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Abstract

Optical imaging is a vibrant researt area, fueled by defenseand bio-medical appli-
cations. The non-ionizing nature of near-infrared and optical waves, coupled with the
possibility of performing functional imaging, has usheredin new interest in bio-medical
optical imaging. The technologically advanced state of optical and infrared sourcesand

the availability of fast and inexpensiwe detectorshave acceleratedhe researt in this eld.

The challengesencourtered in optical imaging can usually be attributed to the phe-
nomenonof scattering. Scattering blurs the details of an object being imaged, thereby
reducingthe achievable resolution. Many imaging schemeshave beendevisedto circum-
vert this degradation induced by scattering. In one sud classof techniques called as
“Direct imaging techniques, the main aim is to reject scattered light and use only un-
scattered light for imaging. The criteria for rejecting and accepting di erent parts of
the radiation as scatteredand unscatteredcan vary, and this has given rise to di erent
imaging sthemes. Of particular interest to us, in this thesis, are the cortinuous-vave,
direct imaging schemes,which use polarization of the received radiation to discriminate
the unscatteredradiation from the scatteredpart. The emphasisin this thesisis on the
signal processingmethodologiesadoptedin sud schemes.Throughout the thesis,we have
usedonly linear polarization for our study. Howeer, parallels can be drawn from this

study, to the caseof circular polarization for most of the situations discussed.

A classof cortinuous-wave, polarization baseddirect imaging techniques use simple
subtraction of setsof co-polarized and cross-larized imagesto obtain an image corre-

sponding to the unscatteredcomponert of light. Thesesthemesare called as polarization
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di er ene imaging (PDI) schemes.There are other schemeswhich usepolarization mod-
ulation (either at the sourceor at the receiwer), followed by sinusoidal estimation, to
discriminate between scattered and unscattered componerts. Theseare called as polar-

ization modulation imaging (PMI) sdemes.

In this thesis, we presen a mathematical framework to analyze and compare these
apparertly disparate imaging methodologies. Theoretically and through Monte-Carlo
simulations, we have studied the relative advantagesand disadwantages of the PDI and
PMI sdhemesunder both white and colourednoiseconditions, concludingthat, in general,
the PMI scheme gives better estimates of the unscattered componert. The results of
simulations and experimerts corroborate our theoretical argumerts. The PMI sdhemeis
shown to give asymptotically e cien t estimatesof the unscatteredcomponert, whereas
the PDI schemeis shavn to give biasedestimatesof the same. Moreover, it is shovn that
PDI schemeis a particular caseof the PMI scheme. We have alsosuggestedhat the PMI
scheme, which modulates the received radiation rather than the incidert radiation is a

more useful variant, sinceit can be easily adapted for passiwe imaging as well.

We conducted PMI experimerts in the Optics lab of the Raman Researb Institute,
Bangalore,wherein,we useda 10mW, 6328 nm, linearly polarized,He-Nelasersourceto
Image opaqueobjects through scattering slabsof mono-disgersepolystyrene microspheres
dispersedin water. Polystyrene particles with diameters2:97 m , 0:06 m and 0:13 m
were usedin our studies. An intensi ed charge coupleddevice (CCD) camerawas used
to capture the images. Resultsshowved that imaging can be performedbeyond 40 optical
thicknessesfor particles of 0:13 m diameter. For larger particles, the depth to which
imaging could be performed,was much lesser.Experimerts were alsoconductedto image
an object through mist, with successfutesults. An experimert usingan incoheren, white
light source,shoved that using incoheren sourcescan yield better imaging results than

coheren sources.We attribute this to the spedkle noiseinduced by coherern sources.

We have also analyzed schemeswhich use the degree of polarization (DOP) of the

scatteredlight asthe visualization parameter. The expressiondor DOP are available in
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the literature, only for the PDI scheme,and not for the PMI scheme. By simpletheoretical
analysis,we have shavn that the DOP information canbe obtained by PMI schemesalso.
We have comparedthe various methods of estimating the DOP information and conclude

that the PMI and the PDI schemesare better than all the other schemesconsidered.

We obsene that the current PMI and PDI stchemescannot discriminate di erent states
of linear polarization, which can occur in real data. We shaw that this can be acieved
by using the phaseinformation of the recordedsinusoidsin the PMI stheme,at no extra
computational cost, whenestimating the unscatteredcomponert. We call sud shemesas
Polarization Orientation Imaging schemes(POI). Howewer, the PDI sthemeis incapable

of estimating the phaseof the sinusoids,which is its major drawbad.

We studied the suitability of using matched- Iter basedestimation techniquesto esti-
mate the various visualization parametersdiscussednamely, the unscatteredcomponen,
the DOP and the phase. We found that the PMI and the PDI schemesshow superior
performancethan these schemes, except that the PDI scheme cannot estimate phase.
Howeer, there are a few conditions when the matched- lter basedtechniquescan give

better results, which we have mertioned.

We have shawvn that the three visualization parameterscan be fusedto form a colour
image, which givesa holistic view of the sceneand mertioned the advantagesof sud a
rendition. We alsoreport the advantagesof analyzing chunks of data and bootstrapped
data under various circumstances,to estimate the various visualization parameters. We
have alsobrie y touched upon the possiblepost processinghat canbe performedon the

obtained results, and as an example,shavn the segmetation of a POI result.



Chapter 1

Intro duction to optical imaging

1.1 Imaging science

From the point of view of this thesis, we de ne ‘imaging' as the creation of a visual
represemation of somemeasurableproperty of a person,object, or a phenomenon.Thus,
“Imaging Sciencebecomeghe pursuit of scieri ¢ understandingof imaging or animaging
technique. This inter-disciplinary branch strivesto view phenomenanormally invisible to

the human eye by translating them by somemeans,to a visually perceptible form.

What makesimaging a very interesting, diverseand an inter-disciplinary eld is, that
the bearer of (or what corveys) the "'measurableproperty’ can take many forms. For
example, Ultrasound and X-rays are both usedfor imaging the interiors of the human
body; though both are usedfor the samepurpose,the information the two modalities
give can be di erent. Similarly, visible, infrared and radio waves are used for remote
sensingapplications depending on the featuresone is interestedin. The intelligencein
designingnew imaging techniqueslies in perfecting the art of choosing a suitable bearer

of the "measurableproperty’ for the application on hand.

In this thesis, we deal with only those techniques, where the properties of interest of

objects beingimagedare carried by visible and near infrared waves. This eld of imaging
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is called as Optical Imaging. Wherewer generalizationsto other regionsof the electro-

magnetic spectrum are possible,a merntion will be made.

Having narrowed down to someextert towards the area of interest of this thesis, we

delve deeper into optical imaging itself.

1.2 Optical imaging

Optical imaging has diverseapplications ranging from microscoyy to astrophysics. Cam-
eras, optical telescopes, optical microscopes are all optical imaging devices. Optical
imaging is also a very important part of remote sensing. There are a few important

reasonswhich make optical imaging desirableand sometimesinevitable.

In general,the wavelengthusedfor imaging limits the achievable resolution or detailsin
image quality [1]. So,onewould like to usethe shortestwavelength at disposalto image
objects if one could do so. In the caseof remote sensing,one would have liked to use
wavelengthsbelow visible range for imaging, if earth wereto re ect thesewavelengths.
Radiations with wavelength belowv that of the visible range are absorked strongly by
earth's atmosphere,or else, our existencewould have beenin jeopardy. On the other
hand, the visible, infrared and radio wavesare easily allowed to reat the earth's surface.
The re ected waves of these wavelengths carry information about the composition of
the earth's surface. This makesthe use of wavelengthsshorter than that of the visible
spectrum inviable for remote sensing.This reality hasmaderemote sensingo exceedingly

depend on visible, infrared and radio wavelengths.

Similarly, sinceX-ray is anionizing radiation, there hasbeena pentant amongradiolo-
gistsfor usingvisible wavelengthsfor imaging the interiors of the human body. Currently,
interest is growing in optical imaging and we may not be far from realizing diagnostic
optical imaging tools. Besidesthese, defenseneedshave further pushedthe limits of

optical imaging. All thesediverseapplications have madethis eld, a vibrant one.
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Although optical imaging can o er solutionsto many important imaging problems,
it is not easyto image using optical wavelengths. Optical radiation has beenknown to
be one of the most di cult imaging probes. One important reasonis light scattering,
which manifestsitself in most of the imaging conditions. Though the phenomenonof
absorption (which is closelylinkedto scattering) alsoa ects imagingin certain conditions,
mary a time, it becomesa useful property in imaging. The phenomenonof scattering
and absorption a ect all imaging systemsto varying exterts, and hence,have attracted

immenseinterest from researbersacrossdi erent disciplines.

In this thesis,we neglectthe e ects of absorptionand considerimaging a ected by scat-
tering only. More speci cally, we deal with two-dimensionalimaging, and with imaging
techniguesthat dealwith polarization information, apart from the intensity information.

Having narrowed down to the problem further, let us seesomeaspectsof light scattering.

1.3 Light scattering

In this section,we dwell on a very simplistic picture of light scattering and look at the
way it aects imaging. The problem of imaging through light scattering media is also
termed as 'Imaging through turbid media' [2] or "Imaging through turbidit y'. Note that
we are not consideringthe e ect of turbulenceinducedby wind etc., which we comeacross
in literature related to atmosphericoptics. The e ect of light scatteringis the only topic

of interest in this thesis.

To understandthe reasonghat make imaging under scattering conditions a formidable
task, we considera simple case,where, we try to obtain the shadavgram of an opaque
object resting in a scattering medium, using active illumination (i.e., the light source
is cortrollable). If the object is in an ervironment in which the scattering e ects are
negligible, shining light from onesidewould casta sharp shadav of the object on a screen
placed on the other side of the object. Fig. 1.1(a) shavs sud a simulated shadav of a

elliptical object.
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If the object is placed in a scattering medium, some light will erter the region of
geometricshadav of the object, due to scattering. If the scattering increasesmore light
will stray into the region of geometricshadav. This decreaseshe cortrast betweenthe
shadav and the surroundingbadkground, introducingablurring e ect onthe shadavgram.
Fig. 1.1(b) shonvs what could be the result of mild scattering. If the concenration of the
scatterersis increasedfurther, the blur keepsincreasing,till a point is reached, whenthe
shadav becomesndiscerniblewith respectto the badkground. Fig. 1.1(c) shovsthe e ect
of increasein scattering on the shadavgram shown in Fig. 1.1(a). The imagesin Fig. 1.1

were generatedby a simulation of scattering.

Generally to qualitativ ely assesshe e ect of light scattering, researbersresort to the
photon picture of light. In this setting, light inside a scattering medium can be regarded
asconsistingof three di erent componerts, viz., the ballistic or the unscatteredphotons,
the di use or the multiply scattered photons and the quasi-ballistic photons or weakly
scattered photons. Among thesecomponerts, the ballistic photons which travel straight
and unscattered are the oneswhich are capable of forming shadavgrams of an opaque
inclusion. The quasi-ballisticphotons,which undergoscatteringonly through smallangles
can be imaginedto meanderabout the forward direction like a snake and for this reason
are also called as “snale photons'. Though the snake photons also blur the image of the

object slightly, they retain their direction to someextert and are hence, useful. The

@) (b) ()

Figure 1.1: E ect of increaseof number of scattererson imaging - Simulated images.
(a) Shadav of an elliptical object formed with negligible scattering (b) E ect of mild
scattering. (c) E ect of intesnsescattering.
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di use photons causemost of the blurring and are the onesto be avoided while imaging.
The composition of light collected by the receiver has beenanalyzedin di erent ways,
though, parallels can be drawn betweenthe description given above and the onesgiven
in [3, 4].

By a look at Fig. 1.1, it is evidert that we could have obtained a sharp shadav of
the object, if we could have prevented light from ertering the geometricshadav region,
l.e., if we could have retained the rays passingstraight through the medium and rejected
the scatteredrays. Someimaging methodologiesstrive to achieve this singlegoal, i.e., to
capture the ballistic and snake photons and avoid collecting the di use photons. These
sthemesare referred by a collective term, namely, ‘Direct imaging' schemes[5]. In scat-
tered polarizedlight, the ballistic and snalke photonsretain their initial polarization state
to a greater extert, as comparedto the di use photons. Hence,polarization of the scat-
tered photons can be usedto distinguish the less scattered onesfrom the rest. Sud

sdhemesare called polarization baseddirect imaging sthemes.

There are many other imaging schemeswhich analyzethe di use intensity collected,
and theseare in generalcalled as ‘Indir ect imaging' schemes. In thesescemes,imaging
is viewed as an inversesourceproblem and the wave equation is usedfor obtaining the
results. In this thesis,we have considereddirect, polarization basedimaging schemesonly.
In our work, we have looked at two-dimensionalimaging shemesonly and especially, the
transmissionmode imaging schemes. Three dimensionalimaging schemeshave not been
the subject of analysisin this thesis. But, a generalreview of the dierent schemes
existing to date and in particular, a review of polarization basedsdemesis givenin the
third chapter.

1.4 Organization of the thesis

The next chapter cortains the essetial badkground material related to polarization
optics and light scattering, that is neededto understandthe latter chapters. The chapter

following the preliminaries cortains a review of the eld of optical imaging. The emphasis
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is on cortinuouswave imaging usingpolarizedlight, the topic addressedn this thesis. The

review mainly concertrates on the analysismethods adoptedin sud imaging schemes.

The fourth chapter providesa mathematical framework for the analysisof variousimag-
ing schemes, using which, we assesshe advantages and disadwantages of the various
schemes. We have also proposedsomenew imaging schemesand processingtechniques
in that chapter. In the fth chapter, we have illustrated the results obtained from actual
experimental data. The nal chapter summarizesthe cortributions of this thesis and

provides pointers for further researt on the topic.



Chapter 2

Scattering of polarized light

In this chapter, we give a gist of the terms from the eld of polarization optics and
light scattering, usedfrequertly in this thesis,alongwith the bare-minimum mathematics
related to them. The cortents of this chapter have beencompiled by borrowing heavily
from [6].

2.1 Polarized light

Sincethe thesisdealswith imaging using polarized light, we begin with the most basic

notions of polarization of light, its represemation and measuremen

Polarization is a property which arisesout of the transversenature of the electromag-
netic (EM) radiation, and is related to the orientation of the plane of vibration of its
electric eld. The magnetic eld assaiated with the radiation is not taken into accoun

to denote polarization.

The compelling needto study the vectorial nature of light is encouniered whenonetries
to understandlight propagationin restricted medialike optical b ersor in the presenceof
surfaceswith discortinuousrefractive indices(lik e scattering media), wherethe boundary
conditions needto be takeninto accoun. In the caseof a plane surface,it can be shovn
that the componert of the electric eld perpendicularto the planeof incidence(TE wave)

and the oneparallel to it (TM wave) are completely unrelated, and their behavior during

7
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re ection and refraction phenomenaare independen. So,it looksasthough the EM eld
can be treated as a superposition of two plane-polarized waves, which can form a basis
for generatingany other polarization state. Sincethe monochromatic plane wave is the

fundamenal ertity in the description of polarized light, we examineit in greater detail.

2.1.1 States of polarization

Considera plane monochromatic wave, with angular frequency! and wave number K.

The wave number k is de ned as
2
k=2 n-= — 2.1
n- (2.1)

where,n is the refractive index of the mediumand is the frequencyof the EM radiation
and is the wavelengthin the dielectric medium and is givenby = c=n . Supposethe
wave is propagating along the z direction in a non-absorbingmedium. The electric eld

E of the wave can be represeted mathematically as
E = Acos(kz !'t)+ Bsin(kz !'t)

where, the real vectorsA and B are independent of position in the medium. The electric
eld vector at any point liesin a plane, sud that, the normal to the planewill be parallel
to the direction of propagation. In a particular plane, say z = 0, the tip of the electric

vector tracesout a curve:
E(z=0)= Acos(!t)+ Bsin(!t)

The above equation descrikesan ellipse, or more aptly, the vibration ellipse, a sketch of
which is shavn in Fig 2.1. If A = 0 or B = 0, the vibration ellipseis just a straight
line and the wave is said to be linearly polarized or plane polarized. The non-zerovector
speci es the direction of vibration. If j Aj=jB jand A B = 0, then the vibration ellipse
is a circle and the wave is said to be circularly polarized. In general,a monochromatic

wave is elliptically polarized.
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Figure 2.1: Vibration ellipsewith ellipticity B=A and azimuth

As can be obsened from Fig. 2.1, a given vibration ellipse can be traced out in two
opposite directions, clockwise and anti-clockwise. We adopt the convertion, accordingto
which, an elliptically polarized wave is said to be right-handed if the vibration ellipseis

rotating in the clockwise senseas viewed by an obsener looking towards the source.

Apart from the handednessthe ellipse can be characterizedby its ellipticity (the ratio
of the length of the semi-minor axis to the semi-mgor axis) and its azimuth (the angle
made by the semi-mgor axis to the horizortal of the chosenframe of reference).In the
examplevibration ellipsesketchedin Fig 2.1, the ellipticity is givenby B=A , the azimuth
is and the intensity of the wave is given by | = A2+ B2, The four parameters,viz.
handednessellipticity, azimuth and the intensity, called asthe ellipsometric parameters,

completely specify the state of polarization of a wave.

