of polarized light has beendescribed in [50, 51]. In this scheme, the

nearly unpolarized,di�usiv ely re
ected light from deeper layersof skin is rejectedin favor

of polarization retaining light backscattered from super�cial layers, where most of the

skin lesionsoccur. Care is taken to avoid specular re
ection from the skin surface. This

system has demonstrated the abilit y to visualize the true margins of skin cancer, that

were not easily discernible by dermatologistsby using a simple, incoherent white-light

source. The resultant imagesare also supposedto subtract melanin pigmentation from

the imagesof pigmented skin lesions,revealing the underlying structure. The resultant

imageis obtained asnot just the di�erence of the imagesasin [28], but asDOP (eqn 2.4)

at each pixel. In this case,the eqn3.1 is explainedas follows. The numerator symbolizes

suppressionof highly scatteredlight whereasthe denominator is supposedto ensurethe

cancellationof the attenuation due to pigmentation of melanin. It is alsodescribed as to

how the polarization basedcameracould improve the estimate of the sizeof a sclerotic
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basalcell carcinoma,thereby proving useful in performing surgical excisionof such cells.

The in
uence of particle size on active polarization discrimination imaging in under-

water applicationshasbeenstudied usingMonte-Carlo techniques[52]. Both circular and

linear polarization stateshave beenconsideredin the simulations. The simulations mimic

the situation of a depolarizing target being illuminated by linearly or circularly polarized

light, through a scattering medium. The depolarizedlight re
ected from the object is the

quantit y of interest in this problem.

In order to view the object, one must reject the light scatteredfrom the medium, but

retain the light scattered from the object. It is mentioned that the light backscattered

from the medium with few scattering events will retain its original polarization to a great

extent, whereasthe light re
ected from the object would be totally depolarized. Hence,

viewing the medium from a state, orthogonal to the incident state of polarization should

suppressthe radiation scatteredfrom the medium, but retain the radiation re
ected by

the target. This is what is leveragedin this scheme. This schemeis shown to work even

for trans-illumination and many o�-axis geometries.

The article givesthe following important results.

1. In general,the e�ectiv enessof the orthogonalpolarization technique decreaseswith

increasingscattering particle size.

2. There is a clear maximum in the contrast enhancement at a particular depth (de-

pending on particle size).

3. The depth at which the orthogonalpolarization technique is most e�ectiv e increases

with particle sizebut with an improvement factor that reduceswith particle size.

This, though is generallytrue, will fail when the radius of particles nearsthe wave-

length of illumination. In this condition, the scattering properties will show a non-

monotonic behavior.
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Another re
ectance mode, active polarization-di�erence imaging scheme,useful for un-

derwater applicationshasbeendiscussedin [53]. Enhancement in target details is obtained

by illuminating the scenewith a sourceof known state of polarization and detecting the

re
ected light orthogonally polarized to the incident state. The authors refer to this

as polarization discrimination imaging. It has beenshown that the e�ectiv enessof this

technique depends very weakly on the particle shape and on the form of illumination

geometryas mentioned in [54]. The authors also endorsethe observations of [52]. They

alsoproposea imagesubtraction basedtechniquethat extendsthe visibilit y depth further

than a factor of 2, achievable by observingthe cross-polarization image.

The di�erence betweenthe schemementioned in [53] and that of [50, 51] is that, though,

in both methods the co-polarizedand the cross-polarized imagesare obtained, in [53], it

is the cross-polarized image that contains the information of the target, whereas,it was

the co-polarized image that carries information in the experiments described in [50, 51].

The important thing to note here is that, in [53], the co-polarized and cross-polarized

imagesdo not contain the sameamount of scatteredlight. Hence,subtracting co-polarized

image from the cross-polarized image does not provide the details of the target. It is a

fraction of the co-polarized image that needsto be subtracted from the cross-polarized

imageto obtain the desiredresult. Through simulation results, it hasbeenreported that

the optimum subtraction fraction is found to be � 13%. By simulations, it has also

been reported that the subtraction technique can improve the visibilit y depth by � 1

mfp (scattering mean free path), which is a signi�cant improvement for the application

envisaged. Also, there are comparisonsof this schemewith two other subtracted-image

enhancement schemes,both of which are variants of unsharp masking. It is reported

that, amongthe three enhancement schemes,the polarization basedschemegave the best

results.

Somenovel approachesto tissueopticsby laserlight scatteringhavebeenstudiedin [37].

Three di�eren t techniqueshave beenreviewed, and imaging basedon DOP as visualiza-

tion parameter is oneamongthem. The techniqueshave beencomparedwith traditional
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approachesto diagnosticsand imaging of macroscopicallyinhomogeneous,multiply scat-

tering objects through simulations and experiments as well. Here are the highlights of

this article.

1. For the intermediate scattering regime (l � � L), the ballistic and snake photons

contribute signi�cantly to the detected light. Hence,visualization and location of

the absorbing inhomogeneity by using DOP as a parameter would yield results

better than using intensity alone.

2. The e�cacy of the polarization basedschemesincreasesasanisotropy decreases,as

mentioned in [52].

3. The maximal sensitivity that can be achieved with the DOP as the visualization

parameter should be expected if the modal value of the e�ectiv e path length is of

the order of depolarization length and this can be taken as the criterion for the

applicability of the technique.

Results of experimental and simulation evaluations of the possibility of using linearly

polarizedCW laserradiation for imaging of absorbersembeddedin a multiple scattering

medium is given in [55]. The transmitted light is analyzedin terms of DOLP (eqn 2.4).

The contrast and e�ectiv e signal to noise ratio for imagesreconstructed using DOLP

as visualization parameter have beendiscussed.A parameter to de�ne the sharpnessof

the resulting imageshas beenquoted from earlier literature. Here too, the polarization

basedschemescan give better results than intensity basedschemesin the intermediate

scattering regime.

With this, we concludethe review of PDI schemes. Essentially we found two ways of

interpreting the result. One is, by the method of di�erence of the co-polarized and the

cross-polarized images(or their fractions) and the other is, by calculating the DOP. We

comparethe two schemesin the next chapter.

Next, we review another polarization based imaging scheme, which usessinusoidal

estimation for visualization.
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3.2.4.2 Polarization mo dulation imaging schemes

As a parallel development to the PDI schemes,someresearchers were working on the

polarization modulation imaging (PMI) schemes.One such schemeis reported in [31]. In

this scheme,the sourcepolarization state, which is taken to be linear, is made to rotate

(i.e., modulated) at a known rate. The scatteredlight is �ltered through a �xed analyzer,

so that, the intensity due to the ballistic and snake photons getssinusoidally modulated

at twice the rate of modulation of the sourcepolarization (seeMalus' law, eqn2.11,2.13).

However, the di�usely scatteredlight doesnot show such a variation, sincethe di�usely

scatteredlight will either be unpolarizedor randomly polarized. The contribution of the

ballistic component to the overall signal is usually small comparedto the contribution of

di�usely scatteredlight, and is given by Beer-Lambert's law (eqn 2.10).

The sinusoidal component in the received signal is detected using lock-in detection.

The resolution of such a schemeis limited only by the di�raction phenomena(i.e., the

theoretical limit) and henceis much better than the resolution that can be obtained with

photon density wave imaging [18], for which, the e�ectiv e wavelength is much longer.

The above method was considerably improved in [27, 2, 56]. The data acquisition

was hastenedby replacing the scanning lock-in detector by acquisitions with a CCD

camera. The apertures were replacedby a spatial �ltering scheme. Since the acquired

imageswere processedo�ine, the need for a lock-in ampli�er was eliminated. These

simpli�cations renderedthe PMI schemevery simpleand fast and comparableto the PDI

schemesmentioned in [28, 3]. Now, we take a brief look at the data acquisition and

processingschemeadopted in [27].

Linearly polarized light, whoseplane of polarization was controlled by a rotating po-

laroid wasmadeto fall on a scattering slab containing an opaqueinclusion. The rotating

polaroid, which was mounted on a stepper motor was moved by a known, �xed angleat

each step. At each step, an image of the scattered light �ltered through a spatial �lter

and a �xed polarization analyzerwas captured by an intensi�ed CCD.
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Sincethe ballistic and snake photonsretain their initial polarization even after scatter-

ing, their contribution to the imagesshould vary accordingto Malus' law (eqn 2.13), as

the plane of polarization of the incident light is rotated. So, if we take a seriesof images

with the plane of polarization varying by �xed angular increments at each step, then the

seriesof valuesat each pixel should show a sinusoidal variation if the ballistic and snake

components are high enough. The di�usiv e component hardly contains any polarization

information, and that is random. Hence,its contribution to the seriesof valuesat each

pixel is noisy. Now, the task of �nding the ballistic and snake photon components in the

signal boils down to �nding the amplitude of the sinusoid at each pixel.

The opaqueinclusion essentially blocks the ballistic light from reaching the CCD cam-

era. Hence,at the pixels lying in the geometric shadow region of the inclusion, we do

not expect to �nd any ballistic component, i.e., the sinusoidal component is almost zero.

At other pixels, a sinusoidal component will be present. So, a measureof the ballistic

component (viz. the sinusoidal component) recordedat each pixel location of the series

of imagesshould be able to give the shadow of the opaqueinclusion.

The estimation of the sinusoidal component at each pixel is performed in [27, 2, 56]

with the ubiquitous tool of Fourier transform. Sincethe rate of changeof intensity due

to ballistic and snake photonsis twice that of the input state of polarization (! ), we need

to �nd the 2! component of the Fourier transform at each pixel. The resultant gray-scale

imageis constructedwith the intensity at each pixel beingequalto the magnitudesquare

of the 2! component. A suitable scalingmay have to be applied to the image,to be able

to perceive it.

It has been reported that the method has been able to give good results for objects

hidden in turbid media with turbidit y as high as 30l � , with a spatial resolution of about

100 �m , using a continuous,1 mW lasersource.

It is important to note the subtle di�erence in the principle of polarization discrimina-

tion asgivenin [28], ascomparedto that givenin [31, 27, 2, 56]. In [28], the polarization of
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the light re
ected from the target is constant and at the detector, the analyzeris rotated

to acquirethe co-polarizedand cross-polarizedimages.But in [31, 27] the analyzeris held

�xed and the sourcepolarization is modulated. Hence,the later technique can be used

only in the caseof active imaging, where the sourceis controllable, whereas,the former

can be usedeven in passive imaging schemes. Perhaps,one would get the sameresults

by having a �xed sourcepolarization plane and a rotating analyzer,even in the imaging

setupdescribed in [31, 27]. This is an important changethat can extend the utilit y of the

PMI procedure.

The two classesof imaging schemesreviewed till now, i.e., the PDI and the PMI, have

utilized the polarization of the scattered light to visualize the hidden object. However,

no property of the inclusion itself can be discernedby these methods. The presence

or absenceof an inclusion and in casean inclusion is present, its dimensionsand some

properties (as in the caseof the two patchesdescribed in [28]) are the only information

that can be obtained by thesemethods.

However, someimaging schemeswhich study the polarization properties of a scene,

instead of the polarization state of light, have beendeveloped [57]. Theseare termed as

polarization diversity active imaging (PDAI) schemes.We next study two such schemes,

which are extensionsof ellipsometry to active imaging and rough surfaceoptics. We have

reviewed the PDAI schemesfor the sake of completenessonly, and we mainly concentrate

on PDI and PMI schemesin the following chapters of the thesis.

3.2.4.3 Polarization div ersit y activ e imaging schemes

In PDAI schemede�ned in [57], a sceneis illuminated with a sequenceof polarization

statesand the measurements of polarization state scatteredfrom the sceneare captured

asimages.Theseimagesare then analyzedto determinethe Mueller matrix at each pixel.

The Mueller matrix of the target is obtainedusingthe Mueller Matrix ImagingPolarimeter

(MMIP), which usesthe dual rotation retarder technique [58]. The authors explain as to

how, depolarization of light can be usedto estimate target roughnessand texture. The
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information obtained by this schemehas beenusedto measurethe orientation of bodies

and estimate their refractive index.

The defenserelated applications of PDAI, like de-camou
aging and target detection

have beenstudied [59]. The main idea in this schemeis to usethe DOP of the re
ected

light (de�ned di�eren tly from eqn 2.4), to distinguish man-madeobjects form natural

objects. In this technique, the fact that man-madeobjects depolarize incident polarized

light to a lesserextent as comparedto natural objects has beenleveraged. The authors

demonstratethe idea by using the Dual Rotation Retarder Technique (see[57]). In this

scheme, the polarization degreeat every pixel location is characterized by its Mueller

matrix M . This is di�eren t from the way the DOLP wasde�ned in the PDI schemes(see

eqn 2.4). The polarization degreePd is de�ned by the authors as

Pd = 100

s P 3
i=0

P 3
j =0 M 2

ij � M 2
00

3M 2
00

and intensity is de�ned as

I = M 00

where, M ij stand for the elements of the Mueller matrix M : The degreeof polariza-

tion Pd varies from 0% (corresponding to a totally depolarizing target) to 100%(a non-

depolarizing target).

The DOP as de�ned above is independent of the actual incident and received inten-

sities (it dependsonly on the Mueller matrix elements), but the DOP as de�ned in [28]

dependson the actual received intensities. The method proposedin fact capturesall the

properties of the medium through which the light scatters. Hence,this may be a better

representation of the DOP, than that de�ned in [28]. The drawback of the schemeis the

huge computational cost involved in �nally obtaining polarization images,as compared

to the schemedescribed in [28]. The results are usually represented in pseudo-colorsfor

better visualization.
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The technique of Mueller Matrix Imaging Polarimetry (MMIP) has alsobeenusedfor

characterizing tissueproperties [60], through which, the results of [50] have beenveri�ed.

MMIP acquiresimagesof samplesand calculatesthe full Mueller matrix for each pixel of

the image. Sincethe Mueller matrix completelycharacterizesthe polarization properties

at a pixel, all the information about the di�eren t regionsof the tissue can be obtained

and thus, the regionscan be characterized. It hasbeenshown that MMIP can be usedas

a technique for characterizing various dermatologicaldiseases.

Sincethe processingschemesdiscussedso far do not needinformation about the wave-

lengths involved, all the imaging techniques discussedso far now can be extended to

other regionsof the electro-magneticspectrum too. They can alsobe modi�ed to handle

circularly polarized light.

Our survey of the various polarization basedimaging techniquesconcludeshere.



Chapter 4

Pro cessing polarization-ric h data

There are mainly two imaging techniques which make use of the polarization of the

scatteredlight to distinguish di�eren t regionsin a scene,namely the Polarization di�er-

enceimaging (PDI) and the polarization modulation imaging (PMI). Till now, to our

knowledge,there has beenno comparative study of thesetwo schemes. In this chapter,

we embark on such a task. We comparethe theoretical and experimental performanceof

the PMI schemedescribed in [27] and the PDI schemedescribed in [3]. We alsopropose

few other processingtechniquesand theoretically study and comparethem with thesetwo

existing schemes.

We proposea minor changeto the PMI schemeproposedin [31, 27], to make it suitable

for both active and passive imaging. The necessarychangeis to keepthe plane of polar-

ization of the incident light �xed and allow the analyzer to rotate. Also, we can observe

that the PDI schemebecomesa particular caseof this modi�ed PMI schemeasexplained

below.

In the modi�ed PMI scheme,if imagesare captured with angular displacements of � =2

of the analyzer, the frequencyof the resulting sinusoid due to unscattered light will be

half the rate at which the imagesare captured (the sampling rate), i.e., only two points

of onewhole period of a sinusoid will be sampled. If oneof the sampledpoints (images)

is chosento be at the maximum of the sinusoid (the co-polarizedimage), the next sample

will naturally be that of the minimum of the sinusoid (the cross-polarized image). Thus,

46
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we can get the polarization di�erence data by properly choosing the sampling point. In

the rest of the thesis,whenever we refer to the PMI scheme,we assumesuch a modi�ed

PMI scheme,as given in Fig. 4.1.

BELASER FP O SF RP CCD

Figure 4.1: The modi�ed PMI imaging scheme. BE: Beam Expander, FP: Fixed
Polaroid, O: Object immersedin scattering medium, SF: Spatial Filter, RP: Rotating

Polaroid, CCD: ChargeCoupledDevice

In order to comparedi�eren t processingschemes,we utilize the conceptsof estimation

theory, with the assumptionthat the imaging methodologiesbeing consideredare essen-

tially di�eren t estimators for estimating the samequantit y. The characteristics of the

estimators that are of concernto us are the bias and the variance. An estimator is said

to be unbiasedif it yields the true value of the parameterbeing estimatedon an average,

over all possiblevaluesof the parameterbeing estimated;else,it is termed asbiased[61].

The varianceof the estimator is a measureof the closenessof the estimatedvaluesto the

actual value and is the criterion usually usedto rank the estimators. Another important

characteristic of an estimator is its e�ciency , i.e., how good the estimator is, in using the

available data to estimate the unknown parameters. The e�cien t estimator is the best,

minimum variance,unbiasedestimator onecan hope to design.

From the point of view of data processingand visualization, we identify three di�eren t

parameters,which can be usedto interpret the polarization information contained in the

received radiation. We classify the imaging methodologiesbasedon thesevisualization

parametersas

� Polarization intensity imaging (PI I)

If we can segregatethe information in the received radiation as corresponding to
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the polarizedand the unpolarizedparts (which we show to be possible),we can use

the amount of polarizedlight asa visualization parameter. We call such schemesas

belongingto the categoryof polarization intensity imaging. The PMI described in

[27] can be taken as an exampleof such a scheme.