Generalizingthe above analysis,we can say that the correlation betweenany two or-
thogonal componerts of the electric eld decidesthe polarization state of the light. If
the orthogonal states are completely correlated, the light is totally polarized. If they are
completely uncorrelated, the light is said to be unpolarized. If they are partially corre-
lated, light is saidto be partially polarized. Only a purely monochromatic sourcecanemit
totally polarizedlight. If a sourceexhibits spectral width, or, if a purely monochromatic
wave passeshrough depolarizing mediathat introducerandom phaseshifts betweentwo
orthogonal states of the basis, the light becomespartially polarized. This is what is

commonly encourtered in practice.
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There are di erent ways of mathematically represeting polarizedlight [7]. The Stokes
represemation turns out to be the most corveniert for our purpose,sinceit can easily
handle the represemation of both fully and partially polarized light, both of which are
encourtered in light scattering studies. Also, the practical measurability of the param-
eters of the represemation and the additive nature of the Stokes parameters(which is
explained shortly), coupled with the Mueller matrix transformation methods to study
light scattering, qualify the Stokesrepresemation asan ideal choiceto study polarization

in light scattering. Hence,we study the Stokesrepresemation in somedetail.

2.1.2 Stokes vectors

Weintroducethe Stokesparametersalongwith their notations through the experimerts
by which they can be determined. We assumethat a polarization insensitive detector is
usedto measurethe di erent intensitiesin the experimerts and that the variouspolarizers

and wave plates are ideal and do not absorblight.

To de ne the polarization states of the beam, we use a set of orthogonal axesé&; and
&, , which we referto as "horizortal' and “vertical', respectively. Then, the electric eld E

can be represeted as
E = Egexp(ikz iwt); Eo= Exé&+ E> &

Now, we make the following measuremets on the givenbeamof light. We have omitted
a scalingfactor in all intensity calculationsfrom eld values,sinceit doesnot hamper the

understandingof the actual idea.

1. The intensity falling on the detectorwith no polarizersin the path is measured.and

the value is given by

ExE, + E-E,

2. Let a horizontal polarizer be introduced in the path of the beam. The intensity

transmitted will be EE, . If a vertical polarizeris introducedinstead, the intensity
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measuredwill be E, E,. The di erence betweenthe two measuredintensities will
be

le 1. =EEy EsE,

3. Let a polarizer be placedin the path of the beam, with its axis aligned at +45
to the horizontal. We introduce a new set of basisvectors &, and & which are
obtained by rotating the & vector by +45 and 45 respectively. The new basis

will be

S

1
&=P—§(Q<+ &), e = p=(& &)
In this basis,the electric eld vector Ey canbewritten asEy = E. & + E & where
1 1
E. = p—é(Eka E-); E = P—Q(Ek E-)

The amplitude of the transmitted wave through the polarizer aligned at +45 will
beE, = pl—z(Ek+ E-), giving anintensity |, = (ExE, + E-E, + ExE, + E- E,)=2
Similarly, the intensity transmitted through the polarizer alignedat 45 will be

| = (ExE,+E-E, EE, E-E,)=2 The dierence betweenthe two intensities

will be

+ = EkE') + E’) Ek

4. Now, we introduce the right and the left circular polarizers. The respective basis

vectorsare given by
1 . 1 .
éR=p—§(éK+lé?); éL=p—é(éK ie)
In this basis,the electric eld vector Eq canbewritten asEg = Erés + E_ &, where

1 . 1 .
Er = p_é(Ek iE»); EL= p_i(Ek+ iE»)
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The intensity transmitted through the right and the left circular polarizerswill be
lr = (ExE, + E-E, + IEXE, IE,E,)=2and |, = (E«E, + E-E, IELE, +

IE » E,)=2, respectively. The di erence betweenthe two gives

|R ||_ = |(EkE9 E? Ek)

With thesefour measuremets, we can get the Stokesparametersor the Stokesvector as

| = EE, + E,E, (2.2)
= EkEk E? E? = Ik |?
EE, + E,E, =

|
+

< C O
I

= |(EkE9 E? Ek) = IR ||_

Obsene that Q and U depend upon the choice of the horizorntal and the vertical axes,
but I and V do not. The sign of V signi es the handednessof the ellipse; positive
stands for right-handednessand negative stands for left-handedness. The methodology
of transformation of the Stokes Vector, when the frame of referencechanges,has been
detailed in [6].

Table 2.1 shows the Stokesvectors for the commonly encountered polarization states.
The angleson the top of eat of the linearly polarized vectors correspndsto the angle

made by the polarization axis with the horizortal.

Oneimportant obsenation that hasto be made hereis that the Stokesvectorsdo not
form a vector space. To realizethis, it is su cient to notice that the Stokes vector of
the linear polarized state at 45degis not the sum (ignoring scaling) of the Stokesvector
perpendicular and parallel to the referenceframe. The Stokes vector represemation of

other commonly encouriered polarization statesare givenin [7, 8].



CHAPTER 2. SCATTERING OF POLARIZED LIGHT 13

Table 2.1: Stokesrepresemation of the fundamertal states of polarization
203 29 3 453 5 453
1 1 1 1 1
108 0E 80 608 Gt
0 0 1 1 sin(2 )
0 0 0 0 0

Linearly polarized light

1 1

§08 § 04

Circularly polarizedlight

In the caseof an ideal, strictly monochromatic wave, the four parametersare depen-
dert, and it can be shown that 12 = Q?+ U? + V2. The Stokes parametersof a quasi-
monaochromatic beam(which, in general,is partially polarized)are obtained by taking the
time averagedquartities over an interval long comparedwith the period, in which case,
it can be shawvn that 12 Q%+ U2+ V2. The equality holds if the light is completely

polarized. Accordingly, we can de ne

L P Q2+ U2+ V2
Overall degreeof polarization (DOP) = I (2.3)
: o P Q%+ U2
Degreeof linear polarization (DOLP) = — (2.4)
. o \Y,
Degreeof circular polarization = T (2.5)

Next, we review the terminology usedin light scattering, relevant to this thesis.
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2.2 Light scattering

The physical basisfor scattering by any systemcan be traced to the heterogeneiy of
the system,either at the molecularlevel or on the scaleof aggregationof many molecules.
Sinceheterogeneiy is a rule rather than an exceptionin the real world, scatteringis an
omnipresen phenomenon. The study of light scattering beginswith the understanding
of scattering by single particles within the framework of EM theory, basedupon which,

the more complicated phenomenaare studied.

When an obstacleis illuminated by an EM wave, electric chargesin the obstacleare set
into oscillatory motion by the electric eld of the incident wave. The acceleratedcharges
re-radiate EM energyin all directions. This secondaryradiation is called the radiation
scatteredby the obstacle. Essetially, we can put it as,

sattering = excitation + re-radiation.

If the frequencyof the scatteredlight is the sameasthat of the incidert light, then the
scattering evert is called as elastic or coheent sattering. If the incident EM energyis
transformedinto thermal energy then the processis called as absorption. Scattering and
absorption are not mutually independent processesthough, depending on the situation,
one may be more prominent than the other. In this thesis, we deal only with scattering

by particles and neglectthe e ect of absorption.

Particles in a collection are electromagnetically coupled. Ead particle is not only
excited by the external eld, but also by the resultart eld scattered by all the other
particles. Sincethe eld scatteredby a particle dependson the total eld to which it is
exposed,a rigorous theoretical treatment of scattering by many particles is a formidable

task.

Considerablesimpli cation results, if we assumesingle sattering, i.e., the number of
particles in the collection is su cien tly small and their separationsu cien tly large, so
that, in the neighborhood of any particle, the resultant eld due to scattering by all the

other particlesis small comparedwith the external eld. With this assumption,the total
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scattered eld is just the sum of the elds scatteredby the individual particles, eah of
which is acted on by the external eld in isolation from the other particles. It is di cult

to state precisegeneralconditions under which the single scattering criterion is satis ed.

Next, we study the caseof single scattering in somedetail.

2.2.1 Single scattering

The essetial problem in scattering theory is to nd the scattered eld as a function
of direction, for the given incident eld and scatterer. Let us considerthe caseof light
of arbitrary wavelength being incidert on an arbitrarily shaped particle. The total ux
scatteredby the particle in all directions can be consideredto be the ux of the incident

wave falling on a virtual area ¢ calledasthe sattering cross-setion of the particle. i.e.,
Fscat = sFin

where Fs.o and Fi, referto the total scatteredand incident ux, respectively. Similarly,
the absorption cross-setion , is de ned asthe virtual areaover which the real overall
absorptionof the incident wave would occur. The extinction cross-setion ¢, (2 measure
of the overall extinction su ered by the incidernt wave in the direction of transmission),is

the sum of scattering and absorption cross-sectionsi.e.,
ext = st a
For non-absorbingparticles, ex = &:

These cross-sectionslepend upon the particle size, shape, orientation, wavelength of
the incidert light, the relative refractive index (RRI) betweenthe scattering particle and
the surrounding medium (m) and the polarization state of the incident light. The size
parameter(x) of the scattering particles takesinto accour the relative dimensionsof the

sizeof the particle and the wavelength( ) of the incident radiation.
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e.g. for a sphericalscattering particle of radius a, x is de ned as

2 a
X= —

(2.6)
The samerelation can be written asx = ka, wherek is the wave number of the radiation
in the medium surroundingthe particle (seeeqn2.1). Though extinction dependsonly on
the scattering amplitude in the forward direction, it is the combined e ect of absorption
in the particle and scatteringin all directions by the particle. In our work, sincewe used
spherical scattering particles, we restrict further discussionsto scattering by spherical

particles only.

Mie theory helpsto computethe scattering properties of sphericalparticles. The theory
calculatesthe angular dependenceof the scattered intensity for light polarized parallel
and perpendicularto the scatteringplane (the plane cortaining the incident and scattered

rays). From this, the intensity for any polarization can be calculated.

For particles much smaller than the wavelength, the scatteredintensity is distributed
more or lessuniformly in all directions, in which case the scatteringis saidto be isotropic
(this is alsoreferredto as Rayleigh sattering). On the other hand, for particles larger
than the wavelength, light is scattered preferenially in the forward direction and the

scattering is called as anisotropic (or Mie sattering).

The reasonfor anisotropy can be attributed to the interferencebetweenthe scattered
waves. For particlesmuch smallerthan the wavelength(Rayleigh scattering), the scattered
waveswill be in phasein all directions and hence,we seenearly an isotropic distribution
of intensity around the particle. Howewer, for large scatterers, the forward scattered
waves interfere constructively and the others interfere nearly destructively, resulting in

anisotropic distribution of intensity around the scatterer.

The anisotropy is speci ed in terms of the anisotropy parameter g (dimensionless),
or the sattering indicatrix (or sattering diagram) [9]. The term phase-functionis also

used sometimesto denotethe samequantity. We shall use the terminology "anisotropy
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parameter' in further discussions. The anisotropy parameter, g, is a measureof the
amourt of light retained in the forward direction after a single scattering event and is
mathematically given asg = hcos( )i, where is the de ection taken by a photon after
scattering. g is a function of the radius of the spherical particle, the wavelength of the
incident light and the refractive index contrast betweenthe particles and the surrounding

medium. It variesfrom nearly O (isotropic scattering) to 1 (strictly forward scattering).

Table 2.2 gives the anisotropy valuesfor the spherical particles usedin our imaging
experimerts. In all the experimerts, the wavelength of the sourceusedwas 0:6328m .
The refractive index of the scattering polystyrene sphereswas 1.59. The polystyrene
sphereswere dispersedin water (refractive index = 1.33). Hence,the RRI betweenthe

scattering spheresand the surrounding medium s 1.1955.

It hasbeenobsenedthat scatteringby a singleparticle or collectionof identical particles
doesnot decreasdhe degreeof polarization of fully polarizedincidert light, though the
nature of polarization of the scatteredlight may change[6]. But, upon scattering by a
collection of non-idertical particles, the incidernt polarizedlight can be renderedpartially
polarized due to depolarization. Thesefeaturesare independen of the speci ¢ nature of
the particles. This is true, only if the assumptionof single scattering is valid. It hasalso
beenobsened that the scattering near the forward direction is always coheren due to

the presenceof unscatteredlight.

Table 2.2: Anisotropy valuesof sphericalpolystyrene particles of di erent sizes,usedin
our imaging experimerts

Radius( ) | Sizeparameter(x) | Anisotropy(g)
0.03 0.396 0.027
0.065 0.858 0.128
1.485 19.6 0.81
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When light is scatteredby a collection of particles, onecannot simply add the scattered
intensities from the individual particles to obtain the resultant intensity in a given par-
ticular direction. In sut casesthe total scatteredintensity is determinedby the square

of the absolutevalue of the total electric eld.
L(t;r) /] Ei(t:r)+ Ex(t;r)+ Es(t;r) + :::j%

whereE;(t; r) are cortributions to the total electric eld from di erent scattering evers.
We can obsene that the interferencee ects betweendi erent elds are also taken into
the summation, apart from the individual cortribution from ead of the elds. When
scattering becomesse\ere, we sa the light is multiply scattered. Next, we briey review

the conceptsof multiple scattering, a detailed treatment of which is givenin [10, 11].

2.2.2 Multiple scattering

In a medium consisting of a large number of scatterers,the incident eld undergces
recurrert random scattering beforeit exits the medium. In sucd multiple scattering me-
dia, light is assumedto propagatedi usiv ely. The interferencee ects are assumedo be
scranbled due to many random scattering evens (exceptin special casedike badkscatter-
ing). The position and time dependert intensity is descriked by the di usion equationor
someother simpli cation of the radiative transfer equation. Basedon certain assumptions
and obsenations, a multiple scattering medium is usually characterizedby a few length
scales.The characteristicsof di erent media are usually comparedon the basisof these

length scales.

The meanfree path (MFP) is onesud length scale,usedto characterizethe scattering
process.For instance,the sattering mean free path, ls, is de ned asthe averagedistance
betweentwo successig scattering everts, and is given by

L
n s

2.7)

ls
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wheren is the number of scatterersper unit volume (numker density) of the scattering
medium and s is the scattering cross-sectiorof the individual scatterers. Similarly, the
absorption and extinction meanfree paths can be calculated by substituting 5 and e«

in the above equationinstead of .

The de nition of di usiv e transmissionis itself basedon theselength scales[1]]; e.g.
Light transmissionthrough a semi-in nite scattering slab of thicknessL is consideredto

be di usiv e, if the following inequality is satis ed.

where is the wavelength of the incident radiation, |s and |, are the scattering and
absorption meanfree paths of the scattering slab, respectively. The various length scales

usedto descrike radiative light transport and their signi cance have beendetailedin [11].

In the di usiv e regime, a wave can be assumedto have undergonescattering after
traveling, on an average,a distanceof I5; but it hardly meansthat the direction of the
wave travel is randomized. Due to the anisotropy of scattering, the wave may propagate
in the near forward direction even after seweral scattering evernts. To accommalate this
characteristic of scattering, a transprt mean free path (TMFP) is introduced, which is
de ned asthe averagedistancethat the light travelsbeforeits direction of propagationis

randomized. The TMFP, denotedby | is given by

— IS
T 9 (28)

Clearly, for isotropic scattering | ls sinceg ! 0, which seemslogical, because,the

wave can be scatteredinto any anglewith almost uniform probability over 4 steradian.

Whenthe scatteringmediumis takento bein the form of a semi-in nite slabofthickness
L alongthe direction of incidenceof light and in nite in extert in the transversedirection,

we can obtain a conveniert measureof the scattering encourtered by light, as given by
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the optical thicknessof the medium, which is de ned as

lE (2.9)

Consider the propagation of light through a semi-in nite slab of thicknessL along
the +Z axis. The incoming beam decgs exponertially due to multiple scattering. The

unscatteredbeamat a depth z in the medium is given by the Beer-Lamtert's law as[12]

1(2) = 1oexp( lf) (2.10)

S

wherel g is the incident intensity of the beam. This exponertial deca of the unscattered
photons gives an idea of the di cult y involved in performing direct imaging in highly
scattering media. The ratio of unscatteredto scattered photons decreasewvery rapidly
asthe penetration depth increasesand puts a limitation on the depth up to which direct

imaging can be performed.

2.2.3 Mueller matrices and light scattering

Most of the interactions of polarized light with optical elemens can be expressedasa
linear relationship; i.e., the output Stokesparameterscan be obtained by a linear combi-
nation of the input parameters. The sametechnique hasbeenusedto study scatteringtoo.
Mueller matrices have beenextensiwely usedfor this purpose.In any co-ordinate system,
ead optical componert in a particular orientation can be mathematically represeted by

its appropriate, real, 4 4 transformation matrix calledthe Mueller matrix..