� Degreeof polarization imaging (DOPI)

In these schemes,the quantit y of interest is the degreeof polarization. It is a

measureof the purit y of the received partially polarized radiation and may convey

information about the nature of obscuredobjects, apart from their location. In our

comparisons,we consideronly the degreeof linear polarization (seeeqn ??). This

parameterhasbeenusedin [28] to visualizethe polarization information.

� Polarization orientation imaging (POI)

This schemeis usefulonly when linearly polarized light is usedfor imaging. When

the received radiation contains multiple linearly polarizedstates,we may be able to

identify and categorizethe obscuredobjects basedon the orientation of the plane

of polarization of the received radiation. To the best of our knowledge,this hasnot

beenutilized in any of the imaging schemes,though, as we will show, this can be

obtained at no extra cost, when we usethe PMI scheme.

In order to be able to usethe conceptsof estimation theory, we needto model the data

capturedat every pixel location, in each of theseimagingschemes.Weresort to the Stokes

vector analysis for this purpose. As a precursor to modeling the data, we would like to

stressthe point that the processinginvolved in all the imaging schemesdiscussedin this

thesis is essentially 1-D. A typical, polarization based,direct imaging technique yields

a seriesof images,with the imagesbeing captured at particular states of the analyzer

optics. The processingis performedat a particular pixel location, by looking at the series

of data valuesat that location, acrossimages. Every processingoperation is applied to

all the time series.

After estimating the visualization parameter at every pixel location, we construct the

resultant imageby plotting the estimatedvaluesasan image. One important factor that
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can a�ect the resultant image,is the varianceof the estimatedquantities at each pixel. If

the estimatedquantities show a largevariance,we may obtain drastically di�eren t results

when we repeat experiments with the sameimaging setup. Estimation theory comesto

our rescuehere,sincethe varianceof the estimatorscanbe usedto judge the performance

of the processingschemes.Though the actual value of the estimated quantities are very

important, in many cases,it is the estimator's variance that is crucial. The resultant

imageis usually segmented into two or more regions,corresponding to the hidden objects

and the background. In such cases,the true valuesat each pixel location will not be very

crucial, unlessthey a�ect the segmentation processitself.

In our analysisof the processingschemes,we assumethat the data valuesare recorded

using an ideal detector. i.e., we have ignored the e�ect of quantization of the actual data

when the information is converted to an image. Also, the detector is assumedto have

in�nite dynamic range. We assumethat these factors a�ect all the processingschemes

equally, and hence,the best processingschemeshould remain so, even when applied on

quantized and clipped data.

In all further discussions,we also assumethat the incident light is linearly polarized.

Extensionof the analysisto circular polarization wherever suitable, is usually simple,and

is mentioned later. The caseof passive imaging alsoassumesthat the information about

the object of interest is parameterizedby the linear polarization information present in

the received radiation.

With this background information, we model the intensity recordedin the PMI scheme,

(shown in Fig 4.1) as follows.

4.1 Signal mo deling

In general,the Stokesvector (SV) recordedby a point detector (or at a pixel location

of a CCD camera), can be represented as [hI si hQsi hUsi hVsi ]
0 where h�i represents

time averaging. Though, due to �nite detector area, there is spatial averaging also,
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we are more interested in time averaging, since the areas involved are small and the

dominant factor a�ecting the recordedSV turns out to be time. The statistics of the

time averaged,scatteredStokesvectorsis of importanceto diverseapplicationsand is yet

to be studied fully [38]. But, since the integration times are usually large comparedto

the coherencetime (a measureof the duration of constancyof the instantaneousSV of

the wave �eld) [38], it is usually assumedby virtue of the central-limit theorem, that the

time averagedStokesparametersrecordedduring di�eren t sub-intervals are statistically

independent, Gaussianrandom variables.

However, for someexperimental data, the power spectral density of the time seriesre-

vealedan underlying colourednoiseprocess,which canbe modeledby an Auto Regressive

1 (AR1) process[69]. Hence,we do not assumethe noise to be white, in modeling the

observed data.

With this information, wecanmodel the intensity recordedat an arbitrary pixel location

at the nth step of acquisition of PMI schemeas (from eqn 2.12)

I r (n) =
1
2

(I s + Qs cos2� n + Us sin2� n ) + v(n) n = 0; 1; 2; � � � ; N � 1 (4.1)

where� n is the anglemadeby the analyzerwith respect to the horizontal at the nth step

and v(n) is an AR1 process,given by

v(n) = av(n � 1) + w(n) (4.2)

where,w(n) is a zeromean, independent and identically distributed (iid) Gaussiannoise

processwith unknown variance� 2 and a is the unknown AR1 coe�cien t. In casea = 0,

the noiseprocessbecomeswhite.

Henceforth,we deal with the analysisof a single time series,representing data at any

pixel. The analysisessentially appliesto all other pixel locations as well.
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Assumingthat the rotating polaroid takesM stepsto completeexactly onerotation, � n

increments by 2�
M

c at each stepof the polaroid. Supposewe start grabbing imagesstarting

with an arbitrary orientation � of the rotating polaroid, the intensity recordedat the n th

step can be represented as

I r (n) =
1
2

�
I s + Qs cos

�
4� n
M

+ 2�
�

+ Us sin
�

4� n
M

+ 2�
��

+ v(n) (4.3)

A more useful representation of the sameequation would be

I r (n) =
1
2

�
I s +

p
Q2

s + U2
s sin

�
4� n
M

+ 2� + �
��

+ v(n) (4.4)

where, � = arctan
�

Qs
Us

�
:

We observe from eqn4.4 that the component of the intensity that is independent of the

orientation of the analyzer is I s
2 , which corresponds to the di�use part of the scattered

light. The amplitude of the sinusoidal part, i.e.,
p

Q2
s + U2

s

2 correspondsto the ballistic and

snake components and is a measureof the magnitudeof the polarizedlight in the received

radiation. We denotethe former by I scat and the latter by I bal. Using this representation,

I r (n) = I scat + I bal sin
�

4� n
M

+ �
�

+ v(n) n = 0; 1; 2; � � � ; N � 1 (4.5)

wherewe have replacedthe term 2� + � by a singlevariable, � . The discrete frequency

f of I bal is given by f = 2
M .

In all our comparisonsof the imaging schemes,we assumethat there are N images

available for analysis. i.e., in caseof PDI scheme,there would be N
2 imageseach, corre-

sponding to the co-polarized and cross-polarized data. In PMI schemes,there would be

N imagesconstituting a time seriesat every pixel location, which would be analyzedfor

estimating the sinusoidal component. We further assumethat N is an integral multiple

of M . Although this condition is not very strict as N increases,for the sake of analysis,

we continue with this assumption.
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The comparisonof the analysis schemesneedsthe knowledge of the noise statistics

at each pixel location, which is seldomknown a priori. Still, we assumethat the noise

characteristics are known and analyze the various schemes,sincewe get an idea of the

performanceof the various estimators given a particular noise condition. We do not

explicitly estimate the noise variance terms, since the quantit y of interest to us is the

unscatteredcomponent of light and noiseis a nuisanceparameter.

Each imaging scheme is analyzed for two cases: (i) v(n) is white, and (ii) v(n) is

coloured. When we assumev(n) is white, we replacev(n) by w(n) for clarity.

We now analyzeimaging schemesthat exploit polarization intensity.

4.2 Polarization in tensit y imaging

4.2.1 Polarization in tensit y imaging - the case of white noise

We observed earlier that the PMI schemedescribed in [27], belongsto this class. If the

processingof data in PDI schemesis restricted to taking the di�erence of the intensities

alone,the PDI schemescanalsogivethe polarization intensity information. The di�erence

betweenthe maximum and minimum intensitiesof the PDI data givestwicethe amplitude

of the sinusoid buried in noise. We shall comparethe performanceof such a PDI scheme,

with that of the PMI scheme.

4.2.1.1 In tensit y imaging using PDI estimator

The analysisof the PDI schemecan itself be subdivided into two cases.The �rst is the

generalcase,where the orientation of the plane of polarization of the incident radiation

is not known. Most of the passive imaging schemesbelongto this category. In the second

case,it is known exactly. Many active imaging schemesfall into this category. However,

sincethe rotating polaroid is at the receivingendin the modi�ed PMI scheme,it is possible

to know the orientation of the plane of polarization of the incident radiation by �nding

the position of the analyzer which corresponds to either the maximum or the minimum
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intensity recorded,even in passive imaging schemes.Let us �rst analyzethe generalcase

and later seeas to what happenswhen the plane of polarization of the incident light is

exactly known.

We denote the co-polarized intensity recordedin a generalPDI schemeby I k and the

cross-polarized intensity by I ? . Sincethe polarization orientation of the incident light is

not known, we assumethat the intensity recordedas I k is obtained with the analyzerat

an angle � with respect to the horizontal. Thus, the imagesneednot correspond to the

co-polarization and cross-polarization locations. The recordedintensities would then be

(from eqn 4.5)

I k(n) = I scat + I bal sin(� ) + w(n) (4.6)

I ? (n) = I scat + I bal sin(� + � ) + w0(n) (4.7)

wherew(n) and w0(n) are zeromeaniid Gaussianrandom variablesand � = (2� + � ).

In PDI scheme, the estimate of the ballistic component in the recordeddata is given

by

Î bal;P D I =
1
N

N
2X

n=1

�
I k(n) � I ? (n)

�
(4.8)

In many implementations of PDI schemes,the scalingfactor hasbeenfound to bedi�er-

ent. It is an arbitrary constant in someschemes[53, 28]. However, using the di�erencing

scheme,we can theoretically estimatethe ballistic component by eqn4.8. If any arbitrary

scalingis used,the estimate would be a scaledversionof the actual ballistic component.

The scalingwould a�ect the varianceof the estimatealso. Hence,we restrict our analysis

to the theoretically correct scalingvalue.
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Now, by substituting the expressionsfor I k and I ? from eqns4.6 and 4.7 to eqn 4.8,

and by simplifying the resulting expression,we obtain,

Î bal;P D I = I bal sin� + w� (n) (4.9)

wherew� (n) is a zero-mean,Gaussianiid noise,with variance � 2

N , where� 2 is the variance

of w(n) and w0(n). We can easily seefrom eqn 4.9 that

Ef Î bal;P D I g = I bal sin� (4.10)

varf Î bal;P D I g =
� 2

N
(4.11)

whereEf�g standsfor expectation and varf�g standsfor varianceof a random variable.

Clearly, the estimate Î bal;P D I is biased,sincethe estimated value dependsupon � . If

the co-polarized and cross-polarized imagesdo not correspond exactly to the maximum

and minimum values,the estimated value of the unscatteredcomponent will not be the

true value. This is a big disadvantage of PDI scheme. Only when � = �
2 , we get the true

estimate of the unscatteredcomponent. The estimator has a varianceof � 2

N , irrespective

of the valueof � . Thus, only whenthe planeof polarization of the incident light is exactly

known, we get true estimatesof the ballistic component.

Next, we analyzethe performanceof the PMI polarization intensity estimator.

4.2.1.2 In tensit y imaging using PMI estimator

SupposeN data valuesfrom the PMI schemeare available for analysis. It can be seen

from eqn 4.5 that the 2N
M

th
component of the N-point DFT (Discrete Fourier Transform)

would contain the information of the sinusoid. Here, we assumethat 2N
M is an integer,

i.e., N is an integral multiple of M . The N-point DFT of a signal x(n) is given by

X (k) =
N � 1X

n=0

x(n)e� j 2� kn=N k = 0; 1; 2; ::::::;N � 1 (4.12)
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So, as per [27], where the PMI schemehas beenused,the estimate of the ballistic com-

ponent in the signal is given by

Î bal;P M I =

�
�
�
� I r

�
2N
M

� �
�
�
�

2

(4.13)

where, I r standsfor the DFT sequenceof I r (n). Though, this is oneway of representing

the polarization data, for the sake of comparisonof various schemes,we usea properly

scaledde�nition of the DFT to get the actual estimatesof I bal. We can easily �nd that

the estimate of I bal is actually given by

Î bal;P M I =
2
N

�
�
�
�I r

�
2N
M

� �
�
�
� (4.14)

The analysisof the bias and varianceof the estimator is quite formidable, and hence

we have resortedto numerical simulations for the purpose.We comparethe resultsof the

simulation with that of the PDI intensity estimator, in a later section.

Next, we analyzeasto what best canbe doneto estimateI bal, from the basicprinciples

of estimation theory.

4.2.1.3 The holy grail for in tensit y imaging

In the framework of estimation theory, the best estimator, with the optimalit y criterion

beingthe minimum varianceof the estimatedquantit y, is the minimum variance,unbiased

(MVU) estimator [61]. However, existenceof an MVU estimator doesnot ensurethat the

estimator is e�cien t. In addition to being unbiased,if an estimator attains the Cramer-

Rao lower bound (CRLB), the estimator will be e�cien t. This is the best MVU estimator

onecanhopeto design.We�rst look at the possibility of �nding such an optimal estimator

for the problem on hand.

In general,MVU estimatorsdo not exist for all unknown parametersunder all circum-

stances.As a �rst step in determining whether such an estimator exists,we seewhat the

CRLB for the estimateis, and check if someestimator satis�es it. Here,the quantit y that



CHAPTER 4. PROCESSINGPOLARIZA TION-RICH DATA 56

we wish to estimate is I bal of eqn 4.5. The derivation of the CRLB for various unknown

parametersof eqn 4.5 when the noiseis white, is given in Appendix A. It can easily be

found that the CRLB for I bal is 2� 2

N . We now needto �nd if there existsan estimator that

can achieve this bound.

From a theorem related to the CRLB [61], it is known that an unbiasedestimator for

a parameter � exists i�

@ln p(I r ; � )
@�

= f (� )(g(I r ) � � ) (4.15)

where p(I r ; � ) is the probability density function (pdf) of variable I r , parameterizedby

the unknown variable vector � (seeeqnA.2) and f (�) and g(�) are somefunctions. If such

a condition is satis�ed, then the MVU estimator of � is,

�̂ = g(I r ) (4.16)

and the minimum varianceis given by

var(�̂ i ) �
�
I � 1(� )

�
ii

whereI (� ) is the Fisher information matrix.

For the problem on hand, � = I bal and I r (n) is asgiven in eqn4.5. It can be found that

the condition demandedby eqn 4.15cannot be satis�ed in this case.Hence,we abandon

our search for the MVU estimator of I bal and look at other estimatorsthat give variances

closestto the CRLB.

When an MVU estimator doesnot exist, or if it cannot be found, one usually resorts

to the Maximum Likelihood Estimator (MLE), due to its interesting properties. MLE

performs optimally when large enough data points are available for analysis. It also

asymptotically achieves the CRLB, and hence is asymptotically e�cien t and optimal.

Further, if an e�cien t estimator exists, it is achieved by the MLE. Due to all these
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reasons,we resort to the MLE for estimating I bal.

The problem at hand is similar to estimating the amplitude of a singlesinusoid,except

for the constant term I scat . We explorewhether we can extend the analysisof the caseof

a singlesinusoid, detailed in [61] to that of ours. By modifying eqn4.5 asgiven below, it

is clear that the data can be modeledlinearly.

I r (n) = I scat + I bal cos� sin
�

4� n
M

�
+ I bal sin� cos

�
4� n
M

�
+ w(n) (4.17)

With this modi�cation, we can expressthe above equation as
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or, equivalently, by matrix notation as

I r = H� + W (4.19)

If we can estimate I bal cos� and I bal sin� , we can estimate I bal as

I bal = +
q

(I bal cos� )2 + (I bal sin� )2 (4.20)

The reasonfor choosing such a linear form to model the data is intentional, sincethe

linear model gives immenseadvantage in designing the estimator. It has been proved

that [61] if the observed data X are described by the generallinear model

X = H� + W (4.21)
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where H is a known N � p matrix with N > p and of rank p, � is a p � 1 parameter

vector to be estimated, and W is a noisevector with pdf N (0; C), then the Maximum

Likelihood Estimator of � is

�̂ =
�
H T C � 1H

� � 1
H T C � 1X (4.22)

�̂ is also an e�cien t estimator, in that it attains the CRLB and hence is the MVU

estimator. The pdf of �̂ is

�̂ � N (� ; (H T C � 1H )� 1) (4.23)

Sincethe linear model of eqn 4.19 satis�es the above conditions, we have an e�cien t

estimator for I bal cos� and I bal sin� and thus for I bal, which is the MLE of I bal. Although

the estimator is biasedif data points are few; it is asymptotically unbiased[62]. Moreover,

sincethe estimate is obtained by a non-linear transformation of the MVU estimates,the

estimator cannot be e�cien t [61].

For the problemon hand, the rank of the matrix H canbe shown to be 3 by considering

just the �rst 3 rows and performing row reduction on the 3 � 3 matrix obtained. The

noisevector has the covariancematrix � 2I , where I is an N � N unit matrix, and � 2 is

the unknown noisevarianceof the series.

To obtain the MVU estimatesof I bal cos� and I bal sin� easily, we needa simple form

for the inversionof the matrix H . It can be shown that this happensif N is an integral

multiple of M and then, the MLE estimate �̂ for various components turns out to be

Î scat;M V U =
1
N

N � 1X

n=0

I r (n) (4.24)

Î bal cos� M V U =
2
N

N � 1X

n=0

I r (n) sin
�

4� n
M

�
(4.25)
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Î bal sin� M V U =
2
N

N � 1X

n=0

I r (n) cos
�

4� n
M

�
(4.26)

where,M is the periodicity (number of stepsper rotation) of the rotating polaroid.

The covariancematrix of the estimate �̂ is,

2
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(4.27)

Hence,we have

varf Î scat;M V Ug =
� 2

N
(4.28)

varf Î bal cos� M V Ug = varf Î bal sin� M V Ug =
2� 2

N
(4.29)

substituting eqns4.25and 4.26 into eqn 4.20,we obtain

Î bal;M LE =
2
N

vu
u
t

(
N � 1X

n=0

I r (n) sin
�

4� n
M

� ) 2

+

(
N � 1X

n=0

I r (n) cos
�

4� n
M

� ) 2

(4.30)

It turns out that Î bal;M LE is a random variable with the distribution being that of the

squareroot of a gammarandom variable with density �
�
1; N

4� 2

�
, when �nite samplesare

used. However, due to the properties of the MLE [61], the density asymptotically tends

to N (I bal; 2� 2

N ).

It is clear that the right hand sideof the above equationis the sameasthat of eqn4.14.

Hence,we arrive at the important result that the MLE estimateof I bal canbe obtainedby

the PMI scheme. It is worth observingthat if � = �
2 , we can obtain the MVU estimates

of I bal. Hence,if we know the exact phaserelations, we can obtain the MVU estimatesof

I bal, using the PMI scheme.
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We end our search for better estimators of I bal here, sincethe MLE estimator almost

always does the best job, when the MVU estimator does not exist. In all subsequent

referencesto PMI, we imply the usageof the MLE estimator given in eqn4.19,followedby

the transformation given in eqn4.20. This alsocorrespondsto the LSEK (Least Squared

Estimator of K sinusoids) estimator mentioned in [62], as against the DFT, mentioned

as LSE1 in [62]. The advantagesof LSEK over LSE1 have beenmentioned in the same

article, and apply to this problem also, sincewe are estimating both the DC component

and the sinusoidal amplitude simultaneously.

4.2.1.4 Comparison of estimators

The following observations can be madefrom our previousdiscussions.

� The PDI estimator is biaseddue to its dependenceon the value of � .

� Though the MLE (and hencethe PMI estimator) is biased when only few data

points are available for analysis,it is asymptotically unbiasedand e�cien t.

� The varianceof the PDI estimator (eqn 4.11) is always lessthan that of the PMI

estimator. In fact, it is lessthan CRLB given in A.8. This is at the cost of the

bias of the estimator, which doesnot improve with the amount of data available for

analysis,unlike the PMI estimator.

� Unbiasedestimatesof I bal can be obtained if � = �
2 , using both the PMI and the

PDI estimators.

� If we can choose� = �
2 , the PDI estimator ensuresbetter performancethan the

PMI estimator, due to lesservariance.

� If � cannot be known a priori, the PMI estimator is preferableover the PDI esti-

mator.

The exactphaserelationscanusually beknown in the caseof active imaging. Hence,for

active imaging, PDI schemesaremoreusefulthan the PMI schemes.For passive imaging,

though the PMI schemeseemsto be moresuitable, there are certain circumstanceswhere
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the PDI schememay still perform better. There are applications wherethe parameterof

interest is not the exact valueof the sinusoidalamplitude, but its relative valueacrossthe

scene. Since the PDI schemegives uniformly scaledvaluesof the sinusoidal amplitude

acrossthe scene,it may be better to usethe PDI schemesinceits varianceis lower than

the PMI scheme.At the endof this section,we present resultsfrom numericalsimulations

to substantiate our analysis.

With this, we concludeour analysis of the various estimators for I bal in white noise,

and proceedto study someestimatorsfor estimating the samequantit y in colourednoise.

4.2.2 Polarization in tensit y imaging - the case of coloured noise

For the theoretical analysis of the various estimators in coloured noise, we need to

be speci�c about the kind of noisebeing considered,though, the estimators themselves

need not have a priori knowledgeof the noise characteristics. It has been found from

experimental data that the noiseprocesscanbeadequatelymodeledby an Auto Regressive

(AR) processof order 1.

We reproducehere,the basicequation that governsthe behaviour of the data samples.

I r (n) = I scat + I bal sin
�

4� n
M

+ �
�

+ v(n) n = 0; 1; 2; � � � ; N � 1 (4.31)

The analysisof the PDI and PMI schemes,in the caseof white noisegaveusclosedform

expressionsfor the meanand the varianceof the estimators. However, to beableto do the

samein the caseof colourednoise is a formidable task. Moreover, sincethe theoretical

analysis of other estimators discussedin this section also throw up similar challenges,

we have resortedto Monte-Carlo simulations to comparethe estimators. First, we make

someobservations about the PDI and the PMI estimators, following which, we seeif an

MVU estimator or an MLE exists for the problem on hand, and from there, we proceed

to seesomeestimatorsapart from the oneswe have discussedso far, and �nally compare

all the estimatorsdiscussed.
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We know that the assumedco-polarizedand cross-polarized intensities in PDI schemes

are given by

I k(n) = I scat + I bal sin(� ) + v(n) (4.32)

I ? (n) = I scat + I bal sin(� + � ) + v0(n) (4.33)

In the caseof white noise,the v(n) and v0(n) terms areindependent, and hencewecould

easilyproceedto �nd the meanand the varianceof the estimators. However, in the caseof

colourednoise,thesetwo are dependent. Further, the v(n); n = 0; 1; 2; � � � ; N � 1 terms

are themselves correlated and the v0(n) terms also show a similar behaviour. Hence,

it is clear that the PDI scheme performs poorly in coloured noise, as comparedto its

performancein white noise. This observation is, in general,true for all estimators that

we consider.

The LSEK estimator, usedin the PMI scheme,is alsosuboptimal, since,it too considers

the noiseto beuncorrelated[62]. Hence,wenow setout to �nd the bestpossibleestimator

of I bal in colourednoise,from the point of view of estimation theory.

Due to the samereasonsas in the caseof white noise, it has beenfound that we can

not obtain an MVU estimate of I bal, and we have to be satis�ed with the MLE estimate

given by eqn 4.22. However, what makes the coloured noise casedi�eren t is that, the

noisecovariancematrix C in this casewill not be � 2I , and hence,the estimatesdepend

explicitly on the noisecovariancematrix terms. On the other hand, if the noiseis white,

we can obtain the MLE estimatesof the amplitude, without having to know the noise

varianceper se.

In the caseof colourednoise,the noisecovariancematrix and needsto be obtained from

the observeddata. This a�ects the performanceof the MLE . Moreover, wedo not directly

have the noisesamples,sincethe data contains signalplus noiseinformation. This makes

the estimation of the noisecovariancematrix di�cult. Hence,numerousestimatorshave

beendesignedto tackle this problem [62].
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We can usean intuitiv e, nonetheless,a very e�ectiv e technique to estimate the noise

samplesfrom the data containing both signal and noise. Thesenoiseonly samplescan

then be used to obtain the noise covariance matrix. The technique we have used has

beenfound to improve the performanceof most of the high performanceestimatorsgiven

in [62]. We compare them at the end of this section. Now, we seethe technique of

estimating the noiseonly samples.

In the PMI imaging setup, we know the periodicity M of the sinusoidal component a

priori, sincethe rotating polaroid is at the receiving end of the imaging setup. We use

this information to achieve our objective of obtaining the noisesamplesalone. In the PMI

scheme,N , the number of data points available for analysis, is chosento be an integral

multiple of M . By taking a N � point DFT of the observed data, the information about

the sinusoid will be localizedto a singleDFT coe�cien t. Here, we refer to both positive

and negative frequency terms, when we say a single DFT coe�cien t. It is the
�

2N
M

� th

coe�cien t and its symmetric counterpart, that carry this information. Similarly, the I scat

information is localized to the DC component. The rest of the frequencycomponents

contain only the noiseinformation.

We make an assumption that, by reducing the two DFT coe�cien ts containing the

signal information (I scat and I bal) to zero, and taking an inverseDFT, we obtain noise

information alone. In doing so, though the signal information is eliminated from the

reconstructedsamples,somenoiseinformation is also lost in the processand changesin

phasewill a�ect the reconstructedsignal. However, the idea is that, an estimate of the

noisecovariance matrix, obtained with this reconstructednoise-onlysamples,would be

better than that obtained as given in [62]. Once we obtain the noise samplesin this

manner,we can estimate the noisecovariancematrix.

As we saw earlier, sincewe usually cannot know the noisecovariancematrix a priori,

there have been various techniques developed to estimate the amplitude of a sinusoid

in coloured noise, someof which have been reviewed and comparedin [62]. Of all the
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matched-�lter basedamplitude estimation techniquesmentioned in [62], for our applica-

tion, the APES (Amplitude and PhaseEstimator for Sinusoids) algorithm seemsto be

the best suited, sincewe needto estimate the amplitude of one sinusoid only. The algo-

rithm has beenfound to be asymptotically statistically e�cien t. However, what is more

interesting is that, it is reported to be unbiasedeven when only a �nite number of data

points are available for estimating the amplitude of a complexsinusoid. But, sincewe are

interested in estimating the magnitude of the sinusoid, the e�ciency will be lost. Still,

the performanceof the APES estimator for small data lengths is what makesit attractiv e

for our application. The designof the APES estimator hasbeendetailed in [62, 63], and

its e�cien t implementation hasbeendescribed in [64].

Our modi�cation of the APES estimator, using the noisecovariance matrix obtained

asabove, shows lower variancein estimating the amplitudes,especially at lower SNR. We

call it as the APESR estimator, wherethe appendedR standsfor `robust'. The designof

this estimator is brie
y described below.

Let x(n); n = 0; 1; 2; � � � ; N � 1 denotethe observedsamplescontaining both the signal

and noise information. We obtain the noiseonly samplesz(n) from x(n), as explained

earlier. We form overlapping sub-vectorsof z(n), denotedby q(l) as follows-

q(l) = [z(l) z(l + 1) z(l + 2) � � � z(l + R � 1)]T l = 0; 1; 2; � � � L � 1: (4.34)

whereL = N � R + 1. A suitable choiceof R for the APES estimator hasbeenreported

to be N
2 in [63], and we retain the samefor this modi�ed estimator too.

The estimate of the noisecovariancematrix Q̂ is obtained as

Q̂ =
1
L

L � 1X

l=0

z(l)zT (l) (4.35)

This Q̂ is used to estimate the amplitude of the sinusoid. However, the estimated

amplitude will be a complexnumber, whoseabsolutevalue correspondsto the magnitude
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of the sinusoid (I bal), and whoseanglewill be equal to �
2 � � .

Next, wediscussa coupleof techniquesthat may improvethe performanceof the various

estimatorsdiscussedso far. Later, we comparethe performanceof all the estimators.

4.2.3 Chunk ed data pro cessing and bootstrapping

A generaltechnique that can be applied for all the estimatorsdiscussedsofar, for both

white and colourednoise,is chunked data processing.Similarly, bootstrapping is another

generaltechnique that can be usedto improve the performanceof estimators.

In chunked data processing,instead of using all the data points to obtain a single

estimate,we break the data into smallerchunks, from which we obtain multiple estimates

for the samevariable and averagethem. However, there is no guarantee that the resultant

estimateobtained would be better than what can be obtained by consideringall the data

points in a single go. But, as we shall see,the APES estimators perform signi�cantly

better with chunked data. The PMI, PDI and the MLE estimators do not show such

improvements. Moreover, chunking can be extended to overlapping windows of data,

leading to a large number of relatively high variance estimates,which, upon averaging,

can yield results better than the singleestimate obtained from the available data.

Though it looksasif the chunkeddata processingtechniquerequireshugecomputation,

surprisingly, it neednot. The processingof chunked data when pushedto its limit (i.e.,

whenweconsiderchunkswhich haveall but a singledata point in common),canbeviewed

as processingdata using a small bu�er. As a new samplecomesin, the oldest sample

leavesthe bu�er, thereby leadingto a newrealization of the sizeof the data bu�er. A new

estimate is found for every singledata point in this manner,and all the valuesaveraged.

If the bu�er size chosenis small, the processingis still simple, though it needsto be

repeatedmany times. Moreover, the memory requirement will alsobe less,sincewe need

not retain all the data valuesto estimatethe parameters.This is an advantageof chunked

data processing.
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In bootstrapping, one generatesmore data samplesfrom the existing ones. As the

number of samplesavailable for analysis increases,the noisevariance comesdown, and

hence, the performanceof the estimator improves. However, the computational costs

involved are much higher in this case,as comparedto chunking. A good introduction to

bootstrapping is given in [65]. For our problem, we can assumethe data to be emanating

from M =2 di�eren t sources,whereeach sourcerepresents a point in half a period of the

rotating polaroid. If the noise is known to be white, we can form extended data by

sampling with or without replacement, the data points corresponding to thesepositions,

and concatenatingthe data. However, the extensionto the caseof colourednoiseis not

as simple.

An application of bootstrapping for detection of a sinusoid in colourednoise is given

in [66], wheredi�eren t typesof bootstrapping algorithms and ways of implementing them

in colourednoisearegiven. Weusedthe block bootstrappedalgorithm. First, weestimate

the noiseonly part of the data asmentioned earlier, insteadof the time domain approach

given in [66]. Then, we bootstrap the noise samplesto obtain better estimatesof the

noisecovariancematrix, to be usedin the MLE and the APESR estimators.

It would alsobeinterestingto know asto whetherwecanfurther improvethe estimation

performanceby processingchunked bootstrapped data. We carried out such studiestoo,

and the results are reported later, when comparingthe di�eren t estimators.

Next, we study the computational complexity of the various estimators, since some

applications demandreal-time processing,whereasfor others, o�ine processingsu�ces.

4.2.4 Computational complexit y of the estimators

A basicPDI schemewith modestmemoryrequirements canbe implemented asfollows.

The e�ect of adding co-polarizedor cross-polarized imagescan be obtained by increasing

the integration time of the CCD to a long time. Then, by subtracting such a single

cross-polarized image from a co-polarized image, we can obtain PDI results. Such a

scheme can be implemented with the memory requirement being as little as twice the
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sizeof co-polarized and cross-polarized images. In caselong integration times cannot be

allowed, the schemecan be parallelizedby using multiple sensors.However, the memory

requirements increaseproportionally with the number of sensors.The actual processing

performedby a signal processorinvolvesonly subtraction and addition of integers,and a

�nal scalingof the values,to be renderedasimages.This can be carried out at extremely

fast rates, and hencethe PDI schemecan easily be implemented in real time by modern

signal processors.

The PMI schemehashigher computational needsthan the PDI scheme. The coretask

in PMI processingis the computation of a singleDFT coe�cien t (or LSEK estimate), for

which there are e�cien t methods. The problem of computing only a few DFT coe�cien ts

hasbeenaddressedby the Goertzel algorithm, the FFT (Fast Fourier Transform) pruning

technique and other techniques,which have beencomparedin [67]. The memory require-

ments for implementing thesetechniquesare the sameasin the caseof PDI schemes.The

implementation essentially needssuccessive multiply-add-accumulate steps,followed by a

square-root operation. Hence,the processingis a bit more involved, than in the caseof

PDI schemes.The PMI schemealsolendsitself to parallelization and canbe implemented

in real time. A direct implementation of the Goertzel algorithm needsmemory at least

twice the sizeof the co-polarized or cross-polarized images.

The MLE and the two APES estimators involve more computation than the PDI and

PMI schemes. The bottleneck in thesealgorithms is the inversion of matrices. In that

aspect, the MLE schemeneedsmore number crunching than the APES schemes,sinceit

has to invert a matrix at least twice the sizeof what the APES estimators have to. An

e�cien t implementation of the APES estimators is given in [68], along with the relative

computational costsinvolving FFT basedalgorithms. Among the two APES estimators,

the APESR estimator needslesscomputation, and henceshould be preferred wherever

the performancesof both the estimatorsare similar. The MLE and the APES estimators

also have the disadvantage that they need to have the whole data to begin processing,

unlike the PDI and PMI schemes,which can compute in-place, sequentially , as the data

arrives. Hence,the memory requirements of the former estimators are higher than that
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of the latter. However, if the noisecovariancematrix can be known a priori, the APES

and the MLE methods estimate in real time.

As mentioned in the previoussubsection,the bootstrapping algorithms needconsider-

ably higher computational e�orts than the normal algorithms, but chunked data process-

ing canbesimpler than the normal processingschemes.Sincetherearevariousparameters

involved to comparethe computational costs, like the chunk length, the overlap length

and the length of the bootstrapped data, we do not get into a detailed analysis of the

computational costsinvolved in bootstrapping and chunking.

Next, we compare the performanceof the various estimators basedon Monte-Carlo

simulations and alsobasedon the performanceof the estimators in real noisy data.

4.2.5 Comparison of polarization in tensit y estimators

While comparing the performanceof various estimators, we �rst give the results of

Monte-Carlo simulations. We give only thoseresults on real data, that do not match the

predictions of Monte-Carlo simulations.

4.2.5.1 Comparisons based on Mon te-Carlo simulations

All simulations reported in this thesis have used 200 realizations of 64 data points

generatedaccordingto eqn 4.31, to test the PMI, MLE, APES, and the APESR estima-

tors. For testing the PDI estimator, we used 32 data points each with � = �
2 and 3�

2 ,

corresponding to the co-polarized and the cross-polarized data, respectively.

We have also tested the performanceof all the estimators on chunked data. We used

a chunk length of 32 data points, and an overlap of 31 data points betweenconsecutive

windows, thereby obtaining 32 estimates,which wereaveragedto obtain the �nal result.