The elemens of the Mueller matrix M depend upon the properties of the interacting
elemen, frequencyof light and in caseof scattering, on the scattering angle. The Mueller
matrices of someof the standard optical elemens are givenin [8, 7, 6]. If we denotethe
Stokes vector (SV) of the input light as S, and the vector obtained after transmission

through the optical elemen as Sy, then, Soit = M S, whereM is the represemativ e
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Mueller matrix of the elemen. In the caseof multiple optical elemens arrangedin a
cascade the total e ect of the cascadeis determined by the product of the individual

Mueller matrices, in the correct order.

e.g. The Mueller matrix of an ideal linear polarizer whosetransmissionaxis makesan

angle with respect to the horizontal is given by

2 3
1 c0s2 sin2 0
M () = 1§ cos2 cos 2 cos2 sin2 0
29 sin2  cos2 sin2 Sin? 2 0
0 0 0 0

Now, if light with input SVS;, = (I; Qi U, V)T isincidert on this polarizer, yielding

the output SV (I, Q. U, V,)T, then the input and output intensities are related as
1 .
o= é(li + Qjcos2 + U;sin2) (2.11)

Thus, if a linearly polarized wave is incidernt on a polaroid rotating at an angular
frequency! , then, the transmitted intensity is of the form

lo = %(Ii + Q;coq2! t) + U;sin(2 t)) (2.12)
where,! t = is the instantaneousangle made by the polaroid passaxis with the plane
of polarization of the incidert light. Since, for a plane polarized light, 1; = Q; and

U =V, = 0, we are left with
1
lo= é|i(1+ cog2! t)) = I;cog! t (2.13)
This expressionis called as Malus' law.

Mueller matriceshave beenextensiwely usedin the computation of Stokesvectorsemerg-

ing asa result of scattering and are referredto as Sattering matrices or Phasematrices
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The advantage of the Mueller matrix formalism is that, it givesa simple meansof de-
termining the polarization of the scatteredlight, given any arbitrary polarization of the
incidert light. Scattering can depolarize the incident beam, mix its polarization states
and changeits direction. The elemeis of a scattering matrix depend on the size and
shape of the scatterer, the refractive index cortrast betweenthe scatterer and the sur-
rounding medium, the angleof scattering and the azimuth of the scattering plane. Details

regardingthe derivation of the scattering Mueller matrix can be seenin [6].

The Stokes parametersof the light scattered by a collection of randomly separated
particles are the sum of the Stokes parametersof the light scattered by the individual
particles. Therefore, the scattering matrix for sud a collection is merely the sum of
the individual particle scattering matrices. For any particle or collection of particles
symmetric about the direction of incidenceof the beam, the elemerts of the scattering

Mueller matrix, should be independent of the azimuthal angle .

If unpolarized light is incident on one or more particles, the Stokes parametersof the
scatteredlight can be showvn to be in general,partially polarized. This result shows that
scattering is a medanismfor polarizing light. The degreeof polarization of the scattered
light depend on the scattering direction and has beenfound to be maximum when the

scattereddirection is normal to incidert direction.

A detailed study of Mueller matrices of spherical scatterershas beengiven in [6]. It
hasbeenshowvn that the matrix cortains only four independert elemens. Theseelemerns
can be calculated preciselyusing Mie theory. The relevant mathematics and algorithms

for programming have alsobeengivenin [6].

With this, we cometo the conclusionof all the preliminariesneededto dealwith studies
on scattering of polarizedlight by sphericalparticles, which is the main work reported in

this thesis.



Chapter 3

Imaging through scattering media:

A review

The literature related to imaging techniquesof interest to us can be found in diverse
elds from astrophysicsto microscopy. Due to the vast expanseof literature, we do not
emphasizeon any particular eld of application, but we concertrate on somecommon
ideasand techniquesthat permeateall thesediverse elds. Any modi cations that can
be incorporated basedon the knowledge of the speci ¢ domain of application can push
the utilit y of these techniques further. Howewer, there is no derying that biomedical

applications have taken a lion's sharein this review.

In this review, we conceinrate on direct imaging techniquesthat use CW monachro-
matic, polarized light sourcesto obtain two-dimensionalimagesof objects hidden in a
semi-in nite slab of scattering media, by using polarization information apart from inten-

sity information.

We adopt a top-down approad to get to the imaging schemesof interest to us. So,

rst, we beginwith a brief overview of the eld of optical imaging.

23
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3.1 A brief overview of optical imaging

In recert times, researbers have shovn great interest in optical imaging schemesfor
biomedical applications, apart from its use in defenseand atmospheric optics. As a
testimony to this, onecan cite journals that have earmarked someissuesto highlight the

progressmadein the eld. Someof thesespecialissuesare [13, 14, 15, 16].

There is an increasingacceptanceof the possibility that optical imaging can play a
complemetmary role to the existing biomedicalimaging techniques,and in due course, it
may even becomea main-streamimaging technology[17]. The main advantagesof optical

imaging shemesas comparedto other imaging modalities for biomedicalapplications are
The non-ionizing character of visible and near-infrared radiation.

The ability to perform very fast detection of optical signalsdue to the presenceof
fast and a ordable detectors,coupledwith the possibility of being able to leverage

a host of corntrast agerts to image dynamic processe$18, 19].

Researbers have beensuccessfuln bringing optical imaging techniquesnearly on par
with other establishedimaging techniques,at leastfor imaging soft tissueslike breast[20]
and neonatalhead[21]. The polarization basedtechniqueshave alsofound a niche appli-
cation areain skin tissuepolarimetry [16]. A broad overviewof the variousoptical imaging

schemesbeing deweloped for medical imaging applications has beengivenin [5, 22].

Coming to the applications of optical imaging in other elds, onecan seeoptical tech-
niques being usedfor imaging through rain and fog [23], through haze[4], underwater

imaging [24] and many more.

There are interesting results [25, 26] which claim that a strong multiple scatteringwall,
far from being a hindrance to imaging, could sere as a thin lens, which can produce
a high resolution image of an arbitrarily shaped three-dimensionalobject hidden in it.
Simplecorrelation techniquesapplied on the spedle patterns re ected from the scattering

medium are shown to do the trick.
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Though the problem of imaging through scattering medialooks similar to that of imag-
ing through turbulence, there is no consensusasto whether the tools usedfor the latter
are applicableto the problem on hand. Someresearbershave mertioned that the point-
spreadfunction analysis,which is the basisof spedle interferometry is not applicableto
the problem of image transfer through multiply scattering media, due to the vanishingly
small angle of isoplanaticity for multiple scattering [25]. But, ample e ort hasgoneinto
the analysisof point-spreadfunction of multiply scattering media[9], and there obviously
seemdo be someuseof it, cortradicting the view of [25]. This, and many other inconsis-
tencieswhich we comeacrossas we proceed,emphasizethe fact that the eld of optical
imaging is yet to nd conclusive answers to many basic problems, and this makesit a
very fertile eld for resear.

Combining the results of di erent optical imaging techniques can yield better results
than what could be obtained by employing any one technique in isolation [26], and at

times, it may be inevitable too.

In this thesis, we are concernedwith imaging schemesthat closelyresenble the tech-
nique of polarization discrimination described in the articles [5] and [27]. We have stud-
ied cortinuous-wave (CW), polarization basedimaging schemesonly and not pulse based

imaging sthemes.

Thoughin [5], the polarization discrimination sihemehasbeensaidto be ableto image
not morethan about a certimeter of soft tissue,the logical extensionof what can be done
with intensity aloneseemdo have beenunderplayed. Sincepolarization data is a superset
of intensity data, one can hope to useall the intensity basedtechniquesand also seeif
more information could be obtained by polarization. Essetially, polarization data should
in no way hamper what could have beendone with intensity alone. If this argumert is

valid, polarization basedsthemeshave much moreto o er to the eld of imaging.

In short, the polarization basedsdemeswill be useful in those circumstances,where

the scattering is neither so less,that only intensity would su ce for imaging the hidden
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object, nor sohigh, that no polarization information is left at the receiwer to getadditional
information about the hidden object. Many defenseapplications fall into this category
e.g.,target detectionin fog, rain, snov or haze. In fact, the dewelopmen of polarization
discrimination imagingtechnique canbe attributed to researt in underwater imaging[2§].
In many sud applications,the sourceinformation will betotally unknown (ascomparedto
medicalimaging sdhemeswherethe sourceswill be completelyknown). In sud situations,

polarization information can complemen the intensity information.

An important issueis the comparative performanceof CW imaging schemesand pulse
basedimaging schemes. The latter schemesuseultra-short pulsesand high speedgating
techniquesto capturethe ballistic componert of the scatteredlight [29, 30,5]. The method
that we areinterestedin, usesCW sourcesand banksupon polarization of the unscattered
light and spatial Itering to doaway with scatteredphotons[28, 27, 31]. Though the ultra-
fast shuttering techniquesare very e ective and simple, they are prohibitiv ely costly, as
comparedto the CW techniques. So, it is important to know if the CW methodologies

can give performancescomparableto that of the shuttering techniques.

It hasbeenexperimertally shovn that CW basedsdhemescan achieve the samelevel of
di usiv e light rejection as pulse schemes[32, 33. Howewer, the article doesnot compare
the schemesvarying the pulse widths or the receiver acceptanceangles,and other pa-
rametersthat a ect the imaging performance.Nonethelessjt is an extremely important
result. One should only be worried whether the generalizationof the resultsto all pulse
widths and acceptanceanglesat all wavelengthsis really valid, which is unlikely to be
the case.Howewer, many CW polarization basedimaging schemesbank upon this result

to vindicate their performancevis-a-visthe pulsedimaging schemes[27, 31].

Even otherwise,CW polarization basedsdhemesare worth studying, becausethere are
many circumstancegmainly in atmosphericoptics), wheresunlight is the source,and the
information about speci ¢ objects (usually man-madeobjects) in a scenecan be obtained

by analyzingthe polarization information of the sunlight re ected from the scene.
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Next, we review someCW polarization based,direct imaging schemes.

3.2 Polarization based direct imaging schemes

Any polarization basedactive, direct imaging scheme can be visualized to consist of
v e main sections,shavn asdi erent blocks in Fig. 3.1. We seeasto what parameters

in eat of thesesectionsa ect the image quality.

Soutce Collection
Semi—infinite scattering slab | & D
Polarization state - . . . 1 Polarization analysis " AT
: : with opaque inclusion ;
generation optics optics

Data analysis
& ot}

interpretation

Figure 3.1: A block diagrammatic approad to polarization basedimaging techniques

Source and polarization state generation optics

The sourcecan be coheren or incoheren. It can be monochromatic or polychro-
matic. The polarization state generatorscan either be integrated into the source,
asin the caseof polarized laser sources,or could be a separatesection, consisting

of polarizersand wave-plates,to generatethe desiredstates of polarization.

Semi-in nite  scattering slab with hidden inclusion

The scattering slab is characterizedby its thicknessL or optical thickness , the
density of the scatterersspeci ed in terms of |5 or | , the sizeof the scatterersspeci-
ed in terms of the sizeparameterx or the anisotropy parameterg, and the relative
refractive index (RRI) m betweenthe scatterersand the surrounding medium. The
opaqueinclusionis usually assumedo betotally absorbingandre ection from it are
neglected. For applications like biomedicalimaging, the subject of interest can be
the variation of someparameteracrossthe slab. In sud casesthere is no separate
inclusion to be imaged.
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Collection and polarization analysis optics

This usually consistsof a spatial Itering section comprising lensesand apertures
and a polarization analysissectioncortain polarizersand/or wave-plates. This part
of the setup discriminates photons basedon their direction of arrival and the state
of polarization, so that, to the extent possible,only the unscattered photons are
allowed to read the detector. This unit is characterized by the focal lengths of
the lensesbeing used,the sizesof the apertures, orientation of polaroids and wave

plates, etc.

Detector

The detectoris usually either a scanninglock-in ampli er or a chargecoupleddevice
(CCD), though it cantake other formstoo. In casea CCD is used,its gain, signal
to noiseratio (SNR) at various gains, the spatial resolution, quartization depths,

sensitivity and integration time etc., a ect the nal results.

Data analysis and interpretation

Data analysisand interpretation are basedon measuremets of featuresthat dis-
criminate regions of the scattering medium from that of opaqueinclusion. The
modeling of the scattering phenomenonplays a major role in deciding the analysis

and interpretation algorithms.

We segregatehe review accordingto theseblocks. For better ow in the presenation,
we begin the review by studying the in uence of the scattering slab parameterson the
performanceof imaging. After that, we review the literature assaiated with Sourceand
polarization state generation optics. Later, we review the Collection and polarization
analysis methodologies. Finally, we review di erent polarization based, CW imaging

sthemesalong with their ass@iated processingtechniques.

3.2.1 Eect of scatterers on imaging

In general,light scatteringby a collection of particles can be categorizedinto three pos-
sible regimes,basedon the amourt of unscatteredlight presen in the received radiation,

and the polarization memory of scatteredlight [34, 12, 35].
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Regime 1

When scatterer conceitration is low, a signi cant amourt of unscatteredlight is
detected,and also, a major part of the scatteredlight maintains its original polar-
ization. Under such circumstancespolarization basedimaging techniquesare really
not necessarysince,intensity basedtechniquesfollowed by imagerestoration should

Su ce.

Regime 2

When scattererconceitration is sud that no unscatteredlight is detectable,but the
scatteredlight is still partially polarized,the polarization properties of the scattered
light dependon the particle size. In this regime,the DOP of scatteredphotonsvaries
with the number of scatteringevens undergoneby the photons. Hence,DOP canact
as a discriminant for segregatingshort and long path photons. Thus, polarization

basedschemesare advantageousin this regime.

Regime 3

When scatterer concertration is too high, unscatteredlight is not detectable,and
also, all the scatteredlight is nearly totally depolarized. In sud adversescattering
conditions, neither intensity based,nor polarization baseddirect imaging techniques
are useful. To be able to image in this regime, one must use indirect imaging
techniqueslike optical coherencaomography [36], di usion optical tomography [18]
or other methods [5, 37].

We summarizethe above discussionin Fig. 3.2 by reproducing the sketch givenin [12].

Henceforth, all the advantages and applications of polarization basedimaging that
we mertion, will pertain to scatter concenrations where, the imaging condition can be

categorizedas belongingto regime?2 or 1.

Though the classi cation of the scattering regimesas shavn above looks attractiv e,

there are no clear boundariesbetweentheseregimes;rather, there is a gradual transition
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increasing concentration
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Figure 3.2: Summary of scattering regimes

from oneregimeto another. Hence,this classi cation is hardly of any use,unlesswe de ne
somemeasureghat determinethe scattering regimeto which a collection of particles be-
longsto. Towards this end, a few mesoscopidength scaleshave beende ned [35, 38, 39.
But, the major problem with thesede nitions is that, there is no way of theoretically
calculating them from the slab parameters. Thesevaluesare determinedonly experimen-
tally. This restricts their utilit y to being usableonly as a priori knowledgein designing

new imaging systems.

The following subsectionsdiscussthree important parametersof the scatterersthat

determinethe scattering regimeand in uence the quality of imaging.

3.2.1.1 The volume and density of scatterers

The scattering slab thicknessL, which represetts the volume and the density of the
scatterers(which in turn decideshe valuesofls (eqn2.7)and| (egn2.8)), determinesthe
scattering regime [11] and the amourt of unscatteredlight left in the received radiation
(eqn 2.10). The calculation of the DOP in scatteredlight also utilizes theselength scales
andis givenin [40]. The characteristic length scalesof depolarization for slab geometry

have also beende ned in [40]. These parametersgive a rst hand information about
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the scattering regimethat one may encourer, and also about the grossbehavior of the

scatteredlight.

3.2.1.2 The size of the scatterers

Though the sizeof the scatterersis a very important factor, it canhardly be ascertained
in most of the applications. This stresseghe needto model the scatterersbasedon the
application on hand, to obtain good results[41]. We now list a fewimportant obsenations
regardingthe e ect of sizeof the scattererson imaging, assuminga xed wavelength. In
the ensuingdiscussion,we usethe terms Rayleigh and Mie regimesto refer to situations
where, the particle sizesare much smaller and larger than the incident wavelengths,

respectively.

1. The spatial resolution achievable using polarization basedtechniquesdependsheav-

ily on the scattering anisotropy of the medium [42].

2. The sizeof the scatterersin uences the ballistic propagation and depolarization in

scattering media[35.

3. As the diameter of the scattering particle increasesthe number of scattering evens

required to degradethe ballistic propagation decrease$35, 43).

4. The transport meanfree path length of the scatteredpolarizedcomponert increases
with the particle diameter [35, 43, 38].

5. For small sizeparameters,the characteristic length of depolarization is independert
of the RRI [44].

6. Imaging through sampleswith large scatterersis restricted to lower optical thick-

nesseghan for sampleswith smaller scatterers[35].

7. For media with very high anisotropy parameter, polarization basedtechniquesdo
not yield any advantage over polarization-insensitive techniquesfor the purposeof
imaging [41, 34, 12, 35].
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3.2.1.3 The relativ e refractiv e index of the scatterers

We list a few important obsenations on the e ect of RRI on imaging.

1. Dierent media with similar |5 and g valuescan exhibit distinctly dierent polar-

ization characteristicsif the RRI are di erent [44].
2. For small sizeparameters,the depolarization length is independen of the RRI [44].

3. For large RRI and large size parameters,the anisotropy factor is diminished. This

behavior is due to the increaseof badscattering asthe RRI increased44).

4. Irrespective of the sizeparameter,the circular depolarization length dependsstrongly
on the RRI [44].

With this, we completethe review of the e ect of the scattering slab on imaging. We

now analyzethe e ect of sourceand polarization optics on the imaging performance.

3.2.2 Eect of source parameters and polarization optics

The important variables that needto be consideredhere are the wavelength of the
source,its polarization state, its spectral width and coherence.We neglectthe e ect of
coherencen this review. We have already seenthe in uence of wavelength (by way of
size parameter) on imaging performance. Hence,we restrict our review to analyzeonly
the e ect of polarization state of light on the imaging performance.The key results have

beenlisted below.