We have analyzed the e�ect of bootstrapping on all the estimators by constructing an

extendedsequenceof 128 data points from the given 64 data points. In this case,the

dimensionof the noisecovariancematrix usedin MLE and APESR estimators changed

from 32� 32 to 64� 64.
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All the data generatedaccordingto eqn4.31assumethe signal frequencyf to be 0:125.

The valuesof I scat and I bal are chosento be 4 and 1, respectively, so that the degreeof

linear polarization (DOLP) corresponds to 0:25. As we shall see,the performanceof the

estimatorsdoesnot depend on the valuesof I scat or I bal, but on the noisecharacteristics.

Hence,even if we chooseany other value of I scat and I bal, the bias and variance of the

estimatorswill remain the same.

Various characteristicsof the estimators are studied by varying the SNR through the

variance of the iid Gaussianrandom variable governing the noiseprocess. For deciding

the range of SNR values to be considered,we calculated the averageSNR of a 10 � 20

region of eight data sets that we used. The region chosen was outside the region of

the geometric shadow of the hidden object, which ensuredthat we obtain the ballistic

sinusoidal component apart from noise. Such an analysisshowed the actual SNR to vary

from around -14 dB to 9 dB. Hence,we have consideredthe SNR range from -25 dB to

+25 dB for our analysis. For calculating the SNR, we usedthe averageof the ratios of

the signal energy to noiseenergy. Sincewe knew the frequencyof the signal, we could

localizeit to onefrequencycomponent and considerthe rest of the components to contain

noiseinformation. We usedzeromeandata for calculating the overall energy.

For the caseof white noisewith variance� 2, the SNR is given by

SNR in dB = 10log10

�
I 2

bal

2� 2

�
(4.36)

For colourednoise,we have usedthe local SNR as the varying parameter, to test the

performanceof the estimators. The local SNR is de�ned as [62]

SNR in dB = 10log10
N I 2

bal

� (f )

where, � (f ) is the power spectral density of the observation noisev(n) [69]

� (f ) =
� 2

j 1 +
P p

k=1 ake� j 2� f k j2
;
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� 2 is the variance of the white noiseprocess,which drives the AR process,and ak are

the AR coe�cien ts governing the noiseprocess.Though we found that the noiseprocess

in the actual data could be adequately represented by an AR1 process,we have tested

the algorithms with AR2 noiseprocesstoo, so that the performanceof the estimators in

unknown noiseconditions could be better understood.

For studying the performanceof the estimators under AR1 noise, we chosethe AR

coe�cien t a, to be0.50,in all the simulations. To study the performanceof the estimators

in AR2 noise,we chosethe AR coe�cien ts to be a1 = 0:50 and a2 = � 0:125,respectively.

The pole frequencyfor this choiceof AR coe�cien ts correspondsto a discretefrequencyof

0:125,and coincideswith the frequencyof the sinusoid, thus creating a relatively di�cult

situation to estimate the sinusoidal amplitude.

In our comparisonof estimators,we emphasizeon simulations rather than actual data,

sincethe actual data pertain to only two experiments. However, the noisemodelsgive a

generalizationto the data that canbeobtainedin polarization basedimagingexperiments.

4.2.5.2 Comparisons based on performance in real noise

To comparethe performanceof the estimators in real noise,we useddata from polar-

ization modulation imaging experiments conductedwith the setupshown in Fig. 4.1. The

details of the experimental setup are given below.

� Source:

Linearly polarized He-NeLaser.

Wavelength= 632.8nm.

Power= 10 mW.

Beam Dimension(1=e2): 0.65mm.

� Beam ExpansionOptics:

It consistedof two plano-convex lensesof focal lengths 5 cm and 30 cm, giving a

beam expansionfactor of 6, with which we could get a beam diameter of nearly

7 mm.
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� Spatial Filter:

The spatial �lter consistedof a convex lens with a focal length of 10 cm followed

by an iris with a very narrow opening placed at the focal point of the lens. The

diameter of the iris wasnot more than 1 mm, but we could not measureit precisely.

� ChargeCoupledDevice(CCD):

EEVTM , the intensi�ed CCD usedhas 8 bit resolution and gives black and white

images.The gain could be varied over a largerange. We grabbed 512raw imagesof

size240� 320in each of the experiments. For all the experiments, the frequencyof

the rotating polaroid was0.125. i.e., the time seriesat each pixel location consisted

of 512data points with frequencyof I bal being 0.125.

� Hidden Object: The object usedfor imagingpurposeswasan opaquecrossof nearly

1 mm thickness.

For analyzing the performanceof the estimators, we used data obtained from two

experiments, one with the scattering medium consisting of polystyrene microspheresof

diameter 2:97� dispersedin water, and the other with the scattering medium being mist.

We call the former medium as `medium1', and the latter as `medium2'. The noisedata

generatedfrom data recordedwith thesetwo mediawill henceforthbe called`noise1' and

`noise2', respectively. A glanceof the power spectra at a few pixel locations of each set

showed that the noiseprocesscorresponding to medium 1 was nearly white, while that

of medium 2 was coloured. This was endorsedby the averageAR coe�cien ts calculated

from 200pixel locations,using the Levinson-Durbin recursionalgorithm. Noise1 had the

�rst two AR coe�cien ts as -0.0021and +0.0183, while noise2 showed the coe�cien ts as

+0.1561and +0.0853,thereby supporting our observations. The pixel locationschosenfor

our analysiswere the sameas that usedfor calculating the averageSNR of real data. In

all the polarization imaging experiments conducted,the exact orientation of the incident

linearly polarized light wasnot known and hencethe sinusoidalphasewasalsounknown.
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In order to comparethe performanceof the estimators in real noise,we needto have

control over the valuesof I bal and I scat , which cannot be easily attained in actual exper-

iments. None of our data showed uniform distribution of I bal and I scat . Thus, we had to

�nd a way of comparing the performanceof the estimators. Towards that end, we �rst

obtained 512 noise only samplesfrom 200 pixel locations, by the method described in

section4.2.2. Out of these512 samples,we assumedthe �rst 64 to represent the actual

noisesamples.To thesenoisesamples,we addeda sinusoid of frequency0.25,with vary-

ing amplitudes, to simulate di�eren t SNR conditions from -25 to +25 dB. The frequency

(0.25) waschosento avoid the possiblechangesin noiseconditions that would have taken

placeat a frequencyof 0.125,during the processof estimating the noisesamples.

The amplitude of the sinusoid addedwas chosenusing the de�nition of SNR for white

noisegiven in eqn 4.36 . The value of I scat was chosento be four times the value of I bal,

thereby giving a DOLP of 0.25. The 200 pixel locations chosento obtain the noiseonly

sampleswere the sameas those from which we obtained the averageSNR and average

AR coe�cien ts, that we mentioned earlier.

A few points which distinguish the analysis of the estimators in real noise from the

analysisin simulated noiseare mentioned below.

� The samplesrepresenting noise are not exactly noise samples,but were obtained

from signal+noiseobservations. Still, we call this noiseas`realnoise', to distinguish

it from simulated noise.

� For polarization magnitude and degreeof polarization estimators, the varianceand

bias of the estimators depend on the noiseproperties only, and not the SNR, as is

evident from the calculationsof CRLB given in Appendix A. Hence,the bias and

variance curves of someof the estimators remain nearly constant for all valuesof

SNR. This doesnot imply that there is no improvement in the performanceof the

estimators. It hasto be interpreted bearing in mind, the changingamplitude of the

sinusoid with SNR.
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� Since the noise properties are unknown, we have not plotted the CRLB in our

discussionon real data.

4.2.5.3 Comparison of estimators within and across classes

We comparethe performanceof 5 di�eren t classesof estimators,namely, the PDI, PMI,

the MLE and the two APES estimators. Within each class,wehavevariants which process

chunked data, bootstrapped data and chunked bootstrapped data (estimators which �rst

bootstrap the data and then chunk the bootstrapped data to estimate the parameters),

leadingto 22 estimatorsin all. Due to the paucity of space,we choosethe best estimators

from each classand compareonly these�v e estimators.

For convenience,we usethe following notations to distinguish the di�eren t estimators

in each class.The normal estimatorsare denotedby the estimator classnamefollowed by

`N'. Su�x `B' stands for the estimator which usesthe bootstrapped data. An estimator

class name followed by `C' denotesan estimator which performs analysis on chunked

data. Similarly, the su�x `CB' stands for an estimator which analyzesbootstrapped

and chunked data. In the caseof MLE and the APESR estimators, we implemented

two di�eren t algorithms for bootstrapping. The �rst assumesthe noiseto be white and

usessampling with replacement to extend the data. The other assumesthe noise to

be coloured, and usesblock basedbootstrapping algorithm to �nd better estimatesof

the noise covariance matrix. However, we found that the block based bootstrapping

algorithms did not show reliable performance,and hencewe do not report those results

here.

The performanceof all the estimators were similar in AR1 and AR2 noiseconditions.

Hence,we do not report our observations on the performanceof the estimators in AR2

noise. In all the comparisonsto follow, whenwe refer to all noiseconditions, it is inclusive

of the real noisetoo. We now present our observations on the performanceof the various

polarization intensity estimatorsof each class,under varying SNR for both simulated and

real data.
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� For simulated data, all the estimators were found to be positively biased under

colourednoise. The bias and varianceof all the estimators dramatically increased

in colourednoiseas comparedto white noise,indicating poorer performanceof the

estimators in colourednoise.

� Among the variants of the PDI estimator, the PDI N showed the least bias and

variance under all noiseconditions. It was found to be positively biasedin white

noise,up to -15dB, beyond which, it wasfound to be unbiased. It wasalsofound to

be positively biasedat all SNR in real noise,like other PDI variants. We attribute

this to the unknown phaseof the sinusoid in experimental data.

� Among the PMI estimators, the PMI N showed the least bias and varianceunder

all noiseconditions. The PMI N estimator was also found to be positively biased

up to around -5 dB in white noise conditions, beyond which, it was found to be

unbiased. In real noise,the bias of PMI N estimator was found to be higher than

PMI C beyond -10 dB.

� The MLE N showed better performanceup to around 10 dB, beyond which, MLE

C and MLE CB showed better performancein white noise. Under colouredand real

noiseconditions, MLE N showed the best performanceat all SNR.

� Among the APES estimators,the APES CB showed the best performanceunder all

noiseconditions. However, it was found to be positively biasedeven under white

noise. For real noiseconditions, APES C showed better performancethan APES

CB. However, the bias of APES C was a bit higher than APES N for noise2.

� Among the APESR estimators, the APESR N showed better performancethan

other estimators up to -10 dB in the caseof white noiseand up to 15 dB in the

caseof colourednoise,beyond which, the APESR CB wasbetter. Hence,we choose

the APESR N to be the representativ e of this class, since we are interested in

performanceat low SNR. We could not observe any clear trend in real noise. APES

CB performedbetter than all others in noise1, whereas,APES C performedbetter

in noise2.
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Thus, the best estimators of polarization intensity information under varying noise

conditions for simulated data were PDI N, PMI N, MLE N, APES CB and APESR N.

Figs. 4.2(a) and 4.2(b) show the bias and the varianceof di�eren t estimators in white

noise. The CRLB of Fig. 4.2(b) was calculated using eqn A.7. Figs. 4.3(a) and 4.3(b)

show the bias and the performanceof the estimators in AR1 noise. For this case,CRLB

was calculatedusing eqn B.17.

The best estimators of polarization intensity information from real data were PDI

N, PMI N and MLE N for the �rst three classes. Though there was no consistency

in performanceamong the APES and the APESR estimators, we chooseAPES C and

APESR CB asrepresentativ esof their classes,sincethey showed better performancewith

noise1 and noise2, respectively. Fig. 4.4 shows the bias and varianceof theseestimators

in real noise. We have plotted the resultscorresponding to that of noise1 only. The same

hold true even for results with noise2.

From the results of numerical simulations, we observe the following

� The performanceof the estimators is relatively independent of the noisecharacter-

istics. The PDI and the PMI estimatorsconsistently perform better than others.

� The PDI N estimator is unbiasedand hasthe leastvarianceamongall the estimators

for any noise,when� = �
2 . Hence,the PDI estimator shouldbe the preferredchoice

for PII, unlessaccurateestimatesof I bal are neededwhen the phaseconditions are

not known. The varianceof the PDI estimators was lower than that of the CRLB

under all noiseconditions. This shouldnot comeasa surprise,sincethe reduction in

varianceis at the costof the biasof the estimator, aswe �nd in the caseof real data

(seeFig. 4.4(a)). Only when � = � =2, we get unbiasedestimatesof polarization

intensity. Otherwise,the biaswill not decreaseeven with increasingamount of data

available for analysis.

� The PMI N estimator is the next best,and hasthe addedadvantageof beingasymp-

totically unbiased,unlike the PDI estimator. Hence,whenexact phaserelations are



CHAPTER 4. PROCESSINGPOLARIZA TION-RICH DATA 76

(a) Bias of PI I estimators in white noise. Only the best performer in each
classof estimators, namely, PDI, PMI, MLE, APES and APESR are shown.

(b) Variance of PI I estimators in white noise.

Figure 4.2: Performanceof PII estimators in white noise.
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(a) Bias of PI I estimators in AR1 noise.

(b) Variance of PI I estimators in AR1 noise.

Figure 4.3: Performanceof PII estimators in AR1 noise.
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(a) Bias of PI I estimators in real noise.
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(b) Variance of PI I estimators in real noise.

Figure 4.4: Performanceof PII estimators in real noise.
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not known, as in the caseof passive imaging, and accurate estimatesof I bal are

needed,the PMI estimator should be the preferredchoice.

� Though MLE N and other estimators perform on par with the PMI N estimator

under varying noiseconditions including real noise,their high computational costs

favour using the PDI N or the PMI N estimators.

� The APES estimatorsare hardly useful for PII, when the frequencyof the sinusoid

is exactly known.

We performed similar analysis for data of lengths 32 and 128. The chunk lengths

consideredfor the two caseswere 16 and 64, respectively. The overlap was 15 for the

32-point data, and 63 for the 128-point data sets. The bootstrap lengthsconsideredwere

64 and 256, respectively. The behaviour of the estimators remainedthe sameunder all

theseconditions, thereby generalizingour results to varying data lengths for simulated

data.

For real noise1, it wasfound that the behaviour of the estimatorsdid not vary with the

number of data points available for analysis. However, in caseof noise2, with increase

in the number of data points available for analysis from 64 to 128, chunking improved

the performanceof all the estimators. Hence,PDI C, PMI C, and MLE C showed better

overall performancecomparedto their normal counterparts. However, with N = 32, the

relative performanceof the estimators remainedthe same. Thus, we concludethat data

chunking may cometo help when larger number of data points are available for analysis.

4.2.5.4 A weak case for the APES estimator

As we observed, the APES estimators do not seemto be much use for PII. However,

as we mentioned earlier, the behaviour of the PDI N and PMI N estimators,as reported

earlier, can be observed only under certain conditions. It is important to know as to how

the performanceof theseestimatorschange,when theseconditions are not satis�ed. The

analysisof the APES estimatorsvis-a-visthe PMI (LSEK) estimator, which we have used

here, has beengiven in [62]. The behaviour of PDI N when the phaserelationships are
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not known hasalreadybeendiscussed.Now, let usanalyzethe behaviour of PMI N, when

N is not an integral multiple of M . The sameanalogyholds true for MLE N also,since,

its performancealsodependson the samecriterion.

The �rst important result is that the estimatesÎ bal cos� and Î bal sin� will no longerbe

MVU estimates[61]. This may perturb the PMI and MLE estimatesby large amounts

from the actual values. After obtaining the data, we may �nd the frequencyof the signal

to be di�eren t from the expectedvalue. Such a casemay happen when the frequencyof

the rotating polaroid is not exactly known. In such cases,we may have to estimate the

frequency�rst and then perform amplitude estimation. Then, all the usefulproperties of

the APES estimators listed in [62] cometo fore. However, we do not get into a detailed

analysisof the case,sincemoreoften than not, the frequencyof the rotating polaroid can

be tightly controlled.

We conductedsimulations to understandthe behaviour of the PMI N, MLE N and the

APES N estimators when the frequencyof the sinusoid was chosento be 0:115, instead

of 0:125. However, with this small changein frequency, we could not �nd a signi�cant

di�erence in the bias of the estimators at low SNR. We could observe that the APES N

estimator performedbetter only at SNR above 25 dB.

4.2.5.5 A case for the chunk ed PMI estimator

It is known that coarserDFT will pack energyof wider frequencyrangesinto the DFT

coe�cien ts. This follows from Parseval's theorem, which has to do with conservation of

energyunder Fourier transformation. Thus, we studied the possibility of using PMI C to

improve the performanceof the PMI estimator, so that we can achieve lower bias, than

what is possiblewith the PMI N estimator, when the frequencyis slightly o� from the

expectedvalue.

Towards that end, we performedsimulations wherein the frequencyof I bal was chosen

to be 0.115,but still, we assumedthe frequencyto be 0.125,for analysis. A situation of

this sort can occur due to unknown errors in the frequencyof rotation of polaroid.
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The simulations consideredchunks of length 8, 16 and 32. The overlap in all the cases

was one lessthan chunk length. The variance of the chunked PMI estimators were all

nearly the sameand werevery closeto that of the PMI N estimator, which are shown in

Figs. 4.2(b) and 4.3(b). Hereagain,we report the performanceof the estimatorsin white

and AR1 noiseonly. Fig. 4.5 shows the bias of the PMI N and its chunked variants when

f = 0:115under white and AR1 noiseconditions. It can be observed that the bias in the

estimatedamplitude varieswidely with the chunking length.

Clearly, for the caseof white noise, at higher SNR, the bias decreases,as the chunk

length decreases,validating our hypothesis. However, for the caseof colourednoise,the

bias is high for lower chunk lengthsat low SNR. So,chunked PMI is usefulonly when the

SNR is high, and more so, when the noiseis white. However, we are not in a position to

comment about the optimum chunk length for a givenfrequency. It canjust becommented

that chunking may improve the performanceof the PMI estimator, when there are small

uncertainties in frequency, around the expectedvalue.

4.2.5.6 E�ect of chunking parameters on PI I APES estimator

Though we found the APES estimator to be not all that useful for intensity imaging,

we still report the e�ect of chunking parameters on their performance. We observed

that processingchunked data involvestwo parameters,namely, the chunk length and the

overlap betweenchunks. The way thesetwo parametersa�ect the estimation procedure

is important, sincewe observed that the APES CB estimators can perform considerably

better under certain conditions. We have chosenthe APES CB estimator to study the

e�ect of theseparameters.

We consideredchunks of length 8, 16, 32 and 56, on 200 sets of 64 data points. For

each chunk length, the overlap was chosento be one less than the chunk length. All

the other parametersof the simulations were similar to that used in the comparisonof

estimators. We assumedAR1 noisefor thesestudiesand Fig. 4.6 shows the result. It can

be observed that both biasand varianceof the APES estimator are reduced,asthe chunk

length decreases.Thus chunking can improve the performanceof the APES estimator
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(a) Bias of PI I PMI N and variants of PMI C in white noise.

(b) Bias of PI I PMI N and variants of PMI C in AR1 noise.

Figure 4.5: Performanceof PII PMI N and its chunked variants, when N is not an
integral multiple of M . For this example,f = 0:115and N = 64.
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dramatically. However, the e�ects of varying the chunk length could be di�eren t for

di�eren t estimators,and have to be studied on a caseby casebasis.

Next, we report our �ndings on the e�ect of varying overlap on chunked estimation. To

understand the e�ect of overlap, we conductedsimulations with the chunk length �xed

at 32, and the overlap taking valuesof 0, 8, 16, 24 and 31. Figs. 4.7 and 4.8 report the

results of analysisfor white and AR1 noise,respectively.

As can be observed, in white noise,there is a clear trade-o� betweenbias and the vari-

anceof the estimatorsas the overlap varies. The overlap length that givesthe minimum

varianceshows the highestbiasand vice-versa. In colourednoise,sincethe biasgoesfrom

positive to negative at around 15 dB, overlapping helpsonly at low SNR. At high SNR,

overlapping givesnegatively biasedresults. Hence,depending on the importance of the

criterion, onecan chooseto resort to overlapping or non-overlapping technique. However,

the way chunking and overlapping work in conjunction needsto be studied in detail, to

understand and predict the behaviour of the estimators. Moreover, the behaviour may

changewith the estimators themselves, and hence,each estimator needsto be studied

independently.

4.2.5.7 E�ect of bootstrap length on APES estimator

We studied the performanceof the APES B estimator with increasingbootstrap length.

For the bootstrapping algorithm, the frequencyof the signal must be preciselyknown,

sincethe periodicity of the signal is taken in to consideration.We chosebootstrap lengths

of 96, 128,256 and 512,which were all generatedby extending 64 observed data points,

assumingthe noiseto be white. Hence,we report the behaviour of APES B in white noise

only. All the other parametersof the simulations were the same,as in previouscases.

Fig. 4.9 shows the performanceof the APES B estimator and its bootstrapped variant

in white noise. Increasedbootstrapping reducesthe varianceat all SNR. Bootstrapping

reducesthe bias of the estimator at low SNR, but at high SNR, a keen observation of

the results shows that bootstrapping inducesslightly higher bias than the APES N (not
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(a) Bias of PI I APES N and variants of APES C in AR1 noise.

(b) Variance of PI I APES N and variants of APES C in AR1 noise.

Figure 4.6: E�ect of chunk length on PII APES C estimator in AR1 noise.
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(a) Bias of PI I APES N and variants of APEC C estimators in white noise.

(b) Variance of PI I APES N and variants of APES C estimators in white noise.

Figure 4.7: E�ect of overlap length on the performanceof PII APES estimator in white
noise. For all the cases,the chunk length chosenwas 32.
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(a) Bias of PI I APES N and variants of APES C estimators in AR1 noise.

(b) Varianceof PI I APES N and variants of APES C estimators in AR1 noise.

Figure 4.8: E�ect of overlap length on the performanceof PII APES estimator in AR1
noise. For all the cases,the chunk length chosenwas 32.
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evident in the plot). The e�ect of bootstrapping under colourednoisealsoshowed similar

behaviour, albeit all the estimatorswerepositively biased.

We concludeour discussionon PII by commenting on other issuesinvolved.

4.2.5.8 Other issues related to polarization in tensit y imaging

Obtaining noise only samples

In order to study the noisecharacteristics,it is important to havenoiseonly realizations.

Such data canbeobtainedby grabbing imagesby keepingthe rotating polaroid stationary

at a �xed location. An estimate of noisecan be obtained by removing the dc value from

each of the time series.This can be usedto estimate the noisecovariancematrix, which

can be directly usedin MLE, thereby reducing the computations considerably.

Choice of f

In PII, we have the option of choosing the frequency of rotation of the polaroid.

Throughout our discussion,we have assumedthe signal to be at a frequencyof 0:125.

Here are a few points as to how the frequencya�ects PII:

� The choiceof f will not make a di�erence in casethe noiseis white.

� If the noiseis a low passAR1 process,we stand to bene�t by choosinga higher f ,

since the lower noise energy at higher frequenciesleads to improved performance

of the estimators. Similarly, choosing a lower f would be helpful if the noise is a

high-passAR1 process. However, choosing a very high or very low frequencywill

a�ect polarization orientation imaging, which we are yet to discuss.

� In casethe underlying noiseprocessis of a higher order than AR1, it is judicious

to avoid the pole frequencieswhile choosing f , in order to obtain better estimates.

For this, we needto know the properties of noisea priori, which can be obtained as

discussedearlier.
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(a) Bias of PI I APES N and variants of APES B estimator in white noise.

(b) Varianceof PI I APES N and variants of APES B estimator in white noise.

Figure 4.9: E�ect of bootstrap length on PII APES B estimator in white noise. For all
the cases,N = 64.
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Choice of �

The derivation of CRLB for I bal in colourednoise,given in Appendix B, shows depen-

denceon � (seeeqnB.17). However, for the noiseconditionsconsideredin our simulations,

the terms of the equation that depend on � wereextremely small, comparedto the term

independent of � , i.e.a11a22. Hence,we could not seeany signi�cant change in bias or

varianceof the estimators, when � was changedand so, we do not report those results.

The sameis true for the CRLB of DOLP and phasetoo.

With this, we concludeour analysisof the various estimators for PII and proceedto

analyzethe estimatorsof DOLP information.

4.3 Imaging using Degree of polarization

The DOLP of scattered light was de�ned in eqn 2.4. An imaging scheme that uses

DOLP as the visualization parameter is reported in [28], whereDOLP is de�ned as

DOLP =
I k � I ?

I k + I ?
(4.37)

where, I k and I ? refer to the co-polarized and cross-polarized intensities. It seemsas

though there is no relationship between the above de�nitions of DOLP. However, by

substituting � = �
2 into eqns4.32and 4.33,we get the DOLP asgiven by eqn4.37to be

DOLP =
I bal

I scat
=

p
Q2

s + U2
s

I s
(4.38)

The last relationship is obtained by substituting for I bal and I scat from eqn 4.4. This

proveseqn 4.37to be correct, in the light of eqn 2.4.

A pertinent question at this juncture is, how the DOLP basedimagesdi�er from po-

larization intensity images. The numerator of the expressionfor DOLP (eqn 4.37) cor-

responds to the polarization intensity image. However, by scaling this information with

the sum of the co-polarizedand cross-polarized intensities,we normalizethe polarization
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information by the amount of unpolarized light present at the pixel location. Hence,the

resultant imagesindicate the purit y of the polarized light received. It can be observed

that the DOLP valuesare both lower and upper bound (0 � DOLP � 1). If DOLP is 0,

the received radiation doesnot contain any polarized light. As the DOLP increasesand

reaches1, it symbolizesincreasingpolarized component in the received radiation, �nally

reaching a state wherethe received radiation is totally polarized.

Imagesusing DOLP are useful if the sceneis non-uniformly illuminated, and more so,

in passive imaging involving specular objects. DOLP can give information about the

nature of the objects apart from their position in a scattering medium. Smooth surfaces

like metals and glass re
ect light well. It is a known fact that re
ection can induce

varying degreesof polarization depending on the angle of incidence. Hence, in passive

imaging, one may be able to distinguish metallic and shiny surfacesby looking at the

degreeof polarization of the received radiation. This idea was utilized to distinguish

regionsabradeddi�eren tly, in the experiment mentioned in [28].

Though the information of DOLP hasbeenexplicitly given in the PDI schemes,there is

no such mention of a measureof DOLP in the PMI schemesgiven in [27, 31]. It caneasily

be observed that, in the PMI scheme,the DOLP information canbe obtained asthe ratio

of the amplitude of the sinusoidalcomponent to the DC component, sinceI scat corresponds

to the DC component. Thus, we seethat both the PDI and the PMI schemesare capable

of estimating both the polarization intensity and degreeof polarization parameters. In

the samemanner, all the estimators discussedin the previous section can also estimate

the DOLP. However, there can be a host of methods that can estimate DOLP, sincethe

sinusoidal amplitude and DC values can be estimated by di�eren t techniques. We do

not considersuch a situation here,and assumethat the sameestimators will be usedto

estimate both the numerator and denominator quantities, though it may be possibleto

obtain improved performanceby varying the estimation technique for the numerator and

the denominator.
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4.3.0.9 The PDI DOLP estimators

A generalPDI DOLP estimator can be mathematically expressedas,

dDOLP P D I =
1
K

KX

k=1

0

@
P N

2K � 1
n=0

�
I k(n) � I ? (n)

�

P N
2K � 1
n=0

�
I k(n) + I ? (n)

�

1

A (4.39)

where,I k(n) and I ? (n) are given by eqns4.32and 4.33. Here,we have assumedN to be

even for mathematical convenience,though this is not a necessarycondition.

Two estimatorswhich represent the extremecasesof the above generalestimator are

dDOLP P D I 1 =

P N
2 � 1

n=0

�
I k(n) � I ? (n)

�

P N
2 � 1

n=0

�
I k(n) + I ? (n)

� (4.40)

and

dDOLP P D I 2 =
2
N

N
2 � 1X

n=0

�
I k(n) � I ? (n)
I k(n) + I ? (n)

�
(4.41)

The latter has the form of a chunked estimator of DOLP.

It is clear that all the estimatorsderived from eqn4.39will be biased,sincethe numer-

ator corresponds to scaledversionsof the polarization intensity data, which was shown

to be biased. However, if � = �
2 in eqns4.32and 4.33,or if the relative (rather than the

actual) valuesof DOLP in a sceneare of interest, then, dDOLP P D I can be used. How-

ever, if � ! 0, the noisemay completelyobscurethe DOLP information. Henceforth,we

assume� = �
2 , so that the numerator is an unbiasedestimate of I bal.

The form of dDOLP P D I is that of a ratio estimator, with both the numerator and the

denominatorbeing Gaussianrandom variableswhich are uncorrelatedin casethe noiseis

white, but correlated in caseof colourednoise. The theoretical analysisof this estimator

is by no meansan easytask. We can do no better than refer to [70] for an understanding

of the distribution and densitiesof such ratios. However, to comparethe estimators, we
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needto know the bias and varianceof theseestimators. Such a study has beenreported

in [71]. It hasbeenfound that

� dDOLP P D I 2 estimator is biasedand dDOLP P D I 1 is asymptotically unbiased.

� The variances of the estimators are equal and diminish to zero asymptotically.

Hence,both the estimatorsare consistent.

For thesereasons,it is better to use dDOLP P D I 1. It canalsobe observed that the mem-

ory requirements of dDOLP P D I 1 is lesserthan that of dDOLP P D I 2, thereby strengthening

its case.There is alsoa mention of another ratio estimator in [71] that is unbiased. But,

it needsprior knowledgeof the noisevariancesand covariances.Sincethis information is

not available in our problem, we do not study that estimator.

4.3.0.10 The PMI DOLP estimator

In our analysisof the PII, we found that, for � 6= �
2 , we can obtain only ML estimate

of I bal and not its MVU estimate. We also observed that, the ML estimate of I scat

also corresponds to its MVU estimate in both colouredand white noise. Hence,we can

obtain MLE of DOLP using the invarianceproperty of the MLE [61]. The transformation

bDOLP = Î bal

Î scat
being non-invertible, the MLE maximizesa modi�ed likelihood function,

as explained in [61]. By the theorem on the asymptotic behaviour of the MLE [61], we

concludethat the MLE achieves the CRLB asymptotically. The CRLB for DOLP, for

white and colourednoisecaseshave beenderived in AppendicesA and B, respectively.

4.3.1 Comparison of DOLP imaging estimators

As in the caseof PII, we usedreal noiseand also resortedto Monte-Carlo simulations

to study the performanceof the various estimators of DOLP. The parameters for the

simulations were the sameas we reported for PII. A commonobservation that could be

made acrossall estimators is that, their performancein coloured noise was very poor

for SNR from around -15 dB to 5 dB. This is the region of transition from positive to

negative bias for polarization intensity estimators in coloured noise, as we saw in the
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previoussection. However, the performanceof the estimatorson real noisedid not show

such droop in performance. This observation is perhapsdue to the noise being nearly

white. Hence,estimators of DOLP can still be usedat theseSNR. We now mention the

best estimators in each classfor real and simulated data.

� The PDI N and the PMI N showed minimum variance and bias under all noise

conditions and are hencethe best estimators in their respective classes.

� Among the MLE estimators, the MLE N showed better performanceoverall, com-

pared to all other estimatorsof its class.

� APES CB showed the best performancein white noise. No clear trend could be

observed in the performanceof the APES estimators in coloured noise. For real

noise, it was observed that APES N performed better in noise 1 and APES CB

performed better in noise 2. We considerAPES CB as the representativ e for its

class,due to its superior performancein white noiseand in noise2.

� Among the APESR estimates,APESR CB performed better in white noise. The

estimatorsbeing unreliable in colourednoise,we considerAPESR CB as the repre-

sentativ e of this class.However, in real noise,APES N performedrelatively better.

Figs. 4.10,4.11and 4.12shows the bias and varianceof the best estimators from each

classin white, AR1 and noise1, respectively.

We can observe that PDI N and PMI N estimatorsseemto be the best for estimating

DOLP too. Though MLE N and APES estimators also perform as good as PMI esti-

mators, their computational costsare much higher. Hence,PDI N or PMI N should be

preferred over them. As mentioned in the section on polarization intensity estimation

(section 4.2), the behaviour of the PDI N and PMI N, as reported here, are basedon

certain conditions. The conditions for PDI imaging can be usually satis�ed in active

imaging, while the conditions on PMI schemecan be satis�ed in both active and passive

imaging schemes.
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(a) Bias of estimators of DOLP in white noise.

(b) Variance of estimators of DOLP in white noise.

Figure 4.10:Performanceof estimatorsof DOLP in white noise.
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(a) Bias of estimators of DOLP in AR1 noise.

(b) Variance of estimators of DOLP in AR1 noise.

Figure 4.11:Performanceof estimatorsof DOLP in AR1 noise.
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(a) Bias of estimators of DOLP in real noise.
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(b) Variance of estimators of DOLP in real noise.

Figure 4.12:Performanceof estimatorsof DOLP in real noise.
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We alsoperformedsimulations to seeif the APES estimatorsprovide better estimates

of DOLP whenthe frequencyof the sinusoidwasslightly o� from the expectedvalue. The

analysiswassimilar to that of section4.2.5.4.However, heretoo, we found the PMI N to

perform better than the APES estimatorsat SNR below 25dB, whenthe frequencyof the

sinusoid was 0.115, instead of the usual 0.125. The advantagesof the APES estimators

can only be seenat frequenciesfar away from that resolved by the PMI estimator and

have beendetailed in [62].

4.3.1.1 A case against the chunk ed PMI DOLP estimator

Due to the reasonswecited in section4.2.5.5,it intuitiv ely lookslike, it may bebetter to

usePMI C insteadof PMI N, whenthe frequencyof the sinusoidcanvary slightly around

the expected value. We conducted simulations on the samelines of section 4.2.5.5, to

study the usefulnessof PMI C in such cases.Our study showed that chunking worsened

the performanceof the PMI DOLP estimators. The varianceof the estimator increased

with increasein chunk length. However, the bias of the chunked estimatorsdecreasedas

chunk length increased,beyond SNR of -20 dB. But, the gain in terms of bias was found

to be very little. Hence,we concludethat chunking doesnot improve the performanceof

PMI DOLP estimator.