1. Depolarization of scattered light depends on the initial polarization of the pho-
tons [42].

2. Few scattering events are neededto randomize circular polarization in Rayleigh
regime[42, 45, 46, 40 and linear polarization in Mie regime[42]. Many scattering

everts are requiredto randomizecircular polarization in Mie regime[42, 45, 46, 40].

3. In dilute suspensionsof microsphereswhereindependert scatteringcanbe assumed,

the DOLP decreasess the scatterer concertration increases. Howewer, for dense
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suspensions,the DOP increaseswith the scattererconcertration, and further, pref-

erertial propagation of linear over circular polarizedlight is obsened [45, 46].

For biological tissues,the widths of the point-spread functions do not depend on

whether the incidert light is linearly or circularly polarized[41]].

Polarization discrimination of ballistic and snake photonsbasedon circularly polar-
ized light givesrise to a wider point-spread function than the onebasedon linearly
polarizedlight [41].

. Circularly polarized light cannot be used to discriminate between weakly and

strongly scattered photons for media cortaining spheresof large diameter. The

cornverseis true in media cortaining small sphereg41].

. The DOP decgs at the samerate for both incidert linear and circular polarization

statesfor small detector apertures and it is independert of the anisotropy parame-
ter [41].

. In Rayleigh regime,the depolarization ratesfor both the incidert linear and circular

polarization statesare nearly the same.

. Circular depolarization length strongly dependson the RRI and systematically de-

creasesafter ead scattering evernt, whereas,linear depolarization length decreases
with the randomization of directions. This is true, independen of the sizeparame-
ter and the refractive indices of the scatterersand the sizeof the receier's eld of
view [44].

The criterion to choosethe initial polarization state of the probe beam, when the
optical properties of the scattering medium are known, is addressedin [39. For
Rayleigh scatterers,linear polarization hasbeenrecommendedand for Mie scatter-

ers, circular polarization has beensuggested.

With this, we completethe review of the ways in which the polarization state of the

input light a ects imaging performance. It should however be remenberedthat only in

active imaging schemes,we can choosethe polarization state. Many applications use
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passiwe imaging schemes,in which case,the above review will not be able to help predict
the imaging performance. Now, we review the literature related to the fourth sectionof

the schematic givenin Fig.3.1.

3.2.3 Eect of spatial Itering and detector characteristics

The variables in the detector section that a ect the imaging performanceare, the
parametersof the spatial Iter, like, focal lengths of the lensesand the sizesof aper-
tures [47)], the detector sensitivity, resolution (both spatial and quartization levelsin the

caseof CCDs), noisecharacteristics,gain and the polarization analysisoptics.

The detector unit plays animportant role in the caseof CW imaging, since,apart from
polarization retained in the unscattered or lessscattered photons, which are weighed
appropriately by the polarization optics, what really helpsin rejecting di use photons
is, the spatial Itering. The amourt of light retained after spatial Itering is very low.
Hence,detectors sensitive to very low light levels are needed. Studiesreveal that polar-
ization gating methods are superior to the pinhole gating method whensignal strength is
weak [48].

The polarization analysisoptics will usually consistof polarizersand wave-plates(either
xed or variable), to weigh the collectedradiation accordingto the state of polarization.
Essetially, they work as gatesthat allow only particular kind of polarization and at-
tenuate other polarization states heavily. The action of polarizers and wave-plateson
radiations of di erent polarizationsis well expoundedin [7]. Howewer, the e ect of spatial

Itering on scatteredlight is lesswell documerted. We now look at somedetails of it.

In spatial Fourier lters, adjustmerts of the aperture sizeat the Fourier plane can be
madeto act asa variable temporal gatefor light emanatingfrom the scatteringmedia[47].
The above study dealswith pulsedimaging shemes.Howe\er, the conclusionsarrived at,
that the di usiv e componert of the scatteredlight can be removed by anglegating using

spatial Itering, holdsewenin the caseof CW imaging.
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In the samevein, there have beenexperimertal and theoretical studieson the detection
of ballistic and rejection of diuse light in trans-illumination confocal and heterodyne
imagingsystemg49]. From thesestudies,expressiongor optimum pinhole sizefor ballistic

light detection and di use light rejection for confacal imaging have beenderived.

For large detector apertures, even for small optical depths, the blurring e ects due to
multiple scattering becomeevidert, since,light from wide anglesare collectedand in this
casethe polarization-di erence imagingsthemeshave beenfoundto be moree ective[41]].
Detectorswith high sensitivity and gain are usually neededfor direct imaging. As for any
other application, detectorswith high spatial resolution and greater quartization levels

are desirable.

Next, we review somepolarization based,CW direct imagingtechniquesand asseiated

processingalgorithms.

3.2.4 Imaging schemes and pro cessing algorithms

There are mainly three variants of CW polarization basedimaging schemes,depending
upon the parameter of visualization adapted in the scheme. The rst sdemeis based
on orthogonalpolarization di erencing. The secondschemeusespolarization modulation,
nally leadingto sinusoidalamplitude estimatesasthe visualization parameter. Thesetwo
sthemesarein fact interchangeable and aswe will seein the following chapter, the former
Is a particular caseof the latter. The third group of schemesis basedon the principles of
ellipsometry, whereinthe schemesmake useof Mueller matrix estimatesof the scattering
medium for the purposeof visualization. In this survey, we have emphasizedon the rst
two classesnly. Howewer, we have merntioned someof the aspects of the schemesbased

on ellipsometry.

To beginwith, we presern the PDI schemes.The rst few schemeshave beenexplained
in detail, and for the onesthat follow later, we mertion only the di erences, since, the

di erences betweenthe implemertations are very little.
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3.2.4.1 Polarization dierence imaging schemes

One of the earliestworks on PDI sthemesis reported in [28, 3]. Theseatrticles elucidate
the ideasbehind PDI, the algorithm employed for reconstruction of the target and the
SNR analysis. There is a brief mertion of the possibleapplications of the techniquein [3],

which vary from polarization basedmicroscopy to runway lighting systems.

The experimental setup usedin [2§ is a passive PDI system. The polarization infor-
mation obtained after re ection from the target is usedfor reconstruction of the target

image. The actual imaging was performed as follows.

A polarizer/analyzer pair was usedto record imagesparallel and perpendicular to the
xed analyzeraxis denotedas|y and I, , respectively. Thesetwo formed the orthogonal
polarization state images. In order to reducethe noisevariance at ead pixel, a set of
128 such imageswere obtained at ead polarization state, added and suitably scaled. It
is showvn that the polarization di erence imagely |-, when enhanced,could give the
featuresof the aluminium target, along with the locations of the two abraded patchesin
it. Following the processingbehind the technique, it wasnamedaspolarization-di erence

imaging.

The reasonbehind the succesf the systemis hypothesizedas follows. The imagel
is formed due to both the scatteredand the unscatteredlight, whereas,the imagel, is
formedpredominartly by the scatteredlight (sincethe unscatteredlight would beremoved
by the polarizer-analyzerconbination). So, when we subtract |, from I, what we are
left with, is the image formed due to unscatteredlight alone. In short, the polarization
di erence image s the result of common-male rejection, i.e., the scatteredlight, which
Is commonto both I, and Iy, is rejected by the act of di erencing. In fact, this is the
argumert usedin all PDI schemesand is perfectly valid. The e cacy of the systemhas
beenexplainedon the basisof the obsened degreeof linear polarization (ODLP ), which
is de ned for a region as

_ hi Fegion (X; y)l

HODLP i egon = —c3on 0/ (3.1)
region H Fegion (X, y)l
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wherel PP(x;y) = I (X y)  12(xy) and IPS(x;y) = 1(X;y) + 12 (X Y)

Vindicating the applicability of the technique to real, natural settings, it is mentioned
that the PDI sdhemewas found to give encouragingresults for experimertal conditions
with ODLP  0:01, which is much lower than what one can expect from object surfaces

in natural ervironmert.

This schemeis very simple, passive and potentially very fast. Besidesthis, the same
analogy can be carried forward to any wavelength of the electromagneticspectrum. In
casethere is a need,further processingdike histogram equalizationetc. can be performed
on the PDI results. The only possiblebottlened could be the low light levels that one
usually encourters in scattering conditions, which may slow down the processof acquiring
images. This stressedhe needfor having highly sensitive detectorslike intensi ed CCD or
its variants for the succes®f the stheme. Sincethe processingat eat pixel is independert

of the other pixels, the whole sthemecan be parallelized, making the analysisvery fast.

For assessingkin lesionsin super cial epidermaland papillary dermallayers, an imag-
ing modality which usesa video camera,whereinthe medanism of cortrast is governed
by the re ectance of polarized light has beendescrited in [50, 51]. In this scheme,the
nearly unpolarized, di usiv ely re ected light from deeper layersof skin is rejectedin favor
of polarization retaining light badkscattered from super cial layers, where most of the
skin lesionsoccur. Careis taken to avoid specularre ection from the skin surface. This
system has demonstratedthe ability to visualize the true margins of skin cancer, that
were not easily discernible by dermatologistsby using a simple, incoheren white-light
source. The resultant imagesare also supposedto subtract melanin pigmertation from
the imagesof pigmerted skin lesions,revealing the underlying structure. The resultant
imageis obtained asnot just the di erence of the imagesasin [28], but asDOP (eqn 2.4)
at ead pixel. In this case,the eqn3.1is explainedasfollows. The numerator symbolizes
suppressionof highly scatteredlight whereasthe denominatoris supposedto ensurethe
cancellationof the attenuation due to pigmertation of melanin. It is alsodescriked asto

how the polarization basedcameracould improve the estimate of the size of a sclerotic
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basal cell carcinoma,thereby proving usefulin performing surgical excisionof suc cells.

The in uence of particle size on active polarization discrimination imaging in under-
water applications hasbeenstudied using Monte-Carlo techniques[52]. Both circular and
linear polarization stateshave beenconsideredn the simulations. The simulations mimic
the situation of a depolarizing target beingilluminated by linearly or circularly polarized
light, through a scattering medium. The depolarizedlight re ected from the object is the

quartity of interestin this problem.

In order to view the object, one must reject the light scatteredfrom the medium, but
retain the light scatteredfrom the object. It is mertioned that the light badkscattered
from the mediumwith few scattering everts will retain its original polarization to a great
extert, whereasthe light re ected from the object would be totally depolarized. Hence,
viewing the medium from a state, orthogonalto the incident state of polarization should
suppressthe radiation scatteredfrom the medium, but retain the radiation re ected by
the target. This is what is leveragedin this scheme. This schemeis shovn to work even

for trans-illumination and many o -axis geometries.

The article givesthe following important results.

1. In general,the e ectivenessf the orthogonal polarization technique decreasesvith

increasingscattering particle size.

2. There is a clear maximum in the cortrast enhancemenat a particular depth (de-

pending on particle size).

3. The depth at which the orthogonal polarization techniqueis most e ectiv e increases
with particle sizebut with an improvemert factor that reduceswith particle size.
This, though is generallytrue, will fail whenthe radius of particles nearsthe wave-
length of illumination. In this condition, the scattering properties will shov a non-

monotonic behavior.
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Another re ectance mode, active polarization-di erence imaging scheme,usefulfor un-
derwater applicationshasbeendiscussedn [53]. Enhancemenin target detailsis obtained
by illuminating the scenewith a sourceof known state of polarization and detecting the
re ected light orthogonally polarized to the incident state. The authors refer to this
as polarization discrimination imaging. It has beenshown that the e ectivenessof this
technique depends very weakly on the particle shape and on the form of illumination
geometryas mertioned in [54]. The authors also endorsethe obsenations of [52]. They
alsoproposea imagesubtraction basedtechnique that extendsthe visibility depth further

than a factor of 2, achievable by observingthe cross-mlarization image.

The di erence betweenthe shememertioned in [53] and that of [50, 5]] is that, though,
in both methods the co-polarized and the cross-mlarized imagesare obtained, in [53), it
is the cross-mlarized imagethat cortains the information of the target, whereas,it was
the co-polarized imagethat carriesinformation in the experimerts described in [50, 51].
The important thing to note hereis that, in [53, the co-polarized and cross-mlarized
imagesdo not cortain the sameamourt of scatteredlight. Hence,subtracting co-polarized
image from the cross-mlarized image does not provide the details of the target. It is a
fraction of the co-polarized image that needsto be subtracted from the cross-mlarized
imageto obtain the desiredresult. Through simulation results, it hasbeenreported that
the optimum subtraction fraction is found to be  13%. By simulations, it has also
been reported that the subtraction technique can improve the visibility depth by 1
mfp (scattering mean free path), which is a signi cant improvemert for the application
ervisaged. Also, there are comparisonsof this schemewith two other subtracted-image
enhancemeh schemes, both of which are variants of unsharp masking. It is reported
that, amongthe three enhancemehstemesthe polarization basedsthemegave the best

results.

Somenovel approadesto tissueoptics by laserlight scatteringhave beenstudiedin [37].
Three di erent techniqueshave beenreviewed, and imaging basedon DOP as visualiza-

tion parameteris oneamongthem. The techniqueshave beencomparedwith traditional
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approatesto diagnosticsand imaging of macroscopicallyinhomogeneousmultiply scat-
tering objects through simulations and experimerts as well. Here are the highlights of

this article.

1. For the intermediate scattering regime (| L), the ballistic and snake photons
cortribute signi cantly to the detectedlight. Hence,visualization and location of
the absorbing inhomogeneiy by using DOP as a parameter would yield results

better than usingintensity alone.

2. The e cacy of the polarization basedsthemesincreasesas anisotropy decreasesas

mertioned in [52].

3. The maximal sensitivity that can be achieved with the DOP as the visualization
parameter should be expectedif the modal value of the e ective path length is of
the order of depolarization length and this can be taken as the criterion for the

applicability of the technique.

Results of experimertal and simulation evaluations of the possibility of using linearly
polarized CW laserradiation for imaging of absorbers embeddedin a multiple scattering
medium is given in [55. The transmitted light is analyzedin terms of DOLP (eqn 2.4).
The cortrast and e ective signal to noiseratio for imagesreconstructed using DOLP
as visualization parameter have beendiscussed.A parameterto de ne the sharpnessof
the resulting imageshas beenquoted from earlier literature. Here too, the polarization
basedsthemescan give better results than intensity basedsdemesin the intermediate

scattering regime.

With this, we concludethe review of PDI schemes. Essetially we found two ways of
interpreting the result. One is, by the method of di erence of the co-polarized and the
cross-mlarized images(or their fractions) and the other is, by calculating the DOP. We

comparethe two sdhemesin the next chapter.

Next, we review another polarization basedimaging scheme, which usessinusoidal

estimation for visualization.
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3.2.4.2 Polarization modulation imaging schemes

As a parallel dewelopmen to the PDI schemes,someresearbiers were working on the
polarization modulation imaging (PMI) sdemes.One suth schemeis reported in [31]. In
this scheme, the sourcepolarization state, which is taken to be linear, is madeto rotate
(i.e., modulated) at a known rate. The scatteredlight is Itered through a xed analyzer,
sothat, the intensity due to the ballistic and snake photons gets sinusoidally modulated
at twicethe rate of modulation of the sourcepolarization (seeMalus' law, eqn2.11,2.13).
Howeer, the di usely scatteredlight doesnot shov sud a variation, sincethe di usely
scatteredlight will either be unpolarized or randomly polarized. The cortribution of the
ballistic componert to the overall signalis usually small comparedto the cortribution of

di usely scatteredlight, and is given by Beer-Lanbert's law (eqgn 2.10).

The sinusoidal componert in the received signal is detected using lock-in detection.
The resolution of sudh a shemeis limited only by the diraction phenomena(i.e., the
theoretical limit) and henceis much better than the resolutionthat can be obtained with

photon density wave imaging [18], for which, the e ectiv e wavelengthis much longer.

The above method was considerably improved in [27, 2, 56]. The data acquisition
was hastenedby replacing the scanning lock-in detector by acquisitions with a CCD
camera. The apertures were replacedby a spatial ltering sdeme. Sincethe acquired
imageswere processedo ine, the needfor a lock-in amplier was eliminated. These
simpli cations renderedthe PMI schemevery simple and fast and comparableto the PDI
sdhemesmertioned in [28 3]. Now, we take a brief look at the data acquisition and

processingsthemeadoptedin [27].

Linearly polarized light, whoseplane of polarization was cortrolled by a rotating po-
laroid was madeto fall on a scattering slab cortaining an opaqueinclusion. The rotating
polaroid, which was mounted on a stepper motor was moved by a known, xed angle at
ead step. At ead step, an image of the scatteredlight Itered through a spatial lter

and a xed polarization analyzerwas captured by an intensi ed CCD.
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Sincethe ballistic and snake photonsretain their initial polarization even after scatter-
ing, their cortribution to the imagesshould vary accordingto Malus' law (eqn 2.13), as
the plane of polarization of the incidert light is rotated. So, if we take a seriesof images
with the plane of polarization varying by xed angularincremers at ead step, then the
seriesof valuesat ead pixel should shav a sinusoidal variation if the ballistic and snale
componerts are high enough. The di usiv e componert hardly cortains any polarization
information, and that is random. Hence,its cortribution to the seriesof valuesat eat
pixel is noisy. Now, the task of nding the ballistic and snake photon componerts in the

signal boils down to nding the amplitude of the sinusoid at ead pixel.