4.3.1.2 E�ect of chunking on APES DOLP estimator

To study the e�ect of chunking parameterson estimation of DOLP, we chosethe APES

estimator, which showedpositive responseto chunking. We conductedMonte-Carlo simu-

lations on the linesof section4.2.5.6to study the e�ects of theseparameters.By the very

nature of de�nition of DOLP, we expected the sameresults, as in section 4.2.5.6,even

for DOLP imaging. It was indeedfound to be so in white noise,where,processingsmall

chunks decreasedthe varianceup to around 20 dB. The bias was also found to decrease

up to SNR of -5 dB, beyond which, larger chunks showed lower bias. At high SNR, bias

was found to decreasesas chunk length increased,with the least being that of APES N

estimator. However, in colourednoise,the behaviour of the estimators were erratic, due

to the transition of bias from positive to negative values. The APES N seemedto be the
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most stable estimator in colourednoise. Fig. 4.13 shows the bias and varianceof APES

C estimatorswith varying chunk lengths in white noise.

Increasingthe overlap length gave lower bias and variance in white noise,and hence

overlapping should be useful in estimating DOLP values. Fig. 4.14 shows the results

of simulations conducted to study the e�ect of overlapping in white noise. Since the

estimatorsshowed erratic performancein colourednoise,we do not report thoseresults.

4.3.1.3 E�ect of bootstrap length on APES DOLP estimator

We conductedsimulations on the linesof section4.2.5.7to study the e�ect of bootstrap

length on the APES DOLP estimator. Fig. 4.15 shows the results of simulations. Here

are the important observations related to that study.

� Bootstrapping decreasedthe biasand the varianceof APES DOLP estimatorsat low

SNR. However, at high SNR (beyond 10 dB), bootstrapping inducedslight positive

bias. Hence,bootstrapping can be useful for estimating DOLP at low SNR (below

15 dB) in white noise.

� In coloured noise, due to the unstable behaviour of the APES DOLP estimator,

no clear trend could be observed and APES N was more stable than the other

estimators.

With this, we concludeour analysisof the various estimators of DOLP. The choiceof

suitable frequencyshould be basedon the considerationsmentioned in section 4.2.5.8.

Varying the number of data points for analysis did not change our observations. As

reported in section4.2.5.8,varying � did not havemuch impact on DOLP estimation. One

thing that wehypothesize,but did not test is that, onecanperhapsobtain better estimates

of DOLP by estimating I bal using chunking, and estimating I scat without chunking and

taking their ratio. Such a hybrid estimator may yield better results than bootstrapping

alone,or chunking alone.

Next, we study the variousestimatorsusedfor Polarization orientation imaging (POI).
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(a) Bias of APES C DOLP estimator in white noise.

(b) Variance of APES C DOLP estimator in white noise.

Figure 4.13:E�ect of chunk length on DOLP APES C estimator in white noise.
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(a) Bias of APES C DOLP estimator in white noise.

(b) Variance of APES C DOLP estimator in white noise.

Figure 4.14:E�ect of overlap length on APES C estimator in white noise. For all the
cases,the chunk length was 32.
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(a) Bias of APES B DOLP estimator in white noise.

(b) Variance of APES B DOLP estimator in white noise.

Figure 4.15:E�ect of bootstrap length on DOLP APES estimator in white noise.
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4.4 Polarization orien tation imaging

The received radiation can contain di�eren t statesof linear polarization due to various

factors. It could be due to extraneouspolarized sourcesdeployed for other imaging pur-

poses. It could also be due to changesin polarization state induced by re
ection. The

latter caseis more commonly encountered in passive imaging scenarios,where specular

surfacescan changethe orientation of the plane of polarization of incident linearly polar-

ized,or even inducepolarization to the incident unpolarizedlight. In any case,the abilit y

to distinguish di�eren t statesof linear polarization addsvalue to the imaging methodol-

ogy. Further, this canbeobtainedat no extra cost,while usingany of the schemes,except

the PDI. We next analyzeas to how we can obtain the polarization state information.

Assumethat with the PMI scheme of Fig. 4.1, an experiment is conducted with an

arbitrary orientation of the plane of polarization of the source,yielding data that follows

eqn 4.5. With all the parametersbeing the same,we study the e�ect of a changein the

orientation of the planeof polarization of the sourceby an angle
 , on the recordeddata.

In eqn 4.4, we assumedthat the angle � represents the orientation of the rotating

polaroid with respect to the horizontal. Now, we needto replace� by � + 
 . This change

essentially leadsto a changein the value of � , which corresponds to the changein phase

of the recordedsinusoids. i.e., a change in the orientation of the plane of polarization

manifestsitself asa changein the phaseof the recordedsinusoids,and doesnot a�ect the

sinusoidal and DC amplitudes.

The Polarization intensity imagingand the DOLP imagingcannotcapture this informa-

tion, sincethey ignorethe estimatedphaseof the sinusoids,eventhough all the estimators

except the PDI estimator can give this information. Thus, we can usethe sameestima-

tors to obtain all the three visualization parameters,namely the polarization intensity,

the DOLP and the polarization orientation (PO), which give distinct information about

the scenebeing imaged.
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4.4.1 Polarization orien tation imaging - the case of white noise

The CRLB for estimation of the phaseof a sinusoid in white noisehas beenderived

in Appendix A and is given by eqn A.8. However, it has beenfound that there doesnot

exist an MVU phaseestimator that attains the CRLB for this casein white Gaussian

noise[61]. This result is applicableto our problem too. But, the MLE of phaseexistsdue

to the invarianceproperty, and is given approximately by [61] (from eqn 4.25and 4.26)

�̂ M LE = arctan

 
Î bal sin� M V U

Î bal cos� M V U

!

= arctan

 P N � 1
n=0 I r (n) cos

�
4� n
M

�

P N � 1
n=0 I r (n) sin

�
4� n
M

�

!

(4.42)

where,M is the periodicity of the rotating polaroid, and N is the number of data points

available for analysis.

�̂ M LE canalsobe obtainedasthe argument of the complexDFT coe�cien t correspond-

ing to the frequencyof the sinusoid. Sincethe PMI estimator obtains the DFT coe�cien t

from which we can estimate the phaseof the sinusoid, we concludethat the PMI phase

estimator obtains the MLE estimateof phase.The asymptotic varianceof the PMI phase

estimator hasbeenshown to reach the CRLB given by eqn A.8.

The transformation function usedto estimate the phaseis not an invertible function,

sincethe transformation mapstwo parameters,namelyÎ bal sin� M V U and Î bal cos� M V U into

one variable �̂ M LE . Hence,�̂ M LE actually maximizesthe modi�ed likelihood function in

the manner explainedin [61].

4.4.2 Polarization orien tation imaging - the case of coloured

noise

The CRLB for phaseof the sinusoid in colourednoisehas beenderived in Appendix

B, and is given by eqn B.18. It can be observed that the CRLB for � dependsnot only

on the amplitude of the sinusoid I bal (or the SNR) as in the caseof white noise,but also

on � itself. The value of � , for which the variance is minimized, has also beenderived
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in Appendix B. However, the dependenceon � was found to be very weak, essentially

making the CRLB invariant to � .

As in the caseof white noise, the PMI estimate of phaseis given by the argument of

the complexDFT coe�cien t corresponding to the frequencyof the sinusoid. The APES,

APESR estimators as given in [62] also give complex amplitude estimates, leading to

estimatesof phase.In the caseof MLE, we needto useeqn 4.42. Due to the asymptotic

properties of MLE, the estimator achievesthe bound given in B.18 when large number of

data points are available for analysis. Onceagain, �̂ M LE actually maximizesthe modi�ed

likelihood function, as in the caseof white noise.

4.4.3 Comparison of POI estimators

We now comparethe di�eren t estimators for phasediscussedso far. Before doing so,

we make a few observations that are commonto all POI estimators.

� All the estimators, irrespective of their class,showed high and erratic bias up to

� 5dB in white noise,beyond which they performedbetter. A similar behaviour was

observed in noise2 also. In colourednoise,such a behaviour persistedup to +5 dB,

thereby decreasingthe reliabilit y of the estimators. From these observations, we

concludethat reliable phaseestimation is possibleonly at relatively high SNR.

� In white noise,the varianceof the estimatorsbehaved asexpectedand governedby

CRLB. However, in colourednoise,the varianceof the estimators remainednearly

constant up to around +5 dB, much below the CRLB, beyond which, they behaved

as expected.

� Chunking seemedto help estimators in both simulated and real noise.

Next, we proceedto list the best estimator in each classfor both simulated and real

noise.

� The PMI N showed the best performancein its classin white and colourednoise.

In real noise,PMI N showed the least variancebut higher bias than PMI C.
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� MLE CB showed the bestperformanceon simulated data under all noiseconditions.

In noise1, MLE C performed better than MLE N in terms of bias. However, in

terms of variance,MLE N showed the best performance.

� Among the APES estimators, the APES CB showed the best performanceon sim-

ulated data. However, APES C and APES N preformed better in noise1 and 2,

respectively. We useAPES CB to comparewith the estimatorsof other classes.

� Among the APESR estimators, there was no clear trend in the behaviour, neither

in simulated noisenor in real noise. SinceAPESR CB showed better performance

in white noise,we useit to comparewith estimatorsof other classes.

Fig. 4.16shows the bias and the varianceof the phaseestimators in white noise. Simi-

larly, Fig. 4.17shows the biasand varianceof the sameestimatorsin AR1 noise. Fig. 4.18

shows the performanceof the various estimators in noise1.

As we can observe, for POI, there is no clear advantage for any particular estimator.

Sincethe PMI phaseestimator is simpler than the rest and shows the best performance

in white noise,we concludethat PMI estimator should be the preferredchoicefor POI.

4.4.3.1 A case for the APES POI estimator

We also studied the performanceof the estimators in white noisewhen the frequency

of the sinusoid was 0:115, instead of 0.125. Fig. 4.19 shows the bias and varianceof the

estimators under such conditions. It is observed that PMI N and MLE N give biased

estimates of phase, which remain constant even at high SNR. However, the APES N

estimator gives low bias and nearly 0 bias after an SNR of 5 dB. This is the advantage

of the APES estimator, over the PMI estimator. However, the variance of the APES

estimator is higher than that of the PMI N estimator. This can be reducedby resorting

to chunking and overlapping.

We seea strong dependenceof phaseon the frequencyof the signal. Hence,for phase

estimation, when the frequency could be o� by a small margin, the APES estimators
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(a) Bias of phaseestimators in white noise.

(b) Variance of phaseestimators in white noise.

Figure 4.16:Performanceof phaseestimators in white noise.
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(a) Bias of phaseestimators in AR1 noise.

(b) Variance of phaseestimators in AR1 noise.

Figure 4.17:Performanceof phaseestimators in AR1 noise.
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(a) Bias of phaseestimators in real noise.
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(b) Variance of phaseestimators in real noise.

Figure 4.18:Performanceof phaseestimators in real noise.



CHAPTER 4. PROCESSINGPOLARIZA TION-RICH DATA 109

(a) Bias of PMI N, APES N and MLE N phaseestimators in white noise.

(b) Varianceof PMI N, APES N and MLE N phaseestimators in white noise.

Figure 4.19:Performanceof PMI, MLE and APES estimators in white noise,when N is
not an integral multiple of M . For this example,f = 0:115.
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shouldbea good choice. However, the APESR estimator performsextremelypoorly under

such circumstancesas can be seenin Fig. 4.16and should be avoided. The performance

of all the estimators being erratic in colourednoise,we do not report those results here.

Also PMI C did not perform well in this case. The bias of the PMI estimator in fact

deteriorated with chunking.

4.4.3.2 E�ect of chunking on the APES POI estimator

Having found the utilit y of the APES estimator for phaseestimation, wealsostudiedthe

e�ect of chunking parameterson the performanceof the APES C estimator. Simulations

wereperformedwith the sameparameters,asin the caseof polarization intensity imaging.

It was found that using smaller chunks reducedthe varianceof the APES C estimator at

all SNR and brought down the bias at low SNR. However, at SNR beyond 5 dB, smaller

chunk lengths induced greater bias. Fig. 4.20show the results of the simulations.

Similarly, we studied the e�ect of overlap length on APES C estimator. It could be

observed that with increasedoverlapping, the biasand the varianceof the estimatescame

down by very small amounts.

Wealsostudied the e�ect of bootstrapping on the APES estimator. Simulations showed

that bootstrapping did not show any improvement on the performancein white noise.

4.5 A potp ourri of visualization parameters

We de�ned three di�eren t visualization parameters for polarization based imaging

schemes. We also studied the various estimators for each of thesevisualization param-

eters and studied their characteristics. In all the schemesdiscussed,the visualization

parametersare represented as gray scaleimages. If we want to study all the visualiza-

tion parametersof a scene,we needto study three di�eren t images. In this section, we

proposea new schemeof renderingthe polarization information, where,the visualization

parametersare intuitiv ely mapped to various aspectsof a colour image,thereby giving a

holistic view of the scene.We alsoshow the advantagesof such a representation.
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(a) Bias of APES N and variants of APES C phaseestimators in white noise.

(b) Variance of APES N and variants of APES C phaseestimators in white noise.

Figure 4.20:E�ect of chunk length on the performanceof APES N and variants of
APES C phaseestimators in white noise.
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The polarization magnitude information inherently hasthe notion of intensity, i.e., the

intensity of polarized light. The DOLP signi�es the purit y of the polarized radiation

and parallels the idea of saturation in color images. In colour images,the greater the

purit y of a colour, higher will be the saturation. The polarization orientation parameter

distinguishesdi�eren t statesof linear polarization and is akin to di�eren t huesin a scene.

Thus, the three visualization parameterscorrespond intuitiv ely to the parametersof a

normal colour imageand hencecan be renderedso. We next seesomesimulation results

to illustrate this aspect.

We synthesized32 imagesof size160� 100pixels to study the suitabilit y of fusing the

visualization parameters. The data at each pixel location was synthesizedaccording to

eqn4.5. We consideredthe noiseto be white for thesesimulations, but the results for the

caseof colourednoisewill be no di�eren t.

The synthesized imageswere divided into four quadrants, as shown in Fig. 4.21(a).

The value of I scat waschosento be 170in quadrants 1 and 4, and 240in quadrants 2 and

3. Within each quadrant, we choserectangular subregionsof size80 � 50, as shown in

Fig. 4.21(a). The value of I bal was chosento be 0 at all locations, except the subregions.

It waschosento be 0:2 in the subregionsof every quadrant, thus giving a DOLP of 0:0012

in the subregionsof quadrants 1 and 4 and 0:008, in the subregionsof quadrants 2 and

3. Before the addition of noise, the imageswere blurred using a Gaussianmask of size

9� 9, to simulate the blurring due to the optical elements. Though we have not analyzed

the nature of the blur in the actual experimental setup, we usethe Gaussianblur only to

study the probablee�ect of blurring.

To the blurred data, we added white Gaussiannoise, at every pixel location, across

images. The noise at each pixel location had a variance of 0:05, leading to a SNR of

nearly -4 dB in all the subregions.The reasonfor choosingsuch small valuesfor I bal and

DOLP is to show the robustnessof the polarization imaging technique even at relatively

low SNR, when the individual imagesin the seriesdo not convey any visual information

about polarization by themselves. The information becomesevident after processing.
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The phasesof the sinusoids in the subregionswere chosento be 2� =9; 0; 5� =18 and

15� =9, respectively. The phaseswere chosenarbitrarily , to illustrate the feasibility of

renderingthe polarization information ascolour imagesand do not have anything speci�c

to the processingitself.

We have usedthe PMI estimator to estimatethe variousvisualization parameters,since

the PDI schemeis incapableof estimating the phaseinformation. The parameterscan

alsobe obtained using the APES, APESR or the MLE estimator.

Fig. 4.21(b) shows a representativ e imageof the set of 32 imageswhich looked nearly

alike. Fig. 4.21(c) shows the histogram equalizedversionof the representativ e image. As

we can observe, we do not �nd any discernibledi�erence amongthe subregions,but, we

�nd the di�erence in gray scalesof the four quadrants. The samewas true in the caseof

other imagesin the seriestoo.

Fig. 4.21(d) shows the result of polarization magnitude analysis. It can be observed

that the four subregionshave the samepolarization magnitude information. Fig. 4.21(e)

shows the result of DOLP analysis, wherein, we can observe slightly higher DOLP in

the subregionsof quadrants 1 and 4, as comparedto those of quadrants 2 and 3. The

magnitude of DOLP being very small, we perhapscould not have expecteda drastically

di�eren t result, showing the quadrants very di�eren tly. Fig. 4.21(f) shows the result of

polarization orientation analysis. The subregionsare clearly distinguishable from the

background. However, only the subregionof the �rst quadrant stands apart uniquely

from the others. Thus, though it is very attractiv e to usethe POI to di�eren tiate regions

with polarization information from others that do not, it is not easyto di�eren tiate the

orientation from theseresults.

Fig. 4.21(g) shows the result of fusing all the visualization parametersinto a colour

image, as explained earlier. The colour image clearly shows the di�eren t polarization

orientations of the subregions.A keenobservation alsoshows the lower saturation levels

of the colors in quadrants 2 and 3, as comparedto the colours of quadrants 1 and 4.
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This correspondsto the di�erence in DOLP of thesesubregions.It is clear that rendering

the parametersasa colour imagecan provide better insight into the various polarization

parameters,as comparedto rendering them as gray scaleimages.
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(a) (b) (c)

(d) (e) (f )

(g)

(a) Break-up of synthetic images.
(b) A representativ e of the 32 imagesin the series.
(c) Result of histogram equalizing(b).
(d) PMI N magnitude estimation result.
(e) PMI N DOLP estimation result.
(f ) PMI N PO estimation result.
(g) Result of fusing (d), (e) and (f ).