The opaqueinclusion essetially blocks the ballistic light from reading the CCD cam-
era. Hence,at the pixels lying in the geometric shadav region of the inclusion, we do
not expectto nd any ballistic componen, i.e., the sinusoidal componert is almost zero.
At other pixels, a sinusoidal componert will be presen. So, a measureof the ballistic
componert (viz. the sinusoidal componert) recordedat eat pixel location of the series

of imagesshould be able to give the shadav of the opaqueinclusion.

The estimation of the sinusoidal componert at ead pixel is performedin [27, 2, 56]
with the ubiquitous tool of Fourier transform. Sincethe rate of changeof intensity due
to ballistic and snake photonsis twice that of the input state of polarization (! ), we need
to nd the 2! componert of the Fourier transform at eat pixel. The resultant gray-scale
imageis constructedwith the intensity at ead pixel being equalto the magnitude square
of the 2! componert. A suitable scalingmay have to be applied to the image,to be able

to perceiwe it.

It has beenreported that the method has beenable to give good results for objects
hidden in turbid mediawith turbidit y ashigh as30 , with a spatial resolution of about

100 m , using a cortinuous, 1 mW lasersource.

It is important to note the subtle di erence in the principle of polarization discrimina-

tion asgivenin [28], ascomparedto that givenin [31, 27, 2, 56]. In [28], the polarization of
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the light re ected from the target is constart and at the detector, the analyzeris rotated
to acquirethe co-polarizedand cross-mlarizedimages.But in [31, 27]the analyzeris held
xed and the sourcepolarization is modulated. Hence,the later technique can be used
only in the caseof active imaging, wherethe sourceis cortrollable, whereas,the former
can be usedewen in passiwe imaging schemes. Perhaps, one would get the sameresults
by having a xed sourcepolarization plane and a rotating analyzer,even in the imaging
setupdescrikedin [31, 27]. This is animportant changethat canextendthe utilit y of the
PMI procedure.

The two classef imaging schemesreviewed till now, i.e., the PDI and the PMI, have
utilized the polarization of the scatteredlight to visualize the hidden object. Howewer,
no property of the inclusion itself can be discernedby these methods. The presence
or absenceof an inclusion and in casean inclusion is presen, its dimensionsand some
properties (as in the caseof the two patchesdescrited in [28)) are the only information

that can be obtained by thesemethods.

Howewer, someimaging sdhemeswhich study the polarization properties of a scene,
instead of the polarization state of light, have beendeweloped [57]. Theseare termed as
polarization diversity active imaging (PDAI) sdhemes.We next study two sud sthemes,
which are extensionsof ellipsometry to active imaging and rough surfaceoptics. We have
reviewed the PDAI sthemesfor the sake of completenes®nly, and we mainly concertrate

on PDI and PMI schemesin the following chapters of the thesis.

3.2.4.3 Polarization diversity active imaging schemes

In PDAI sdhemede ned in [57], a sceneis illuminated with a sequenceof polarization
statesand the measuremets of polarization state scatteredfrom the sceneare captured
asimages. Theseimagesare then analyzedto determinethe Mueller matrix at ead pixel.
The Mueller matrix of the target is obtainedusingthe Mueller Matrix Imaging Polarimeter
(MMIP), which usesthe dual rotation retarder technique [58]. The authors explain asto

how, depolarization of light can be usedto estimate target roughnessand texture. The
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information obtained by this sthemehas beenusedto measurethe orientation of bodies

and estimate their refractive index.

The defenserelated applications of PDAI, like de-camou aging and target detection
have beenstudied [59]. The main ideain this sthemeis to usethe DOP of the re ected
light (de ned dierently from eqgn 2.4), to distinguish man-made objects form natural
objects. In this technique, the fact that man-madeobjects depolarize incident polarized
light to a lesserextert as comparedto natural objects has beenleveraged. The authors
demonstratethe idea by using the Dual Rotation Retarder Tednique (see[57]). In this
stheme, the polarization degreeat ewvery pixel location is characterized by its Mueller
matrix M . This is di erent from the way the DOLP wasde ned in the PDI schemes(see

egn 2.4). The polarization degreePd is de ned by the authors as

S p D

3 P 3

> > M 2 M 2

Pd: 100 i=0 j=0 ij 00
3M 3,

and intensity is de ned as

I =M g

where, M j; stand for the elemerts of the Mueller matrix M : The degreeof polariza-
tion Pd variesfrom 0% (correspnding to a totally depolarizing target) to 100% (a non-

depolarizing target).

The DOP as de ned above is independert of the actual incident and received inten-
sities (it dependsonly on the Mueller matrix elemeits), but the DOP asde ned in [29
dependson the actual received intensities. The method proposedin fact capturesall the
properties of the medium through which the light scatters. Hence,this may be a better
represemation of the DOP, than that de ned in [28]. The drawbad of the schemeis the
huge computational cost involved in nally obtaining polarization images,as compared
to the sthemedescrited in [2§. The results are usually represeted in pseudo-colordor

better visualization.



CHAPTER 3. IMAGING THROUGH SCATTERING MEDIA: A REVIEW 45

The technique of Mueller Matrix Imaging Polarimetry (MMIP) hasalso beenusedfor
characterizing tissue properties [60], through which, the results of [5(] have beenveri ed.
MMIP acquiresimagesof samplesand calculatesthe full Mueller matrix for ead pixel of
the image. Sincethe Mueller matrix completely characterizesthe polarization properties
at a pixel, all the information about the di erent regionsof the tissue can be obtained
and thus, the regionscan be characterized. It hasbeenshownn that MMIP canbe usedas

a technique for characterizing various dermatologicaldiseases.

Sincethe processingschemesdiscussedsofar do not needinformation about the wave-
lengths involved, all the imaging techniques discussedso far now can be extended to
other regionsof the electro-magneticspectrum too. They can alsobe modi ed to handle

circularly polarizedlight.

Our survey of the various polarization basedimaging techniquesconcludeshere.



Chapter 4

Pro cessing polarization-ric h data

There are mainly two imaging techniques which make use of the polarization of the
scatteredlight to distinguish di erent regionsin a scene,namely the Polarization di er-
enceimaging (PDI) and the polarization modulation imaging (PMI). Till now, to our
knowledge,there has beenno comparative study of thesetwo schemes. In this chapter,
we embark on sud a task. We comparethe theoretical and experimertal performanceof
the PMI schemedescriked in [27] and the PDI sthemedescribted in [3]. We also propose
few other processingechniquesand theoretically study and comparethem with thesetwo

existing schemes.

We proposea minor changeto the PMI schemeproposedin [31, 27], to makeit suitable
for both active and passiwe imaging. The necessarychangeis to keepthe plane of polar-
ization of the incidert light xed and allow the analyzerto rotate. Also, we can obsene
that the PDI schemebecomesa particular caseof this modi ed PMI schemeasexplained

below.

In the modi ed PMI scheme,if imagesare captured with angular displacemets of =2
of the analyzer, the frequencyof the resulting sinusoid due to unscatteredlight will be
half the rate at which the imagesare captured (the sampling rate), i.e., only two points
of onewhole period of a sinusoid will be sampled. If one of the sampledpoints (images)
Is chosento be at the maximum of the sinusoid (the co-polarizedimage), the next sample

will naturally be that of the minimum of the sinusoid (the cross-mlarizedimage). Thus,

46
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we can get the polarization di erence data by properly choosingthe sampling point. In
the rest of the thesis, wheneer we refer to the PMI scheme,we assumesud a modi ed

PMI sdheme,asgivenin Fig. 4.1.

- - - U - - - L L

LASER BE FP (0] SF RP CCD

Figure 4.1: The modi ed PMI imaging scheme. BE: Beam Expander, FP: Fixed
Polaroid, O: Object immersedin scattering medium, SF: Spatial Filter, RP: Rotating
Polaroid, CCD: Charge Coupled Device

In order to comparedi erent processingschemes,we utilize the conceptsof estimation
theory, with the assumptionthat the imaging methodologiesbeing consideredare essen-
tially dierent estimators for estimating the samequartity. The characteristics of the
estimatorsthat are of concernto us are the bias and the variance. An estimator is said
to be unbiasedif it yields the true value of the parameterbeing estimatedon an average
over all possiblevaluesof the parameterbeing estimated; else,it is termed asbiased[61].
The varianceof the estimator is a measureof the closenes®f the estimated valuesto the
actual value and is the criterion usually usedto rank the estimators. Another important
characteristic of an estimator is its e ciency, i.e., how good the estimator is, in using the
available data to estimate the unknown parameters. The e cien t estimator is the best,

minimum variance, unbiasedestimator one can hope to design.

From the point of view of data processingand visualization, we identify three di erent
parameters,which can be usedto interpret the polarization information cortained in the
received radiation. We classify the imaging methodologiesbasedon these visualization

parametersas

Polarization intensity imaging (PI1)

If we can segregatethe information in the received radiation as correspnding to



CHAPTER 4. PROCESSINGPOLARIZATION-RICH DATA 48

the polarizedand the unpolarized parts (which we shaw to be possible),we canuse
the amourt of polarizedlight asa visualization parameter. We call sudh shemesas
belongingto the category of polarization intensity imaging. The PMI descriked in

[27] can be taken as an exampleof suc a scheme.

Degreeof polarization imaging (DOPI)

In these schemes,the quantity of interest is the degreeof polarization. It is a
measureof the purity of the received partially polarized radiation and may corvey
information about the nature of obscuredobjects, apart from their location. In our
comparisons,we consideronly the degreeof linear polarization (seeeqn ??). This

parameterhasbeenusedin [2§] to visualizethe polarization information.

Polarization orientation imaging (POI)

This schemeis usefulonly whenlinearly polarizedlight is usedfor imaging. When
the receiwved radiation contains multiple linearly polarized states,we may be able to
idertify and categorizethe obscuredobjects basedon the orientation of the plane
of polarization of the received radiation. To the best of our knowledge,this hasnot
beenutilized in any of the imaging sdhemes,though, as we will show, this can be

obtained at no extra cost, when we usethe PMI scheme.

In order to be ableto usethe conceptsof estimation theory, we needto model the data
capturedat ewery pixel location, in eat of theseimaging schemes.Weresortto the Stokes
vector analysisfor this purpose. As a precursorto modeling the data, we would like to
stressthe point that the processinginvolved in all the imaging schemesdiscussedn this
thesis is essetially 1-D. A typical, polarization based, direct imaging technique yields
a seriesof images,with the imagesbeing captured at particular states of the analyzer
optics. The processings performedat a particular pixel location, by looking at the series
of data valuesat that location, acrossimages. Every processingoperation is applied to

all the time series.

After estimating the visualization parameter at every pixel location, we construct the

resultant imageby plotting the estimated valuesas an image. One important factor that
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cana ect the resultart image,is the varianceof the estimated quartities at ead pixel. If
the estimated quartities show a large variance,we may obtain drastically di erent results
when we repeat experimerts with the sameimaging setup. Estimation theory comesto
our rescuehere, sincethe varianceof the estimatorscan be usedto judge the performance
of the processingsthemes. Though the actual value of the estimated quartities are very
important, in many cases,it is the estimator's variance that is crucial. The resultant
imageis usually segmeted into two or more regions,correspnding to the hidden objects
and the badkground. In sud casesthe true valuesat ead pixel location will not be very

crucial, unlessthey a ect the segmenation processitself.

In our analysisof the processingsthemes,we assumethat the data valuesare recorded
using an ideal detector. i.e., we have ignoredthe e ect of quantization of the actual data
when the information is corverted to an image. Also, the detector is assumedto have
in nite  dynamic range. We assumethat thesefactors a ect all the processingschemes
equally, and hence,the best processingscheme should remain so, even when applied on

guartized and clipped data.

In all further discussionswe also assumethat the incidert light is linearly polarized.
Extension of the analysisto circular polarization where\er suitable, is usually simple, and
Is mertioned later. The caseof passive imaging alsoassumeghat the information about
the object of interest is parameterizedby the linear polarization information preser in

the receiwed radiation.

With this badground information, we model the intensity recordedin the PMI sdheme,

(shown in Fig 4.1) asfollows.

4.1 Signal modeling

In general,the Stokesvector (SV) recordedby a point detector (or at a pixel location
of a CCD camera), can be represeted as [Hsi hQsi  hUsl h‘\/si]O where hi represems

time averaging. Though, due to nite detector area, there is spatial averaging also,
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we are more interested in time averaging, since the areasinvolved are small and the
dominant factor a ecting the recordedSV turns out to be time. The statistics of the
time averaged,scatteredStokesvectorsis of importanceto diverseapplicationsand is yet
to be studied fully [38]. But, sincethe integration times are usually large comparedto
the coherencetime (a measureof the duration of constancyof the instantaneousSV of
the wave eld) [38], it is usually assumedby virtue of the certral-limit theorem,that the
time averagedStokes parametersrecordedduring di erent sub-intervals are statistically

independen, Gaussianrandom variables.

Howewer, for someexperimertal data, the power spectral density of the time seriesre-
vealedan underlying colourednoiseprocesswhich canbe modeledby an Auto Regressie
1 (AR1) process[69. Hence,we do not assumethe noiseto be white, in modeling the

obsened data.

With this information, we canmodel the intensity recordedat an arbitrary pixel location

at the n™ step of acquisition of PMI schemeas (from eqn 2.12)
1 .
l/(n) = §(|s+ Qsc0s2 , + Ugsin2 ) + v(n) n=0,12 ;N 1 4.1)

where , is the anglemadeby the analyzerwith respect to the horizortal at the n™ step

and v(n) is an AR1 process,given by
v(n) = av(n 1)+ w(n) (4.2)

where,w(n) is a zeromean,independent and idertically distributed (iid) Gaussiannoise
processwith unknown variance 2 and a is the unknown AR1 coe cient. In casea = O,

the noiseprocessbecomeswhite.

Henceforth, we deal with the analysisof a singletime series,represeting data at any

pixel. The analysisessenally appliesto all other pixel locations as well.
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Assumingthat the rotating polaroid takesM stepsto completeexactly onerotation,
incremerts by ZVC at eadt step of the polaroid. Supposewe start grabbingimagesstarting
with an arbitrary orientation  of the rotating polaroid, the intensity recordedat the n"

step can be represered as

I,(n) =

4 n . 4n
s+ Qscos V+2 + Ug sin V+2 + v(n) (4.3)

NI -

A more useful represemation of the sameequation would be

1 p— . 4 n
I, (n) = 5 ls+ Q2+ UZsin oM +2 + + v(n) (4.4)
where, = arctan 8—:

We obsene from egn4.4 that the componert of the intensity that is independert of the

orientation of the analyzeris '75 which corresp)bwdsto the di use part of the scattered

light. The amplitude of the sinusoidal part, i.e., Q'g; us correspndsto the ballistic and

shake componerts and is a measureof the magnitude of the polarizedlight in the received
radiation. We denotethe former by |5 and the latter by I,,. Using this represemation,

[+ (n) = lgeat + lpar SIN + + v(n) n=2012 N 1 (4.5)

4n
M
where we have replacedthe term 2 + by a singlevariable, . The discretefrequency

f of Iy is givenby f = 2.

In all our comparisonsof the imaging schemes,we assumethat there are N images
available for analysis. i.e., in caseof PDI stheme,there would be N7 imagesead, corre-
sponding to the co-polarized and cross-larized data. In PMI schemes,there would be
N imagesconstituting a time seriesat every pixel location, which would be analyzedfor
estimating the sinusoidal componert. We further assumethat N is an integral multiple
of M. Although this condition is not very strict asN increasesfor the sake of analysis,

we cortinue with this assumption.
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The comparisonof the analysis shhemesneedsthe knowledge of the noise statistics
at ead pixel location, which is seldomknown a priori. Still, we assumethat the noise
characteristics are known and analyze the various schemes,since we get an idea of the
performance of the various estimators given a particular noise condition. We do not
explicitly estimate the noise variance terms, since the quantity of interest to us is the

unscatteredcomponert of light and noiseis a nuisanceparameter.

Eadh imaging stheme is analyzed for two cases: (i) v(n) is white, and (i) v(n) is

coloured. When we assumev(n) is white, we replacev(n) by w(n) for clarity.

We now analyzeimaging sthemesthat exploit polarization intensity.

4.2 Polarization intensity imaging

4.2.1 Polarization intensity imaging - the case of white noise

We obsened earlier that the PMI sthemedescriked in [27], belongsto this class. If the
processingof data in PDI schemesis restricted to taking the di erence of the intensities
alone,the PDI schemescanalsogive the polarization intensity information. The di erence
betweenthe maximum and minimum intensitiesof the PDI data givestwicethe amplitude
of the sinusoid buried in noise. We shall comparethe performanceof sud a PDI sdheme,
with that of the PMI scheme.

4.2.1.1 Intensity imaging using PDI estimator

The analysisof the PDI schemecanitself be subdivided into two cases.The rst isthe
generalcase,wherethe oriertation of the plane of polarization of the incident radiation
is not known. Most of the passiwe imaging schemesbelongto this category In the second
case,it is known exactly. Many active imaging schemesfall into this category However,
sincethe rotating polaroid is at the receivingendin the modi ed PMI scheme,it is possible
to know the orientation of the plane of polarization of the incidernt radiation by nding

the position of the analyzerwhich corresppndsto either the maximum or the minimum
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intensity recorded,even in passive imaging schemes.Let us rst analyzethe generalcase
and later seeasto what happenswhen the plane of polarization of the incident light is

exactly known.