Figure 4.21:Resultsof fusing the visualization parameters.



Chapter 5

Imaging results

In this chapter, we present results of the imaging experiments conductedwith various

scattering media. The experiments were conducted with the setup explained in sec-

tion 4.2.5.2. Table 5.1 lists the various media that we usedfor the experiments reported

in this chapter. Table 5.2 givesthe statistical information of the corresponding data sets,

obtained by measuringthe di�eren t quantities mentioned, over a regionof 10� 20 pixels.

In all the imagingexperiments mentioned in this chapter, the periodicity of the rotating

polaroid was16, and hence,the periodicity of I bal was8, or its frequencywas0.125. Also,

except with data of SET 1, in all the experiments reported here, the object (shadow of

the object in this case)was not visible in any of the individual imagesobtained, even

after processingby various techniques. In SET 1, a very faint shadow of the object could

Table 5.1: Data setsusedfor analysis.

Name Scattering particles ls(� ) l � (� ) �
SET 1 Polystyrenespheresof diameter 2:97� 334.7 1760 5.68
SET 2 Polystyrenespheresof diameter 2:97� 314.0 1652 6.05
SET 3 Polystyrenespheresof diameter 2:97� - - -
SET 4a Polystyrenespheresof diameter 2:97� - - -

aThe medium was the sameas for SET 3, but the sourcewas incoherent white light, instead of the
laser, usedin obtaining SET 3.
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Table 5.2: Statistics related to the data setsusedfor analysis.

Name AverageSNR (dB) AverageAR coe�cien ts
SET 1 � 1:2 +0:078and +0:023
SET 2 � 6 � 0:002and +0:018
SET 3 � 15 +0:055and +0:052
SET 4 � 8 +0:109and +0:053

be perceived in someof the imagesthat werecloseto co-polarization location. However,

we usedata from SET 1 to illustrate the various aspects of polarization basedimaging,

sincethe visibilit y of the shadow was very poor. Similar results could be obtained with

other data setstoo.

All the imagesillustrated in this chapter are histogram equalizedversionsof the actual

results obtained, sincethe actual imageshad very low contrast. We have emphasizedon

the resultsof PDI and PMI estimators,sincewe found them to be suitable for all imaging

purposes.Processingresults alsoendorsedthe results of our analysis.

Fig. 5.1 shows the results of polarization intensity imaging using PDI N estimator,

when 8 co-polarized and 8 cross-polarized imagesof SET 1 were available for analysis.

The periodicity of I bal being8, therewere4 positions(correspondingto the di�eren t phases

of I bal), that could be usedto obtain polarization intensity information using the PDI N

estimator. Fig. 5.1(a) shows the shadow of the opaquecrosswithout any scattering. This

was the object to be imaged in SET 1. Fig. 5.1(b) shows a representativ e of a nearly

co-polarized image obtained with scattering medium being present. Since we did not

know the actual orientation of the polaroid with respect to the sourceradiation, we call

it as nearly co-polarized. We can seethat the shadow of the crossis faintly visible in

Fig. 5.1(b). However, no visible details could be observed in the nearly cross-polarized

images. Figs. 5.1(c-f) show the results obtained by using PDI N estimator, assuming

di�eren t positions of the rotating polaroid to correspond to the co-polarized location.

We can observe considerableimprovement in the results from Fig. 5.1(c) to 5.1(f). In

Fig. 5.1(c), we observe that there is no information about the hidden object. This is due
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to the bias of the PDI N estimator. Similar results could be observed in estimation of

DOLP with the samedata.

Fig. 5.2 shows the comparisonbetween polarization intensity and DOLP results ob-

tained from SET 1. The �gures on the left correspond to PII and the oneson the right

areresultsof DOLP imaging. The imagesfrom top to bottom wereobtainedwith N being

8, 32 and 128, respectively. There is a gradual improvement in the quality of results, as

N increasesfrom 8 to 128. We observe that the DOLP imageshave a brighter central

region than polarization intensity images.Comparing the resultswith that of Fig. 5.1(a),

we observe that the DOLP imagesare closer to the actual image than the polarization

intensity images.

Fig. 5.3showsthe comparisonof polarization intensity resultsobtainedfrom PDI N and

PMI N with data from SET 1. The imageson the right correspond to PMI N, while the

others correspond to PDI N. The results in each row were obtained with the value of N

being8, 32and 128,respectively. Wecanobserve that whenfewer imagesareavailable for

analysis,PDI N givesbetter results than PMI N, and henceshould be preferred. Beyond

N = 256, not much di�erence could be observed in the results. Similar behaviour was

seenin DOLP imagestoo.

Fig. 5.4showsthe comparisonof resultsobtainedfrom di�eren t estimatorswith N = 16,

from SET 1 data. We seethat PDI N givesthe best result amongall the estimators. PMI

N and MLE N estimators give the next best result, which look very similar. However,

comparing the computational complexity, one should choosePMI N instead of MLE N,

in casePDI N is not suitable for somereason. The results of the APES estimators are

lessencouraging,as we could guessfrom our analysis in the previous chapter. Similar

comparisonsfor data from SET 2 are given in Fig. 5.5.

We now comparethe results obtained with the scattering medium being the same,but

the sourcebeing a coherent laser beam in one case,and an incoherent white sourcein

another. SET 3 and SET 4 correspond to such data sets. However, the medium was not
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calibrated and we could not know the valuesof ls and l � of it. Figs. 5.6(a) and 5.6(b) show

the shadowsof a opaquecrossobtainedwithout scatteringfrom two di�eren t sources.The

former was obtained with a monochromatic lasersourceand the latter with an ordinary

white light source. Once the scattering medium was introduced, in both the cases,we

could not observe any details of the shadow in individual imagesby applying standard

imageprocessingtechniques. The results of processing128 imagesof SET 3 and SET 4

with PDI N DOLP estimator are given in Figs. 5.6(c) and 5.6(d), respectively. Similarly,

Figs. 5.6(e) and 5.6(f) show the results of processing128 imagesof the samesets with

PMI N DOLP estimator. Similar results wereobserved with PII.

We seethat the results obtained with the incoherent sourceare far superior to those

obtained with the laser. The main reasonfor this should be the low SNR of SET 3 as

comparedto that of SET 4, as given in Table. 5.2. The other reasonfor poor results in

SET 3 could be due to the speckle noisethat could be present in SET 3 induced by the

coherent illumination of the laser. Though we do not have a concreteevidencefor this,

it is well known that speckle is formed when scattering occurs due to a coherent source

and that it degradesimaging performance. The other argument that hints at the same

reasonis the results of SET 2, where, though the SNR was lower than that observed in

SET 4, the results obtained are inferior to thoseobtained with SET 4. Both results were

obtained by analyzing the samenumber of data points. However, this is a open question

to be investigated,and there seemsto be very little literature regarding this. But, it is

clear that incoherent sourcesof very high powerswill be neededto imageobjects through

greater optical depths, as comparedto laser sources,sinceincoherent sourceshave high

beamdivergencerates comparedto lasers.

Next, we show someadvantagesof POI imaging using results obtained from SET 4.

To illustrate this, we use the estimatesobtained by the PMI N estimator. As seenin

section 4.4, POI is useful only if the SNR is relatively high, or a large number of data

points areavailable for analysis. For illustrating the advantagesof POI, weuse512images

of SET 4, wherethe SNR is relatively higher than other data sets.
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If a single linearly polarized sourceis used, then, ideally, the region not blocked by

the object should yield the samephaseinformation at every pixel location. Depending

on the SNR, the valuesof estimated phasewill only 
uctuate slightly around the mean

value. However, wherever the object blocks the ballistic light, the phaseestimation would

yield random results. Thus, the correlation in the intensity valuesof neighbouring pixels

in regionsreceiving the ballistic component should be much higher than that of regions

blocked by the object. As we show, this information can be exploited in segmenting the

image into target and background regions. This sort of segmentation and hence,POI is

very useful in defenserelated applications. Moreover, the analogy can be extended to

regionscontaining di�eren t polarization orientations also.

For testing the validit y of our hypothesis,we consideredrectangularblocks of size9� 9

and 15 � 15, centered around every pixel location, excluding the boundary pixels. We

cross-correlatedthe data in every block with blocks around the adjacent 8 neighbors and

took the maximum of the crosscorrelation valuesas the result for that pixel. We �nally

plotted these results as an image. Instead of taking the maximum of the correlation

values,we also took the averageof the correlation values,and observed similar results.

Wefound that the resultant imageshad histogramswhich clearly showedtwo modes. This

information can be usedto segment the imagesinto regionscorresponding to the hidden

object and the background.

Fig. 5.7(a) shows the imageof the object without scattering. Fig. 5.7(b) shows the POI

result obtained from 512imagesof SET 4. Fig. 5.7(c) shows the result obtained from the

cross-correlationtechnique described above, when the block size was 9 � 9. Fig 5.7(d)

shows the result with blocks of size21� 21. Fig. 5.7(e)shows the histogram of the image

in Fig. 5.7(d). Fig. 5.7(f) shows the result of thresholding Fig. 5.7(d) at a value lying in

the valley betweenthe two modesof the histogram. As we can observe, though the exact

boundary of the object is not visible, we get an idea of the presenceof a hidden object in

the medium. The processingcan be followed by morphologicaloperations to get better

results. This sort of information is what is most of the time neededin defenseapplications.

This is a very useful result, as far as POI applications to defenseis concerned.
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Though wecansegment polarization intensity andDOLP images,the POI segmentation

is robust whenthe variation in the estimatesof phasewill be smallerthan the variation in

the intensity of I bal and I scat . Though I bal and I scat canhave larger distributions naturally,

it is unlikely that the phasehas such large distributions. This is the advantage of using

POI results for segmentation. It was alsoobserved that the intensities of PII and DOLP

results did not show any modesas such, and hencewe needto do further processingto

be able to get reliable segmentation results.

Many other post processingtechniquescan be applied to the results obtained by PII,

DOPI and POI. We can fuse the three results to obtain colour imagesin casemultiple

statesof linear polarizationsexist in the receivedradiation, asexplainedin section4.5. We

did not have any data set which had multiple statesof linear polarization, and hencewe

do not have such results. The segmentation schemediscussedearlier is fairly rudimentary.

We can perhapsdevelop many more such segmentation algorithms, speci�cally aimed at

polarization imaging.

We also conducted experiments with the medium being mist, and could get positive

results after processing. We observed that for the 2:97� diameter particles, when the

optical thickness� reached 6.77,we could not retrieve the shadow, even after processing

512 images. This was the limit to which we could imagewith those particles. However,

with particles of 0:11� diameter, we could image up to optical thicknessof nearly 40.

This observation endorsesthe result that polarization basedschemeswork better in media

containing small sizedscatterers,than in media with large scatterers[35, 52, 37].
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(a) (b)

(c) (d)

(e) (f )

Figure 5.1: PII to illustrate the bias of PDI N estimator; N = 16.

(a) Image of the object without scattering.
(b) A representativ e image of the series.

(c)-(f ) PDI N results obtained with various co-polarization locations.
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(a) (b)

(c) (d)

(e) (f )

Figure 5.2: Comparisonof results of PII and DOLP imaging.

(a) PI I using PDI N; N = 8 (b) DOPI using PDI N; N = 8
(c) PI I using PDI N; N = 32 (d) DOPI using PDI N; N = 32
(e) PI I using PDI N; N = 128 (f ) DOPI using PDI N; N = 128
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(a) (b)

(c) (d)

(e) (f )

Figure 5.3: Comparisonof PII results obtained using PDI N and PMI N.

(a) PI I using PDI N; N = 8 (b) PI I using PMI N; N = 8
(c) PI I using PDI N; N = 32 (d) PI I using PMI N; N = 32
(e) PI I using PDI N; N = 128 (f ) PI I using PMI N; N = 128
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(a) Actual Image (b) PDI N

(c) PMI N (d) MLE N

(e) APES N (f ) APESR N

Figure 5.4: Comparisonof PII results obtained from 16 imagesof SET 1.
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(a) Actual Image (b) PDI N

(c) PMI N (d) MLE N

(e) APES N (f ) APESR N

Figure 5.5: Comparisonof DOPI results obtained from 128 imagesof SET 2.
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(a) (b)

(c) (d)

(e) (f )

Figure 5.6: Comparisonof results obtained with coherent and incoherent sources.

(a) Image without scattering (Laser) (b) Image without scattering (whitle light)
(c) DOPI using PDI N; N = 128 (Laser) (d) DOPI using PDI N; N = 128 (white light)
(e) DOPI using PMI N; N = 128 (Laser) (f ) DOPI using PMI N; N = 128 (white light)
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(a) (b)

(c) (d)

(e) (f )

Figure 5.7: Segmentation of a POI result.

(a) Image without scattering (b) Resutl of PMI N POI; N = 512
(c) 9 � 9 block processingresult (d) 15� 15 block processingresult
(e) Histogram of (d) (f ) Result of segmenting (e)



Chapter 6

Conclusions and topics for further

research

6.1 Con tributions of the thesis

In the previouschapters,we studied various visualization parametersthat can be used

to render polarization information contained in the received radiation. We also studied

various estimators for measuringthesevisualization parameters.We found that the PDI

and the PMI schemesare suitable for estimating the visualization parametersdiscussed.

Interestingly, they arealsothe simplestof all the estimatorsstudied. Owing to the biasof

the PDI estimator and its inabilit y to capture polarization orientation information, PMI

N is the true all purposeestimator. As we saw, PDI N is a particular caseof the PMI N

estimator. Hence,we concludethat PMI N should be the estimator of choiceto estimate

all the polarization related parametersof the received radiation.

We also studied as to how chunking and bootstrapping can help improve the per-

formance of the estimators. However, the improvement gained by such schemeswere

marginal. There was no signi�cant di�erence in the results obtained. But, their utilit y

has beenproved using simulations. We also introducedsomepost estimation techniques

like segmentation of the POI imagesto segregatetarget and background regionsand fus-

ing the three visualization parametersto obtain a holistic view of the scene.Due to lack of
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experimental data, we could not illustrate the techniqueson actual data. To summarize,

hereare the main contributions of the thesis.

� We have madean extensive literature survey of light scatteringand optical imaging,

to position the problem of continuous wave, polarization baseddirect imaging in

its right place among other optical imaging techniques. We have also studied its

advantagesand limitations.

� To the best of our knowledge, for the �rst time, we have classi�ed the imaging

schemesbasedon the visualization parameters,and pooledin most of the techniques

in oneplaceand explainedhow and when the various schemesare useful.

� Wehavebuilt a mathematical framework to comparethe variousschemesmentioned

in the literature. The framework beginswith modeling the received scatteredradia-

tion and endswith predicting the performanceof the various estimatorsby making

useof principles of estimation theory.

� Through simulations and theoretically, we have analyzedthe performanceof various

estimatorsfor the di�eren t visualization parametersunder varying noiseconditions.

� We have also brie
y explained the possibility of using post estimation techniques

like segmentation, to derive more useful information from the estimatedquantities.

� The intr oduction of polarization orientation imaging, the idea of combining the vi-

sualization parametersin to a colour imageand the correlation based segmentation

of POI resultsare to the best of our knowledge,totally new concepts in this �eld .

� In short, we have been able to leveragethe tools of signal processing,especially

estimation theory, for analyzingand improving continuouswave, polarization based,

direct imaging techniques.

6.2 Extension to the case of circular polarization

The emphasisin this thesis has been on imaging schemeswhich analyze linearly po-

larized light. However, it can be easily observed that the sametechniquescan be used
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for PII and imaging using DOP of circularly polarized light. The notion of POI imaging

will have to be modi�ed in this case,sincethere can be only two pure states of circular

polarization. We can perhapsallocate two particular huesto denotecircularly polarized

states, and the rest can be used to represent various linear polarization states, in a all

encompassinglinear and circular polarization basedimaging scheme. For realizing such a

scheme,suitablechangeswill have to bemadein the imagingsetup[8], in order to capture

the information corresponding to the circularly polarizedstates. With such a scheme,two

colour imagescan be obtained, one corresponding to the visualization parametersof the

linearly polarized states,and the other, to the circularly polarized states.

6.3 Topics for further research

6.3.1 Correlation based pro cessing techniques

We studied the various algorithms for processingpolarization rich data. There is an-

other processingtechnique for the samepurpose,basedon 2-D correlation. Here, a real,

paraxial image of objects hidden behind a multiple-scattering barrier can be obtained

from the light di�used through the barrier [26]. The processinginvolvescorrelating the

speckle pattern producedby a known, referencesourcewith that of the unknown distri-

bution due to the object. Most of our data setsdid not have prominent speckle patterns,

due to averaging over long periods of time. Moreover, we did not have data with the

sourcealone. Hence,we did not pursue this algorithm. It has beenreported that high-

resolution imagescan be obtained using this simple technique. We have not addressed

theseschemes.

6.3.2 The imaging problem vis-a-vis the image transfer problem

An interesting issuethat needsto be understood well is the relationship betweenthe

imaging problem, vis-a-vis, the image transfer problem. The latter can be imagined to

be an extremecaseof the imaging problem, with the object being outside the scattering

medium, towards the source. If the medium were to be linear, then, irrespective of the

position of the object, the result obtained would be the same. However, such is not the
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case. Thus, if we can understand the relationship between thesetwo problems, we can

usethe point-spreadfunction analysisof the imagetransfer problem to solve the imaging

problem. However, for the problem of polarized light transfer, we need to know the

vectorial point spreadfunction of light. Next, we shareour ideasabout this problem.