We denotethe co-polarized intensity recordedin a generalPDI sthemeby | and the
cross-mlarized intensity by I, . Sincethe polarization orientation of the incidert light is
not known, we assumethat the intensity recordedas | is obtained with the analyzerat
an angle with respect to the horizontal. Thus, the imagesneednot correspnd to the
co-polarization and cross-mlarization locations. The recordedintensities would then be

(from egn4.5)

1k(N) = Tscat + TbarSIN( ) + W(N) (4.6)
l>(N) = lscat + lpaSIN( + )+ Wo(n) (4.7)
wherew(n) and wYn) are zeromeaniid Gaussianrandom variablesand = (2 + ).

In PDI sdheme,the estimate of the ballistic componert in the recordeddata is given
by

N
2
lapor = 1) 12(n) 48)
n=1
In many implemerntations of PDI schemes the scalingfactor hasbeenfoundto bedi er-
ert. It is an arbitrary constart in somesdemes[53, 28]. Howewer, using the di erencing
scheme,we cantheoretically estimatethe ballistic componert by eqn4.8. If any arbitrary
scalingis used,the estimate would be a scaledversionof the actual ballistic componert.
The scalingwould a ect the varianceof the estimate also. Hence,we restrict our analysis

to the theoretically correct scalingvalue.
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Now, by substituting the expressiondor I, and I, from eqns4.6 and 4.7 to eqn 4.8,

and by simplifying the resulting expressionwe obtain,
(bappr = lpaSin + w (n) (4.9)

wherew (n) is a zero-meanGaussianiid noise,with variance -, where 2 is the variance

of w(n) and wYn). We can easily seefrom eqn 4.9 that

Ef(bapp1 9= |pa Sin (4.10)

2

varf r\ba|;pD| g-= W (411)

whereEf g standsfor expectation and varf g standsfor variance of a random variable.

Clearly, the estimate r\ba|;pD| is biased, sincethe estimated value dependsupon . If
the co-polarized and cross-mlarized imagesdo not correspnd exactly to the maximum
and minimum values, the estimated value of the unscatteredcomponert will not be the
true value. This is a big disadvantage of PDI scheme. Only when = 5, we get the true
estimate of the unscatteredcomponent. The estimator has a variance of Wz irrespective
of the valueof . Thus, only whenthe plane of polarization of the incidert light is exactly

known, we get true estimatesof the ballistic componert.
Next, we analyzethe performanceof the PMI polarization intensity estimator.

4.2.1.2 Intensity imaging using PMI estimator

SupposeN data valuesfrom the PMI schemeare available for analysis. It can be seen
from egn4.5that the %th componert of the N-point DFT (Discrete Fourier Transform)
would cortain the information of the sinusoid. Here, we assumethat 2 is an integer,
i.e., N is an integral multiple of M. The N-point DFT of a signal x(n) is given by

D( 1

X(k)=  x(neizkN =0 L2omnN 1 (4.12)
n=0
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So, as per [27], wherethe PMI sthemehas beenused, the estimate of the ballistic com-
ponert in the signalis given by
N ?

(barpmt = 1 v (4.13)

where, |, standsfor the DFT sequenceof |,(n). Though, this is oneway of represeting
the polarization data, for the sake of comparisonof various shemes,we use a properly
scaledde nition of the DFT to get the actual estimatesof |,,. We can easily nd that

the estimate of |, is actually given by

2 2N
r\baI;PMI = W I V (4-14)

The analysisof the bias and variance of the estimator is quite formidable, and hence
we have resortedto numerical simulations for the purpose. We comparethe results of the

simulation with that of the PDI intensity estimator, in a later section.

Next, we analyzeasto what best canbe doneto estimatel 5, from the basicprinciples

of estimation theory.

4.2.1.3 The holy grail for intensity imaging

In the framework of estimation theory, the bestestimator, with the optimality criterion
beingthe minimum varianceof the estimatedquartit y, is the minimum variance,unbiased
(MVU) estimator [61]. However, existenceof an MVU estimator doesnot ensurethat the
estimator is e cien t. In addition to being unbiased,if an estimator attains the Cramer-
Raolower bound (CRLB), the estimator will be e cient. This is the bestMVU estimator
onecanhopeto design. We rst look at the possibility of nding sud anoptimal estimator

for the problem on hand.

In general,MVU estimatorsdo not exist for all unknown parametersunder all circum-
stances.As a rst stepin determining whether sud an estimator exists, we seewhat the

CRLB for the estimateis, and ched if someestimator satis esit. Here,the quartity that
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we wish to estimateis |y, of egqn4.5. The derivation of the CRLB for various unknown
parametersof egn 4.5 when the noiseis white, is given in Appendix A. It can easily be
found that the CRLB for |, is 2N—2 We now needto nd if there existsan estimator that

can achieve this bound.

From a theoremrelated to the CRLB [61]], it is known that an unbiasedestimator for

a parameter existsi

@np(l,; )

@ FO)al) ) (4.15)

wherep(l,; ) is the probability density function (pdf) of variable |,, parameterizedby
the unknown variable vector (seeeqnA.2) andf () and g( ) are somefunctions. If sud

a condition is satis ed, then the MVU estimator of is,

A= og(l) (4.16)
and the minimum varianceis given by

var(h) 1 (),
wherel () is the Fisher information matrix.

For the problemon hand, = Iy, andl,(n) isasgivenin eqn4.5. It canbe found that
the condition demandedby eqn4.15cannot be satis ed in this case.Hence,we abandon
our seart for the MVU estimator of 1,5 and look at other estimatorsthat give variances
closestto the CRLB.

When an MVU estimator doesnot exist, or if it cannot be found, one usually resorts
to the Maximum Likelihood Estimator (MLE), due to its interesting properties. MLE
performs optimally when large enough data points are available for analysis. It also
asymptotically achieves the CRLB, and henceis asymptotically e cient and optimal.

Further, if an e cient estimator exists, it is achieved by the MLE. Due to all these
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reasonswe resort to the MLE for estimating | .

The problem at hand is similar to estimating the amplitude of a single sinusoid, except
for the constart term | 5. We explorewhether we can extend the analysisof the caseof
a singlesinusoid, detailed in [6]] to that of ours. By modifying eqn4.5 asgiven below, it
is clear that the data can be modeledlinearly.
4n

M

. . 4 n
[r(N) = lgeat + Ipa COS SIN + lpa Sin CcOS M + w(n) (4.17)

With this modi cation, we can expressthe above equation as

2 3 2 3 2 3
I, (0) 1 0 1 5 3 w(0)
1 (1) 1 sin & cos - | scat w(l)
I (2) = 1 sin & cos - § | has COS z+ w(2)
: : | bal sin :
L4 (N 1) 4 (N 1) | {z—}
I,(N 1) 1 sin —F— cos —y— w(N 1)
I {z } | {z } | —{z—_}
Iy H W
(4.18)
or, equivalertly, by matrix notation as
lb=H +W (4.19)
If we canestimatelyy; cos and |,y Sin , we can estimatel 5 as
q
lba =+ (Ibai€OS ) + (IpaiSin )? (4.20)

The reasonfor choosing sud a linear form to model the data is intentional, sincethe
linear model gives immenseadvantage in designingthe estimator. It has been proved

that [61] if the obsened data X are described by the generallinear model

X=H +W (4.21)
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whereH is a known N p matrix with N > pandofrank p, isap 1 parameter
vector to be estimated, and W is a noisevector with pdf N (0; C), then the Maximum

Likelihood Estimator of is
"= HTC 'H 'HTC X (4.22)

" is also an e cient estimator, in that it attains the CRLB and henceis the MVU

estimator. The pdf of " is
" N( ;(H'C H) Y (4.23)

Sincethe linear model of eqgn 4.19 satis es the above conditions, we have an e cien t
estimator for I,y cos and Iy, sin - and thusfor 1y, which is the MLE of 1 5. Although
the estimator is biasedif data points arefew; it is asymptotically unbiased[62]. Moreover,
sincethe estimate is obtained by a non-linear transformation of the MVU estimates,the

estimator cannot be e cien t [61].

For the problem on hand, the rank of the matrix H canbe shavn to be 3 by considering
just the rst 3 rows and performing row reduction on the 3 3 matrix obtained. The
noisevector hasthe covariancematrix ?l, wherel isan N N unit matrix, and 2 is

the unknown noisevariance of the series.

To obtain the MVU estimatesof 1,3 cos and Iy Sin  easily we needa simple form
for the inversionof the matrix H. It can be shavn that this happensif N is an integral

multiple of M and then, the MLE estimate " for various componerts turns out to be

1 X!
r\scat;M VU = W I (n) (4.24)
n=0

2 X1 _4n
(a1 COS Myvy = N 1, (n) sin E (4.25)

n=0
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. 2 X1 4
Mbasin mvu = —  1.(n)cos & n (4.26)
N - M

where,M is the periodicity (number of stepsper rotation) of the rotating polaroid.

The covariance matrix of the estimate " is,
2 3

2
< 0 0
E 0o 2" 0 z (4.27)
2
o o 22
Hence,we have
2
varf r\scat;M vug= W (428)
2 2
varf (s cos wyvug = varf by sin myvug = N (4.29)

substituting eqns4.25and 4.26into eqn 4.20, we obtain

u ¢ T2 )2
of X! _4n X1 4 n

baliM LE = ¢ I (n)sin —— + lr(n)cos — (4.30)

’ N M M
n=0 n=0

It turns out that l'\bahM Le IS a random variable with the distribution being that of the
squareroot of a gammarandom variable with density ~ 1;;%; , when nite samplesare
used. Howewer, due to the properties of the MLE [61], the density asymptotically tends

to N (Ipar; 3)-

It is clearthat the right hand side of the above equationis the sameasthat of eqn4.14.
Hence,we arrive at the important result that the MLE estimateof | ,; canbe obtained by
the PMI scheme. It is worth observingthat if = 5, we can obtain the MVU estimates
of 1 ,a. Hence,if we know the exact phaserelations, we can obtain the MVU estimatesof

I bai, USingthe PMI scheme.
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We end our seart for better estimators of 1,5 here, sincethe MLE estimator almost
always does the best job, when the MVU estimator does not exist. In all subsequen
referencedo PMI, we imply the usageof the MLE estimator givenin eqn4.19,followed by
the transformation givenin eqn4.20. This alsocorrespndsto the LSEK (Least Squared
Estimator of K sinusoids) estimator mertioned in [62], as againstthe DFT, mertioned
asLSElin [62]. The advantagesof LSEK over LSE1 have beenmernioned in the same
article, and apply to this problem also, sincewe are estimating both the DC componert

and the sinusoidal amplitude simultaneously

4.2.1.4 Comparison of estimators

The following obsenations can be madefrom our previousdiscussions.
The PDI estimator is biaseddue to its dependenceon the value of

Though the MLE (and hencethe PMI estimator) is biased when only few data

points are available for analysis,it is asymptotically unbiasedand e cien t.

The variance of the PDI estimator (eqgn 4.11) is always lessthan that of the PMI
estimator. In fact, it is lessthan CRLB givenin A.8. This is at the cost of the
bias of the estimator, which doesnot improve with the amourt of data available for

analysis,unlike the PMI estimator.

Unbiasedestimatesof Iy can be obtained if = -, using both the PMI and the

PDI estimators.

If we can choose = 5, the PDI estimator ensuresbetter performancethan the

PMI estimator, due to lesservariance.

If  cannot be known a priori, the PMI estimator is preferableover the PDI esti-

mator.

The exactphaserelations canusually be known in the caseof active imaging. Hence,for
active imaging, PDI sthemesare more usefulthan the PMI sdhemes.For passieimaging,

though the PMI schemeseemdo be more suitable, there are certain circumstanceswvhere
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the PDI schememay still perform better. There are applications wherethe parameter of
interestis not the exactvalue of the sinusoidalamplitude, but its relative value acrossthe
scene. Sincethe PDI sdheme gives uniformly scaledvalues of the sinusoidal amplitude
acrossthe scene,it may be better to usethe PDI schemesinceits varianceis lower than
the PMI scheme. At the end of this section,we presen resultsfrom numerical simulations

to substartiate our analysis.

With this, we concludeour analysisof the various estimators for |, in white noise,

and proceedto study someestimatorsfor estimating the samequartity in colourednoise.

4.2.2 Polarization intensity imaging - the case of coloured noise

For the theoretical analysis of the various estimators in coloured noise, we needto
be speci ¢ about the kind of noisebeing considered,though, the estimators themseles
need not have a priori knowledge of the noise characteristics. It has beenfound from
experimertal data that the noiseprocessanbe adequatelymodeledby an Auto Regressie

(AR) processof order 1.

We reproduce here, the basicequationthat governsthe behaviour of the data samples.
[r(n) = lgeat + lpar SIN A;v'_n + + v(n) n=20;1;2 N1 (4.31)
The analysisof the PDI and PMI schemes,in the caseof white noisegave us closedform
expressiongor the meanand the varianceof the estimators. Howewer, to be ableto do the
samein the caseof colourednoiseis a formidable task. Moreover, sincethe theoretical
analysis of other estimators discussedin this section also throw up similar challenges,
we have resortedto Monte-Carlo simulations to comparethe estimators. First, we make
someobsenations about the PDI and the PMI estimators, following which, we seeif an
MVU estimator or an MLE exists for the problem on hand, and from there, we proceed
to seesomeestimatorsapart from the oneswe have discussedsofar, and nally compare

all the estimatorsdiscussed.
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We know that the assumedco-polarized and cross-mlarized intensitiesin PDI schemes

are given by
1«(n) = lscat + lparSIN( ) + v(N) (4.32)
12(N) = lscat + lparSIN( + )+ v{n) (4.33)

In the caseof white noise,the v(n) and vqn) terms areindepender, and hencewe could
easilyproceedto nd the meanand the varianceof the estimators. Howewer, in the caseof
colourednoise,thesetwo are dependen. Further, thev(n); n=0;1,2;, ;N 1terms
are themseles correlated and the vd(n) terms also shav a similar behaviour. Hence,
it is clear that the PDI scheme performs poorly in coloured noise, as comparedto its
performancein white noise. This obsenation is, in general,true for all estimators that

we consider.

The LSEK estimator, usedin the PMI sdheme,is alsosuboptimal, since,it too considers
the noiseto be uncorrelated[62]. Hence,we now setout to nd the bestpossibleestimator

of I by In colourednoise,from the point of view of estimation theory.

Due to the samereasonsas in the caseof white noise,it has beenfound that we can
not obtain an MVU estimate of 1,5, and we have to be satis ed with the MLE estimate
given by eqn 4.22. Howewer, what makes the coloured noise casedi erent is that, the
noise covariance matrix C in this casewill not be ?2I, and hence,the estimatesdepend
explicitly on the noisecovariance matrix terms. On the other hand, if the noiseis white,
we can obtain the MLE estimatesof the amplitude, without having to know the noise

variance per se.

In the caseof colourednoise,the noisecovariancematrix and needsto be obtained from
the obseneddata. This a ects the performanceof the MLE . Moreover, we do not directly
have the noisesamples sincethe data cortains signal plus noiseinformation. This makes
the estimation of the noisecovariancematrix di cult. Hence,numerousestimators have

beendesignedto tackle this problem [62].
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We can use an intuitiv e, nonethelessa very e ectiv e technique to estimate the noise
samplesfrom the data cortaining both signal and noise. These noiseonly samplescan
then be usedto obtain the noise covariance matrix. The technique we have used has
beenfound to improve the performanceof most of the high performanceestimatorsgiven
in [62. We comparethem at the end of this section. Now, we seethe technique of

estimating the noiseonly samples.

In the PMI imaging setup, we know the periodicity M of the sinusoidal componert a
priori, sincethe rotating polaroid is at the receiving end of the imaging setup. We use
this information to achieve our objective of obtaining the noisesamplesalone. In the PMI
sdheme,N, the number of data points available for analysis,is chosento be an integral
multiple of M. By taking a N point DFT of the obsened data, the information about
the sinusoid will be localizedto a single DFT coe cien t. Here, we refer to both positive
and negative frequencyterms, when we say a single DFT coe cient. It is the % o
coe cient and its symmetric courterpart, that carry this information. Similarly, the | g4
information is localizedto the DC componert. The rest of the frequency componerts

cortain only the noiseinformation.

We make an assumptionthat, by reducing the two DFT coe cien ts containing the
signal information (It and lpy) to zero, and taking an inverseDFT, we obtain noise
information alone. In doing so, though the signal information is eliminated from the
reconstructedsamples,somenoiseinformation is alsolost in the processand changesin
phasewill a ect the reconstructedsignal. Howeer, the idea is that, an estimate of the
noise covariance matrix, obtained with this reconstructednoise-onlysamples,would be
better than that obtained as given in [62]. Once we obtain the noise samplesin this

manner, we can estimate the noisecovariance matrix.

As we saw earlier, sincewe usually cannot know the noise covariance matrix a priori,
there have been various techniques deweloped to estimate the amplitude of a sinusoid

in coloured noise, someof which have beenreviewed and comparedin [62]. Of all the
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matched- Iter basedamplitude estimation techniquesmenrtioned in [62], for our applica-
tion, the APES (Amplitude and PhaseEstimator for Sinusoids) algorithm seemsto be
the best suited, sincewe needto estimate the amplitude of one sinusoid only. The algo-
rithm hasbeenfound to be asymptotically statistically e cient. Howewer, what is more
interesting is that, it is reported to be unbiasedeven when only a nite number of data
points are available for estimating the amplitude of a complexsinusoid. But, sincewe are
interestedin estimating the magnitude of the sinusoid, the e ciency will be lost. Still,
the performanceof the APES estimator for small data lengthsis what makesit attractiv e
for our application. The designof the APES estimator has beendetailed in [62, 63], and

its e cien t implemenrtation hasbeendescrited in [64].

Our modi cation of the APES estimator, using the noise covariance matrix obtained
asabove, shows lower variancein estimating the amplitudes, especially at lower SNR. We
call it asthe APESR estimator, wherethe appendedR standsfor “robust’. The designof

this estimator is brie y described below.

Letx(n); n=0;1;2;, ;N 1ldenotethe obsenedsamplescontaining both the signal
and noiseinformation. We obtain the noiseonly samplesz(n) from x(n), as explained

earlier. We form overlapping sub-vectorsof z(n), denotedby q(l) as follows-
a)=[z()z(l+1)z(1+2) z(I+R 1 =012, L 1 (4.34)

whereL = N R+ 1. A suitable choiceof R for the APES estimator has beenreported

to be N7 in [63], and we retain the samefor this modi ed estimator too.

The estimate of the noisecovariancematrix @ is obtained as

1 X

Q= C z()z" (1) (4.35)
1=0

This @ is usedto estimate the amplitude of the sinusoid. However, the estimated

amplitude will be a complexnumber, whoseabsolutevalue correspndsto the magnitude
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of the sinusoid (I var), and whoseanglewill be equalto

Next, we discussa coupleof techniquesthat may improve the performanceof the various

estimatorsdiscussedso far. Later, we comparethe performanceof all the estimators.

4.2.3 Chunked data processing and bootstrapping

A generaltechnique that canbe applied for all the estimatorsdiscussedsofar, for both
white and colourednoise,is chunked data processing.Similarly, bootstrapping is another

generaltechnique that can be usedto improve the performanceof estimators.

In chunked data processing,instead of using all the data points to obtain a single
estimate, we break the data into smaller chunks, from which we obtain multiple estimates
for the samevariable and averagethem. Howeer, there is no guarartee that the resultarnt
estimate obtained would be better than what can be obtained by consideringall the data
points in a single go. But, aswe shall see,the APES estimators perform signi cantly
better with chunked data. The PMI, PDI and the MLE estimators do not shov sut
improvemens. Moreover, chunking can be extendedto overlapping windows of data,
leading to a large number of relatively high variance estimates, which, upon averaging,

canyield results better than the single estimate obtained from the available data.

Though it looksasif the chunked data processingechnique requireshuge computation,
surprisingly, it neednot. The processingof chunked data when pushedto its limit (i.e.,
whenwe considerchunks which have all but a singledata point in common),canbe viewed
as processingdata using a small bu er. As a new sample comesin, the oldest sample
leavesthe bu er, thereby leadingto a newrealization of the sizeof the data bu er. A new
estimateis found for every singledata point in this manner, and all the valuesaveraged.
If the bu er size chosenis small, the processingis still simple, though it needsto be
repeatedmany times. Moreover, the memory requiremen will alsobe less,sincewe need
not retain all the data valuesto estimatethe parameters. This is an advantage of chunked

data processing.



CHAPTER 4. PROCESSINGPOLARIZATION-RICH DATA 66

In bootstrapping, one generatesmore data samplesfrom the existing ones. As the
number of samplesavailable for analysisincreasesthe noisevariance comesdown, and
hence, the performanceof the estimator improves. Howewer, the computational costs
involved are much higher in this case,as comparedto chunking. A good introduction to
bootstrapping is givenin [65. For our problem, we can assumethe data to be emanating
from M =2 di erent sourceswhere ead sourcerepreseis a point in half a period of the
rotating polaroid. If the noiseis known to be white, we can form extended data by
samplingwith or without replacemen, the data points correspnding to thesepositions,
and concatenatingthe data. Howewer, the extensionto the caseof colourednoiseis not

assimple.

An application of bootstrapping for detection of a sinusoid in coloured noiseis given
in [66], wheredi erent typesof bootstrapping algorithms and ways of implemerting them
in colourednoiseare given. We usedthe block bootstrapped algorithm. First, we estimate
the noiseonly part of the data as menioned earlier, instead of the time domain approad
given in [66). Then, we bootstrap the noise samplesto obtain better estimatesof the

noisecovariance matrix, to be usedin the MLE and the APESR estimators.

It would alsobeinterestingto know asto whetherwe canfurther improve the estimation
performanceby processingchunked bootstrapped data. We carried out sud studiestoo,

and the results are reported later, when comparingthe di erent estimators.

Next, we study the computational complexity of the various estimators, since some

applications demandreal-time processingwhereasfor others, 0 ine processingsu ces.

4.2.4 Computational complexit y of the estimators

A basicPDI schemewith modestmemoryrequiremens can be implemerted asfollows.
The e ect of adding co-polarized or cross-mlarized imagescan be obtained by increasing
the integration time of the CCD to a long time. Then, by subtracting sud a single
cross-mlarized image from a co-polarized image, we can obtain PDI results. Sud a

sdheme can be implemerted with the memory requiremen being as little as twice the
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sizeof co-polarized and cross-mlarized images. In caselong integration times cannot be
allowed, the schemecan be parallelized by using multiple sensors.Howewer, the memory
requiremerns increaseproportionally with the number of sensors.The actual processing
performedby a signal processorinvolvesonly subtraction and addition of integers,and a
nal scalingof the values,to be renderedasimages. This canbe carried out at extremely
fast rates, and hencethe PDI sdhemecan easily be implemerted in real time by modern

signal processors.

The PMI schemehas higher computational needsthan the PDI sdheme. The coretask
in PMI processings the computation of a singleDFT coe cient (or LSEK estimate), for
which there are e cien t methods. The problem of computing only a few DFT coe cien ts
hasbeenaddressedy the Goertzel algorithm, the FFT (Fast Fourier Transform) pruning
technique and other techniques,which have beencomparedin [67]. The memoryrequire-
merts for implemerting thesetechniquesare the sameasin the caseof PDI sthemes.The
implemertation essetially needssuccessig multiply-add-accumulate steps,followed by a
square-rmt operation. Hence,the processingis a bit more involved, than in the caseof
PDI sthemes.The PMI sthemealsolendsitself to parallelization and can be implemerted
in real time. A direct implemertation of the Goertzel algorithm needsmemory at least

twice the sizeof the co-polarized or cross-mlarized images.

The MLE and the two APES estimators involve more computation than the PDI and
PMI sdhemes. The bottlened in these algorithms is the inversion of matrices. In that
aspect, the MLE sdhemeneedsmore number crunching than the APES schemes,sinceit
hasto invert a matrix at least twice the size of what the APES estimators have to. An
e cien t implemertation of the APES estimatorsis given in [68], along with the relative
computational costsinvolving FFT basedalgorithms. Among the two APES estimators,
the APESR estimator needslesscomputation, and henceshould be preferred wherewer
the performancesof both the estimatorsare similar. The MLE and the APES estimators
also have the disadwantage that they needto have the whole data to begin processing,
unlike the PDI and PMI schemes,which can compute in-place, sequetially, asthe data

arrives. Hence,the memory requiremerns of the former estimators are higher than that



CHAPTER 4. PROCESSINGPOLARIZATION-RICH DATA 68

of the latter. Howeer, if the noise covariance matrix can be known a priori, the APES

and the MLE methods estimatein real time.

As mertioned in the previous subsection,the bootstrapping algorithms needconsider-
ably higher computational e orts than the normal algorithms, but chunked data process-
ing canbe simplerthan the normal processingsdhemes.Sincethere are variousparameters
involved to comparethe computational costs, like the chunk length, the overlap length
and the length of the bootstrapped data, we do not get into a detailed analysis of the

computational costsinvolved in bootstrapping and chunking.

Next, we comparethe performanceof the various estimators basedon Monte-Carlo

simulations and also basedon the performanceof the estimatorsin real noisy data.

4.2.5 Comparison of polarization intensity estimators

While comparing the performanceof various estimators, we rst give the results of
Monte-Carlo simulations. We give only thoseresults on real data, that do not match the

predictions of Monte-Carlo simulations.

4.2.5.1 Comparisons based on Mon te-Carlo simulations

All simulations reported in this thesis have used 200 realizations of 64 data points
generatedaccordingto eqn4.31,to test the PMI, MLE, APES, and the APESR estima-
tors. For testing the PDI estimator, we used 32 data points eah with = 5 and 37

correspnding to the co-polarized and the cross-mlarized data, respectively.

We have also tested the performanceof all the estimators on chunked data. We used
a chunk length of 32 data points, and an overlap of 31 data points betweenconsecutie
windows, thereby obtaining 32 estimates,which were averagedto obtain the nal result.
We have analyzedthe e ect of bootstrapping on all the estimators by constructing an
extended sequenceof 128 data points from the given 64 data points. In this case,the
dimensionof the noise covariance matrix usedin MLE and APESR estimators changed
from 32 32to 64 64.
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All the data generatedaccordingto eqn4.31assumethe signalfrequencyf to be 0:125.
The valuesof I ;s and |, are chosento be 4 and 1, respectively, sothat the degreeof
linear polarization (DOLP) correspndsto 0:25. As we shall see,the performanceof the
estimators doesnot depend on the valuesof | .5 Or I py, but on the noisecharacteristics.
Hence,ewven if we chooseany other value of I s, and |y, the bias and variance of the

estimatorswill remain the same.

Various characteristics of the estimators are studied by varying the SNR through the
variance of the iid Gaussianrandom variable governing the noise process. For deciding
the range of SNR valuesto be considered,we calculated the averageSNR of a 10 20
region of eight data setsthat we used. The region chosenwas outside the region of
the geometricshadav of the hidden object, which ensuredthat we obtain the ballistic
sinusoidal componert apart from noise. Such an analysisshowved the actual SNR to vary
from around -14 dB to 9 dB. Hence,we have consideredthe SNR range from -25 dB to
+25 dB for our analysis. For calculating the SNR, we usedthe averageof the ratios of
the signal energyto noiseenergy Sincewe knew the frequencyof the signal, we could
localizeit to onefrequencycomponert and considerthe rest of the componerts to cortain

noiseinformation. We usedzeromeandata for calculating the overall energy

For the caseof white noisewith variance 2, the SNRis given by

2
SNRin dB = 10log,, % (4.36)

For colourednoise,we have usedthe local SNR as the varying parameter, to test the

performanceof the estimators. The local SNR is de ned as[62]

I 2
bal

SNRin dB = 10log,, N(f)

where, (f) is the power spectral density of the obsenation noisev(n) [69]

2

- P :
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2 is the variance of the white noise process,which drivesthe AR process,and a, are
the AR coe cien ts governing the noiseprocess.Though we found that the noiseprocess
in the actual data could be adequatelyrepreseted by an AR1 process,we have tested
the algorithms with AR2 noiseprocesstoo, sothat the performanceof the estimatorsin

unknown noiseconditions could be better understood.

For studying the performanceof the estimators under AR1 noise, we chosethe AR
coe cient a, to be0.50,in all the simulations. To study the performanceof the estimators
in AR2 noise,we chosethe AR coe cientsto bea; = 0:50anda, = 0:125,respectively.
The polefrequencyfor this choiceof AR coe cien ts correspndsto a discretefrequencyof
0:125, and coincideswith the frequencyof the sinusoid, thus creating a relatively di cult

situation to estimate the sinusoidal amplitude.

In our comparisonof estimators, we emphasizeon simulations rather than actual data,
sincethe actual data pertain to only two experimerts. Howewer, the noisemodels give a

generalizationto the data that canbe obtainedin polarization basedimaging experimerts.

4.2.5.2 Comparisons based on performance in real noise

To comparethe performanceof the estimatorsin real noise,we useddata from polar-
ization modulation imaging experimerts conductedwith the setupshaowvn in Fig. 4.1. The

details of the experimertal setup are given below.

Source:

Linearly polarized He-Ne Laser.
Wavelength= 632.8nm.
Power= 10 mW.

Beam Dimension (1=¢’): 0.65mm.

Beam Expansion Optics:
It consistedof two plano-corvex lensesof focal lengths 5 cm and 30 cm, giving a
beam expansionfactor of 6, with which we could get a beam diameter of nearly

7 mm.
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Spatial Filter:
The spatial Iter consistedof a corvex lenswith a focal length of 10 cm followed
by an iris with a very narrow opening placed at the focal point of the lens. The

diameter of the iris wasnot morethan 1 mm, but we could not measureit precisely

Charge Coupled Device (CCD):

EEV™  the intensied CCD usedhas 8 bit resolution and gives black and white
images. The gain could be varied over a largerange. We grabbed 512 raw imagesof
size240 320in ead of the experimens. For all the experimerts, the frequencyof
the rotating polaroid was0.125.i.e., the time seriesat ead pixel location consisted

of 512 data points with frequencyof |, being 0.125.

Hidden Object: The object usedfor imaging purposeswvasan opaquecrossof nearly

1 mm thickness.

For analyzing the performance of the estimators, we used data obtained from two
experimers, one with the scattering medium consisting of polystyrene microspheresof
diameter 2:97 dispersedin water, and the other with the scattering medium being mist.
We call the former medium as ‘medium1', and the latter as ' medium2'. The noisedata
generatedfrom data recordedwith thesetwo mediawill henceforthbe called "noisel' and
‘noise?’, respectively. A glanceof the power spectra at a few pixel locations of ead set
showved that the noise processcorrespnding to medium 1 was nearly white, while that
of medium 2 was coloured. This was endorsedby the averageAR coe cien ts calculated
from 200pixel locations, using the Levinson-Durbin recursionalgorithm. Noisel had the
rst two AR coe cien ts as-0.0021and +0.0183, while noise2 showved the coe cien ts as
+0.1561and +0.0853, thereby supporting our obsenations. The pixel locationschosenfor
our analysiswere the sameasthat usedfor calculating the averageSNR of real data. In
all the polarization imaging experimerts conducted,the exact orientation of the incidert

linearly polarizedlight was not known and hencethe sinusoidal phasewas also unknown.
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In order to comparethe performanceof the estimatorsin real noise,we needto have
cortrol over the valuesof I,y and | .5, Which cannot be easily attained in actual exper-
iments. None of our data shaved uniform distribution of | ,5 and lsc5:. Thus, we had to
nd a way of comparingthe performanceof the estimators. Towards that end, we rst
obtained 512 noise only samplesfrom 200 pixel locations, by the method described in
section4.2.2. Out of these512 samples,we assumedthe rst 64 to represemn the actual
noisesamples.To thesenoisesamples,we addeda sinusoid of frequency0.25, with vary-
ing amplitudes, to simulate di erent SNR conditions from -25to +25 dB. The frequency
(0.25) was chosento avoid the possiblechangesin noiseconditionsthat would have taken

placeat a frequencyof 0.125,during the processof estimating the noisesamples.

The amplitude of the sinusoid addedwas chosenusing the de nition of SNR for white
noisegiven in eqn4.36. The value of | 4.5z Was chosento be four times the value of |y,
thereby giving a DOLP of 0.25. The 200 pixel locations chosento obtain the noiseonly
sampleswere the sameas those from which we obtained the averageSNR and average

AR coe cien ts, that we mertioned earlier.

A few points which distinguish the analysis of the estimatorsin real noise from the

analysisin simulated noiseare mertioned below.

The samplesrepreseting noise are not exactly noise samples,but were obtained
from signal+noiseobsenations. Still, we call this noiseas realnoise’,to distinguish

it from simulated noise.

For polarization magnitude and degreeof polarization estimators, the varianceand
bias of the estimators depend on the noiseproperties only, and not the SNR, asis
evidert from the calculations of CRLB givenin Appendix A. Hence,the bias and
variance curves of someof the estimators remain nearly constart for all values of
SNR. This doesnot imply that there is no improvemert in the performanceof the
estimators. It hasto be interpreted bearingin mind, the changingamplitude of the
sinusoid with SNR.
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Since the noise properties are unknown, we have not plotted the CRLB in our

discussionon real data.

4.2.5.3 Comparison of estimators within and across classes

We comparethe performanceof 5 di erent classe®f estimators,namely, the PDI, PMI,
the MLE andthe two APES estimators. Within ead class,we have variants which process
chunked data, bootstrapped data and chunked bootstrapped data (estimators which rst
bootstrap the data and then chunk the bootstrapped data to estimate the parameters),
leadingto 22 estimatorsin all. Due to the paucity of spacewe choosethe bestestimators

from ead classand compareonly these v e estimators.