6.3.3 The vectorial poin t spread function of ligh t

In this thesis, we analyzedthe 1-D signal processingaspects of the problem of direct,

polarization basedimaging schemes.However, aswe observed, even with the best estima-

tors, useful resultscould be obtained only up to a very small optical thickness.The main

reasonfor this wasobservedto be the spreadof scatteredlight, which canbecharacterized

by the point spreadfunction.

Fig. 6.1(a) and 6.1(b) show the results of using detection theory to test the presence

of sinusoidsat various pixel locations of SET 2 (seesection5), assumingthe noiseto be

white. The imagesare binary, with dark regionsdenoting regionsof absenceof sinusoids,

and bright regionsdenoting their presence.The �rst imagecorrespondsto the probability

of falsealarm (pfa) being 10� 14, and the second,corresponds to pfa being 10� 18. It can

be observed that despite the pfa being so low, most of the regionsshow the presenceof

a sinusoid, including regionsof geometricshadow, thereby emphasizingthe spreadin the

ballistic components. It has beenreported in [41], that the least spreadamong the po-

larization basedschemesdiscussedwas that of the polarization di�erence. An interesting

exercisewould be to analyzethe spreadfunction assumingthe ballistic component to vary

sinusoidally. Such an analysiswill establishthe relative strengths of each of the imaging

schemes.

Detailed analysisof spreadfunction requires the knowledgeof radiative transfer the-

ory [72]. The point spreadfunction analysisfor transfer of unpolarizedlight (scalar light)

through scattering media has been covered exhaustively in [9]. For understanding the

spreadof polarized light, we need to extend the analysis of [9] to the vectorial nature

of light. If such an analysiscan be carried out, then the comparisonof various imaging

schemesin terms of their abilities to resolve objects hidden in scattering media can be
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(a) pfa=10 � 14 (b) pfa=10 � 18

Figure 6.1: Resultsof sinusoidal detection on data of SET 2; N = 512.

carried out. Such an analysis is essential to improve the performanceof the polariza-

tion basedschemes. With the knowledgeof the vectorial point spreadfunction, we can

deconvolve the resultsobtainedusing1-D processingschemes,to obtain improved results.

6.3.4 Post pro cessing pro cedures

All the resultsthat wehavereported havebeenobtainedby plotting the resultsobtained

from 1-D analysisof the data. However, there is enoughscope to improve the rendition

of the results using 2-D processingschemes,basedon the parametersof interest. e.g.,we

can perform colour basedde-noising,followed by segmentation, on the colour imageob-

tained by processingpolarization data, to show the exact regionsof di�eren t polarization

orientations. Similarly, median �ltering can be usedto remove impulsive noisefrom the

images.Segmentation followed by classi�cation can be usedto label di�eren t imagesof a

scene.Such post-processingschemescan aid the usersto pick their parametersof interest

easily. We have not delved into such an analysisof post processingschemes,sincemost

of the time, they are application dependent.

6.3.5 Harmonic based pro cessing scheme

In all the 1-D processingschemesthat we have mentioned, we consideredthe ballistic

component to show up at a single particular frequency. It was found to be the case,in
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almost all the data sets except two. In a data set taken with a mixture of 2:97� and

0:06� particles, we could observe a sinusoidat the �rst harmonic position of the expected

frequencyaswell. Similarly, in a data set taken with the scattering medium consistingof

a di�eren t concentration of the sameparticle, we could observe a sinusoidat the expected

frequency, its �rst and also the secondharmonics. We could observe that in the regions

wherethe object blocked the ballistic components, the amplitude of the secondharmonic

was less,than in other regions. We usedthe ratio of the amplitude of the �rst harmonic

to the fundamental, as the visualization parameter,after removing the outliers.

It wasobservedthat drastically better resultscouldbeobtained,than the PMI N results.

The PMI N resultsalsoshowed a strangebehaviour, in the sensethat, the shadow regions

looked brighter than the background in the �nal result. PDI N result alsoshowed similar

behaviour. It could be observed that the data contained lot of speckle, as comparedto

other data sets. The object was also faintly visible beforeprocessing.However, none of

theseshould give results as given by PMI N. The new processingschemebasedon ratio

of the amplitudes of the �rst harmonic to the fundamental, which we discussed,showed

expectedresults. We call this schemeas the harmonic basedprocessingscheme.

Fig. 6.2(a) shows the image of the object without scattering. Fig. 6.2(b) shows a

representativ e image of the seriesof imagescaptured. Fig. 6.2(c) shows the PMI N PII

result. Fig. 6.2(d) shows the result obtained with the harmonic basedprocessingscheme,

which we have proposed. We can clearly seethe superiority of the result obtained with

the proposedprocessingscheme,as comparedto the PMI N result. However, we did not

have more data to analyze the reasonsbehind the �ndings. It would be interesting to

know as to under what conditions, the harmonic basedprocessingschemecan cometo

use.
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(a) (b)

(c) (d)

Figure 6.2: Comparisonof results of PMI N PII and the harmonic basedprocessing
scheme. The scattering medium contained 2:97� and 0:06� particles.

(a) Imageof the object without scattering
(b) A representativ e of the 512 imagesgrabbed
(c) PMI N PII result; N = 512
(d) Result obtained with harmonic basedprocessing



App endix A

CRLB calculations - The case of

white noise

The equation governing the behaviour of data in polarization imaging is (eqn 4.5)

I r (n) = I scat + I bal sin
�

4� n
M

+ �
�

+ w(n) n = 0; 1; 2; : : : ; N � 1 (A.1)

whereI scat � 0, I bal � 0

In the above equation, the unknown parametersof interest � , are I scat , I bal and � . The

varianceof w(n) is unknown, but it is not of interest to us.

The regularity conditions that the pdf p(I r ; � ) has to satisfy for the boundsto exist, is

given by,

E
�

@ln p(I r ; � )
@�

�
= 0 f or all �

where,

p(I r ; � ) =
1

2� � 2
exp

 

�
1

2� 2

N � 1X

n=0

(I r (n) � I scat � I bal sin
 )2

!

(A.2)

� 2 is the noisevarianceof the time series,and 
 = 4� N
M + � .
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It can be easily veri�ed that theseconditions are satis�ed and hence,we proceedto

�nd the boundsfor the parameters.

Sincemultiple parametersare unknown, we �nd the boundsby �nding the elements of

the Fisher information matrix [I (� )] ij which are given by [61]:

[I (� )]ij =
1
� 2

M � 1X

n=0

@s[n; � ]
@� i

@s[n; � ]
@� j

(A.3)

In this case,we have � = [I scat I bal � ]. Before �nding the elements of the Fisher

information matrix, we make the assumptionthat the number of data points available for

analysisis an integral multiple of M , the period of the rotating polaroid. i.e., N = kM ,

where k is an integer. Moreover, we also assumethat the periodicity of the rotation

polaroid M itself is such that, the rotating polaroid makes exactly one rotation in M

steps. However, theseassumptionsare neededonly to arrive at easyexpressionsfor the

elements of the Fisher information matrix and the boundsderivedwill hold evenotherwise,

if N is quite large.

Now, we calculate the elements of the Fisher information matrix, from �rst principles,

using eqn A.3.

[I (� )]11 =
1
� 2

NX

n=0

1 =
N
� 2

[I (� )]12 =
1
� 2

NX

n=0

�
1 � sin

�
4� n
M

+ �
� �

= 0

[I (� )]13 =
1
� 2

NX

n=0

�
1 � I bal cos

�
4� n
M

+ �
��

= 0

[I (� )]22 =
1
� 2

NX

n=0

�
1 � sin2

�
4� n
M

+ �
��

=
N

2� 2
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[I (� )]23 =
1
� 2

NX

n=0

�
sin

�
4� n
M

+ �
�

� I bal cos
�

4� n
M

+ �
� �

= 0

[I (� )]33 =
1
� 2

NX

n=0

�
I 2

bal cos2
�

4� n
M

+ �
��

=
I 2

balN
2� 2

It can easily be veri�ed that

[I (� )]21 = [I (� )]12 [I (� )]31 = [I (� )]13 [I (� )]32 = [I (� )]23

Thus the Fisher information matrix is given by

I (� ) =

2

6
6
6
4

N
� 2 0 0

0 N
2� 2 0

0 0 I 2
bal N
2� 2

3

7
7
7
5

(A.4)

It is known from the Cramer-Rao Lower Bound theorem for vector parameters[61],

that

var(�̂ i ) = [C�̂ ]ii �
�
I � 1(� )

�
ii

(A.5)

Hence,we obtain the boundson the various parametersas

varf I scatg �
� 2

N
(A.6)

varf I balg �
2� 2

N
(A.7)

varf � g �
2� 2

I 2
balN

=
1

N �
(A.8)

where� is the SNR.
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Bounds for estimating I bal
I scat

In this section,we try to �nd the bound for estimatesof the transformation

dDOLP =
I bal

I scat
(A.9)

Assumethat it is desiredto estimate � = g(� ) for g, a r -dimensionalfunction. From

CRLB for transformation of vector parameters,it hasbeenshown in [61], that

C�̂ �
@g(� )

@�
I � 1(� )

@g(� )T

@�
� 0 (A.10)

In our case,g corresponds to DOLP and it is a one-dimensionaltransformation of

parametersI bal and I scat . Hence,the varianceof dDOLP is related to the varianceof I bal

and I scat as follows

varf dDOLP g �
@g(� )

@�
I � 1(� )

@g(� )T

@�
(A.11)

where,

@g(� )
@�

=
h

@ dD OLP
@I scat

@ dD OLP
@I bal

@ dD OLP
@�

i
=

h
� I bal

I 2
scat

1
I scat

0
i

(A.12)

which leadsto the relation,

varf dDOLP g �
� 2

N
I 2

bal

I 4
scat

+
2� 2

N I 2
scat

(A.13)



App endix B

CRLB calculations - The case of

coloured noise

The equation governing the behaviour of data in polarization imaging is (eqn 4.5)

I r (n) = I scat + I bal sin
�

4� n
M

+ �
�

+ v(n) n = 0; 1; 2; : : : ; N � 1 (B.1)

where I scat � 0, I bal � 0 and v(n) represents colourednoise. The valuesthat we needto

estimate are I scat , I bal and � .

For analysis, we considerv(n) to be AR1 processwith pdf N (0; C), where C is the

noisecovariancematrix. v(n) is given by

v(n) = av(n � 1) + w(n) (B.2)

where, a is the unknown AR1 co-e�cien t and w(n) is zero-meanGaussianiid random

variable with unknown variance � 2. Although we do not know the valuesof a and � 2,

we �x thesequantities in simulations. Oncea and � 2 are known, C can be calculatedas

follows [69].
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We denotethe autocorrelation valuesof the AR1 processby r v(n); n = 0; 1; 2; � � �

r v(0) =
� 2

1 � a2
(B.3)

and all other autocorrelation valuescan be found using the relationship

r v(k) = r v(0)ajkj (B.4)

Oncethe autocorrelation valuesare found, the noisecovariancematrix of sizep� p can

be obtained by imposing a toeplitz structure on the matrix, with the valuesof the �rst

row being the �rst p autocorrelation values.

Another important relationship that hasbeenusedin our simulations, is the relationship

betweenthe power spectral density Px (ej ! ) of the noiseprocessand its variance,given by

Px (ej ! ) =
� 2

j 1 + ae� j ! j2
(B.5)

Next, we derive the CRLB for I scat , I bal and � from �rst principles.

The elements of the Fisher information matrix for the generalGaussiancaseare given

by [61]

[I (� )]ij =
�

@� (� )
@� i

� T

C � 1(� )
�

@� (� )
@� j

�
+

1
2

tr
�
C � 1(� )

@C(� )
@� i

C � 1(� )
@C(� )

@� j

�
(B.6)

where

@� (� )
@� i

=

2

6
6
6
6
6
6
4

@[� (� )]1
@� i

@[� (� )]2
@� i
...

@[� (� )]N
@� i

3

7
7
7
7
7
7
5

(B.7)

For the problem on hand, the covariance matrix terms Cij do not depend on � and

hencethe secondterm on the right hand side of the above equation becomeszero. The
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covariancematrix C (N � N ) canbeobtainedby usingthe knowledgeof the noisevariance

and the AR1 coe�cien t asexplainedearlier. With this observation, we �nd the elements

of the Fisher information matrix, after rearrangingeqn B.1 as follows,

I r (n) = I scat + I bal cos� sin
�

4� n
M

�
+ I bal sin� cos

�
4� n
M

�
+ v(n) n = 0; 1; 2; : : : ; N

(B.8)

The above equation can be easily represented in linear form as

2

6
6
6
6
6
6
6
6
4

I r (0)

I r (1)

I r (2)
...

I r (N )

3

7
7
7
7
7
7
7
7
5

| {z }
I r

=

2

6
6
6
6
6
6
6
6
4

1 0 1

1 sin
�

4�
M

�
cos

�
4�
M

�

1 sin
�

8�
M

�
cos

�
8�
M

�

...
...

...

1 sin
�

4� N
M

�
cos

�
4� N
M

�

3

7
7
7
7
7
7
7
7
5

| {z }
H

2

6
6
6
4

I scat

I bal cos�

I bal sin�

3

7
7
7
5

| {z }
�

+

2

6
6
6
6
6
6
6
6
4

v(0)

v(1)

v(2)
...

v(N )

3

7
7
7
7
7
7
7
7
5

| {z }
V

(B.9)

or, equivalently, by matrix notation as

I r = H� + V (B.10)

We can easily observe that the quantit y corresponding to � (� ) of eqn B.6 is, H�

Hence

@� (� )
@� i

= H
h

@�
@� i

i
(B.11)

Let

P =
h

@�
@� 1

@�
@� 2

@�
@� 3

i
=

2

6
6
6
4

1 0 0

0 cos� � I bal sin�

0 sin� I bal cos�

3

7
7
7
5

(B.12)
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Hence,from eqn B.6, the Fisher information matrix is given by

[I (� )] = (HP )T C � 1HP = PT H T C � 1HP (B.13)

Let us denotethe 3� 3 matrix H T C � 1H by A . It caneasilybe observed that A will be

a symmetric matrix. Moreover, due to the nature of the matrix H , we can easily verify

that A 22 = A 33. Thus, the generalrepresentation of A will be

A =

2

6
6
6
4

a11 a12 a13

a12 a22 a23

a13 a23 a22

3

7
7
7
5

(B.14)

Note that the elements of A can be theoretically calculatedonceC is known.

By substituting for H T C � 1H and P in eqn B.13, we obtain the Fisher information

matrix as

[I (� )] =

2

6
6
6
4

a11 a12 cos� + a13 sin� I bal(a13 cos� � a12 sin� )

a12 cos� + a13 sin� a22 + a23 sin2� a23I bal cos2�

I bal(a13 cos� � a12 sin� ) a23I bal cos2� I 2
bal(a22 � a23 sin2� )

3

7
7
7
5

Now, we can obtain the bounds on the variancesof I scat , I bal and � by inverting the

Fisher information matrix. We do not �nd the inverseof the whole matrix; instead, we

�nd only the necessaryelements of the inverseof the matrix.

The determinant of [I (� )] can be obtained as the product of the determinants of P T ,A

and P, due to the relation B.13. Hence,

det[I (� )] = I 2
baldet(A) (B.15)
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We can seethat

�
I � 1(� )

�
11

=
a11

�
I 2

bal(a
2
22 � a2

23 sin2 2� ) � I 2
bala

2
23 cos2 2�

	

I 2
baldet(A )

=
a11(a2

22 � a2
23)

det(A )
(B.16)

�
I � 1(� )

�
22

=
a11a22 + (a13a12 � a11a23) sin2� � a2

13 cos2 � � a2
12 sin2 �

det(A )
(B.17)

�
I � 1(� )

�
33

=
a11a22 + (a11a23 � a12a13) sin2� � a2

12 cos2 � � a2
13 sin2 �

I 2
baldet(A )

(B.18)

The boundson the various parametersare given by

varf Î scatg �
�
I � 1(� )

�
11

(B.19)

varf Î balg �
�
I � 1(� )

�
22

(B.20)

varf �̂ g �
�
I � 1(� )

�
33

(B.21)

From the above observations, we can immediately infer the following.

� The CRLB for I scat is independent of other parametersof interest.

� The CRLB for I bal is dependent on the phaseof the sinusoid, which is itself an

unknown parameter.

� The CRLB for � is not only dependent on � , but in addition, it also dependson

the amplitude of the sinusoidal component I bal, similar to the caseof CRLB for �

in the caseof white noise(seeeqn A.8).

Sincethe phaseof the sinusoiditself is unknown in our case,we�nd the globalminimum

variance for the estimation of I bal, by �nding that � , which yields minimum varianceof

I bal. This can be found to occur at

� =
1
2

arctan
�

2(a12a13 � a11a23)
a2

12 � a2
13

�
(B.22)
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It canbe veri�ed that the samevalueof � yields the minimum varianceof �̂ too. As we

can see,the value of � that yields minimum varianceof Î bal and �̂ dependson the noise

parameters.

Bounds for estimating I bal
I scat

The procedurefor estimating the boundsare similar to the analysiscarried out in the

caseof white noise. From eqn A.12, we have the required bound to be

varf bDOLP g � T (PT H T C � 1HP )� 1T T (B.23)

where

T =
h

� I bal
I 2

scat

1
I scat

0
i

(B.24)
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