For convenience,we usethe following notations to distinguish the di erent estimators
in eat class. The normal estimatorsare denotedby the estimator classnamefollowed by
'N'. Sux 'B' standsfor the estimator which usesthe bootstrapped data. An estimator
class name followed by "C' denotesan estimator which performs analysis on chunked
data. Similarly, the sux "CB' stands for an estimator which analyzesbootstrapped
and chunked data. In the caseof MLE and the APESR estimators, we implemerted
two di erent algorithms for bootstrapping. The rst assumeghe noiseto be white and
usessampling with replacemen to extend the data. The other assumesthe noise to
be coloured, and usesblock basedbootstrapping algorithm to nd better estimates of
the noise covariance matrix. Howewer, we found that the block based bootstrapping
algorithms did not show reliable performance,and hencewe do not report those results

here.

The performanceof all the estimators were similar in AR1 and AR2 noise conditions.
Hence,we do not report our obsenations on the performanceof the estimatorsin AR2
noise. In all the comparisongo follow, whenwe referto all noiseconditions, it is inclusive
of the real noisetoo. We now preser our obsenations on the performanceof the various
polarization intensity estimatorsof eat class,under varying SNR for both simulated and

real data.
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For simulated data, all the estimators were found to be positively biased under
colourednoise. The bias and variance of all the estimators dramatically increased
in colourednoiseas comparedto white noise,indicating poorer performanceof the

estimatorsin colourednoise.

Among the variants of the PDI estimator, the PDI N shawved the least bias and
variance under all noise conditions. It was found to be positively biasedin white
noise,up to -15dB, beyond which, it wasfound to be unbiased. It wasalsofound to
be positively biasedat all SNR in real noise,like other PDI variants. We attribute

this to the unknown phaseof the sinusoid in experimertal data.

Among the PMI estimators, the PMI N showed the least bias and variance under
all noiseconditions. The PMI N estimator was also found to be positively biased
up to around -5 dB in white noise conditions, beyond which, it was found to be
unbiased. In real noise,the bias of PMI N estimator was found to be higher than
PMI C beyond -10dB.

The MLE N shawved better performanceup to around 10 dB, beyond which, MLE
C and MLE CB shawved better performancein white noise. Under colouredand real

noiseconditions, MLE N showved the best performanceat all SNR.

Among the APES estimators,the APES CB showved the best performanceunder all
noise conditions. Howewer, it was found to be positively biasedeven under white
noise. For real noise conditions, APES C showed better performancethan APES
CB. Howeer, the bias of APES C wasa bit higher than APES N for noise2.

Among the APESR estimators, the APESR N showed better performancethan
other estimators up to -10 dB in the caseof white noiseand up to 15 dB in the
caseof colourednoise,beyond which, the APESR CB wasbetter. Hence,we choose
the APESR N to be the represemative of this class, since we are interested in
performanceat low SNR. We could not obsene any cleartrend in real noise. APES
CB performedbetter than all othersin noisel, whereas APES C performedbetter

in noise2.
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Thus, the best estimators of polarization intensity information under varying noise
conditions for simulated data were PDI N, PMI N, MLE N, APES CB and APESR N.
Figs. 4.2(a) and 4.2(b) shav the bias and the variance of di erent estimatorsin white
noise. The CRLB of Fig. 4.2(b) was calculated using eqn A.7. Figs. 4.3(a) and 4.3(b)
shaw the bias and the performanceof the estimatorsin AR1 noise. For this case,CRLB

was calculatedusingegn B.17.

The best estimators of polarization intensity information from real data were PDI
N, PMI N and MLE N for the rst three classes. Though there was no consistency
in performanceamongthe APES and the APESR estimators, we choose APES C and
APESR CB asrepresetativ esof their classessincethey shoved better performancewith
noisel and noise2, respectively. Fig. 4.4 shavs the bias and variance of theseestimators
in real noise. We have plotted the results correspnding to that of noisel only. The same

hold true ewven for results with noise2.

From the results of numerical simulations, we obsene the following

The performanceof the estimatorsis relatively independen of the noisecharacter-

istics. The PDI and the PMI estimatorsconsistetly perform better than others.

The PDI N estimator is unbiasedand hasthe leastvarianceamongall the estimators
for any noise,when = 5. Hence,the PDI estimator shouldbe the preferredchoice
for PII, unlessaccurate estimatesof | ,; are neededwhen the phaseconditions are
not known. The variance of the PDI estimators was lower than that of the CRLB
under all noiseconditions. This shouldnot comeasa surprise,sincethe reductionin
varianceis at the costof the bias of the estimator, aswe nd in the caseof real data
(seeFig. 4.4(a)). Only when = =2, we get unbiasedestimatesof polarization
intensity. Otherwise,the biaswill not decreaseevenwith increasingamourt of data

available for analysis.

The PMI N estimator is the next best, and hasthe addedadvantage of beingasymp-

totically unbiased,unlike the PDI estimator. Hence,when exact phaserelations are
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Figure 4.2: Performanceof Pll estimatorsin white noise.
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not known, as in the caseof passiwe imaging, and accurate estimatesof |, are

needed,the PMI estimator should be the preferred choice.

Though MLE N and other estimators perform on par with the PMI N estimator
under varying noise conditions including real noise,their high computational costs

favour usingthe PDI N or the PMI N estimators.

The APES estimatorsare hardly usefulfor P11, whenthe frequencyof the sinusoid

is exactly known.

We performed similar analysis for data of lengths 32 and 128. The chunk lengths
consideredfor the two caseswere 16 and 64, respectively. The overlap was 15 for the
32-point data, and 63 for the 128-point data sets. The bootstrap lengths consideredwere
64 and 256, respectively. The behaviour of the estimators remainedthe sameunder all
these conditions, thereby generalizingour results to varying data lengths for simulated

data.

For real noisel, it wasfound that the behaviour of the estimatorsdid not vary with the
number of data points available for analysis. Howewer, in caseof noise 2, with increase
in the number of data points available for analysisfrom 64 to 128, chunking improved
the performanceof all the estimators. Hence,PDI C, PMI C, and MLE C showed better
overall performancecomparedto their normal courterparts. Howewer, with N = 32, the
relative performanceof the estimators remainedthe same. Thus, we concludethat data

chunking may cometo help when larger number of data points are available for analysis.

4254 A weak case for the APES estimator

As we obsened, the APES estimators do not seemto be much usefor PIl. Howewer,
aswe mertioned earlier, the behaviour of the PDI N and PMI N estimators, as reported
earlier, can be obsened only under certain conditions. It is important to know asto how
the performanceof theseestimators change,when theseconditions are not satis ed. The
analysisof the APES estimatorsvis-a-visthe PMI (LSEK) estimator, which we have used

here, has beengivenin [62]. The behaviour of PDI N when the phaserelationships are
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not known hasalready beendiscussed.Now, let usanalyzethe behaviour of PMI N, when
N is not an integral multiple of M. The sameanalogyholds true for MLE N also, since,

its performancealso dependson the samecriterion.

The rst important result is that the estimates(y cos and Ly sin  will no longerbe
MVU estimates[61]. This may perturb the PMI and MLE estimatesby large amourts
from the actual values. After obtaining the data, we may nd the frequencyof the signal
to be di erent from the expectedvalue. Suth a casemay happen when the frequencyof
the rotating polaroid is not exactly known. In sud caseswe may have to estimate the
frequency rst and then perform amplitude estimation. Then, all the useful properties of
the APES estimatorslisted in [62] cometo fore. Howewer, we do not get into a detailed
analysisof the case,sincemore often than not, the frequencyof the rotating polaroid can

be tightly cortrolled.

We conductedsimulations to understandthe behaviour of the PMI N, MLE N and the
APES N estimators when the frequencyof the sinusoid was chosento be 0:115, instead
of 0:125. Howeer, with this small changein frequency we could not nd a signi cant
di erence in the bias of the estimators at low SNR. We could obsene that the APES N

estimator performedbetter only at SNR above 25 dB.

4255 A case for the chunked PMI estimator

It is known that coarserDFT will padk energyof wider frequencyrangesinto the DFT
coe cien ts. This follows from Parsewal's theorem, which hasto do with conseration of
energyunder Fourier transformation. Thus, we studied the possibility of using PMI C to
improve the performanceof the PMI estimator, sothat we can achieve lower bias, than
what is possiblewith the PMI N estimator, when the frequencyis slightly o from the

expectedvalue.

Towards that end, we performed simulations whereinthe frequencyof | ,5 was chosen
to be 0.115,but still, we assumedthe frequencyto be 0.125,for analysis. A situation of

this sort can occur due to unknown errorsin the frequencyof rotation of polaroid.
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The simulations consideredchunks of length 8, 16 and 32. The overlap in all the cases
was one lessthan chunk length. The variance of the chunked PMI estimators were all
nearly the sameand were very closeto that of the PMI N estimator, which are shown in
Figs. 4.2(b) and 4.3(b). Hereagain, we report the performanceof the estimatorsin white
and AR1 noiseonly. Fig. 4.5 shows the bias of the PMI N and its chunked variants when
f = 0:115under white and AR1 noiseconditions. It canbe obsened that the biasin the

estimated amplitude varieswidely with the chunking length.

Clearly, for the caseof white noise, at higher SNR, the bias decreasesas the chunk
length decreasesyalidating our hypothesis. Howeer, for the caseof colourednoise,the
biasis high for lower chunk lengthsat low SNR. So, chunked PMI is usefulonly whenthe
SNRis high, and more so, when the noiseis white. Howewer, we are not in a position to
commert about the optimum chunk length for a givenfrequency It canjust be commeried
that chunking may improve the performanceof the PMI estimator, whenthere are small

uncertainties in frequency around the expectedvalue.

4.25.6 Eect of chunking parameters on Pl APES estimator

Though we found the APES estimator to be not all that useful for intensity imaging,
we still report the e ect of chunking parameterson their performance. We obsened
that processingchunked data involvestwo parameters,namely, the chunk length and the
overlap betweenchunks. The way thesetwo parametersa ect the estimation procedure
is important, sincewe obsened that the APES CB estimators can perform considerably
better under certain conditions. We have chosenthe APES CB estimator to study the

e ect of theseparameters.

We consideredchunks of length 8, 16, 32 and 56, on 200 sets of 64 data points. For
eath chunk length, the overlap was chosento be one lessthan the chunk length. All
the other parametersof the simulations were similar to that usedin the comparisonof
estimators. We assumedAR1 noisefor thesestudiesand Fig. 4.6 shows the result. It can
be obsenedthat both biasand varianceof the APES estimator are reduced,asthe chunk

length decreases.Thus chunking can improve the performanceof the APES estimator
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Figure 4.5: Performanceof PIl PMI N and its chunked variants, when N is not an
integral multiple of M. For this example,f = 0:115and N = 64.
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dramatically. Howewer, the e ects of varying the chunk length could be di erent for

di erent estimators,and have to be studied on a caseby casebasis.

Next, we report our ndings on the e ect of varying overlap on chunked estimation. To
understand the e ect of overlap, we conducted simulations with the chunk length xed
at 32, and the overlap taking valuesof 0, 8, 16, 24 and 31. Figs. 4.7 and 4.8 report the

results of analysisfor white and AR1 noise,respectively.

As canbe obsened, in white noise,there is a cleartrade-o betweenbias and the vari-
anceof the estimators asthe overlap varies. The overlap length that givesthe minimum
varianceshaws the highestbias and vice-versa. In colourednoise,sincethe bias goesfrom
positive to negative at around 15 dB, overlapping helpsonly at low SNR. At high SNR,
overlapping gives negatively biasedresults. Hence,depending on the importance of the
criterion, onecan chooseto resortto overlapping or non-overlapping technique. Howeer,
the way chunking and overlapping work in conjunction needsto be studied in detail, to
understand and predict the behaviour of the estimators. Moreover, the behaviour may
change with the estimators themseles, and hence,eat estimator needsto be studied

independerily.

4257 Eect of bootstrap length on APES estimator

We studied the performanceof the APES B estimator with increasingbootstrap length.
For the bootstrapping algorithm, the frequencyof the signal must be precisely known,
sincethe periodicity of the signalis takenin to consideration. We chosebootstrap lengths
of 96, 128, 256 and 512, which were all generatedby extending 64 obsened data points,
assumingthe noiseto be white. Hence,we report the behaviour of APES B in white noise

only. All the other parametersof the simulations werethe same,asin previouscases.

Fig. 4.9 shows the performanceof the APES B estimator and its bootstrapped variant
in white noise. Increasedbootstrapping reducesthe varianceat all SNR. Bootstrapping
reducesthe bias of the estimator at low SNR, but at high SNR, a keen obsenation of

the results shows that bootstrapping inducesslightly higher bias than the APES N (not
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evidert in the plot). The e ect of bootstrapping under colourednoisealsoshaved similar

behaviour, albeit all the estimatorswere positively biased.

We concludeour discussionon PIl by commerting on other issuesinvolved.

4.2.5.8 Other issues related to polarization intensity imaging
Obtaining noise only samples

In orderto study the noisecharacteristics,it isimportant to have noiseonly realizations.
Sud data canbe obtained by grabbingimagesby keepingthe rotating polaroid stationary
at a xed location. An estimate of noisecan be obtained by removing the dc value from
ead of the time series. This can be usedto estimate the noisecovariance matrix, which

can be directly usedin MLE, thereby reducingthe computations considerably

Choice of f

In PIl, we have the option of choosing the frequency of rotation of the polaroid.
Throughout our discussion,we have assumedthe signal to be at a frequencyof 0:125.

Here are a few points asto how the frequencya ects PII:
The choiceof f will not make a di erence in casethe noiseis white.

If the noiseis a low passAR1 process,we stand to bene t by choosinga higherf,
sincethe lower noise energy at higher frequenciesleadsto improved performance
of the estimators. Similarly, choosing a lower f would be helpful if the noiseis a
high-passAR1 process. Howewer, choosing a very high or very low frequencywill

a ect polarization orientation imaging, which we are yet to discuss.

In casethe underlying noise processis of a higher order than ARL1, it is judicious
to avoid the pole frequencieswhile choosingf , in order to obtain better estimates.
For this, we needto know the properties of noisea priori, which can be obtained as

discussecdearlier.
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(a) Bias of PIl APES N and variants of APES B estimator in white noise.

(b) Varianceof PI1 APES N and variants of APES B estimator in white noise.

Figure 4.9: E ect of bootstrap length on PI1 APES B estimator in white noise. For all
the casesN = 64.
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Choice of

The derivation of CRLB for 1, in colourednoise,givenin Appendix B, shows depen-
denceon (seeegnB.17). Howeer, for the noiseconditionsconsideredn our simulations,
the terms of the equationthat dependon were extremely small, comparedto the term
independent of , i.e.a;;a. Hence,we could not seeany signi cant changein bias or
variance of the estimators, when was changedand so, we do not report those results.
The sameis true for the CRLB of DOLP and phasetoo.

With this, we concludeour analysisof the various estimators for Pl and proceedto

analyzethe estimators of DOLP information.

4.3 Imaging using Degree of polarization

The DOLP of scatteredlight was de ned in egn 2.4. An imaging shemethat uses

DOLP asthe visualization parameteris reported in [28], where DOLP is de ned as

I |-

DOLP =
e+ 12

(4.37)

where, I and |, refer to the co-polarized and cross-mlarized intensities. It seemsas
though there is no relationship between the above de nitions of DOLP. Howewer, by

substituting = 5 into eqns4.32and 4.33,we get the DOLP asgiven by eqn4.37to be

pi
Ibal _ Q2+ UZ

| scat | S

DOLP = (4.38)

The last relationship is obtained by substituting for 1,5 and s, from eqn 4.4. This

proveseqn4.37to be correct, in the light of eqn2.4.

A pertinent questionat this juncture is, how the DOLP basedimagesdi er from po-
larization intensity images. The numerator of the expressionfor DOLP (eqgn 4.37) cor-
respondsto the polarization intensity image. Howewer, by scaling this information with

the sum of the co-polarized and cross-mlarized intensities, we normalize the polarization
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information by the amourt of unpolarizedlight presen at the pixel location. Hence,the
resultant imagesindicate the purity of the polarized light received. It can be obsened
that the DOLP valuesare both lower and upper bound (0 DOLP  1). If DOLP is O,
the received radiation doesnot cortain any polarizedlight. As the DOLP increasesand
readesl, it symbolizesincreasingpolarized componert in the received radiation, nally

readiing a state wherethe received radiation is totally polarized.

Imagesusing DOLP are usefulif the sceneis non-uniformly illuminated, and more so,
in passive imaging involving specular objects. DOLP can give information about the
nature of the objects apart from their position in a scattering medium. Smaoth surfaces
like metals and glassre ect light well. It is a known fact that re ection can induce
varying degreesof polarization depending on the angle of incidence. Hence,in passiwe
imaging, one may be able to distinguish metallic and shiny surfacesby looking at the
degreeof polarization of the received radiation. This idea was utilized to distinguish

regionsabradeddi erently, in the experimert mertioned in [2§].

Though the information of DOLP hasbeenexplicitly givenin the PDI schemesthereis
no such mertion of a measureof DOLP in the PMI schemesgivenin [27, 31]. It caneasily
be obsenedthat, in the PMI scheme,the DOLP information canbe obtained asthe ratio
of the amplitude of the sinusoidalcomponert to the DC componert, sincel s¢5; correspnds
to the DC componert. Thus, we seethat both the PDI and the PMI sthemesare capable
of estimating both the polarization intensity and degreeof polarization parameters. In
the samemanner, all the estimators discussedn the previous section can also estimate
the DOLP. Howeer, there can be a host of methods that can estimate DOLP, sincethe
sinusoidal amplitude and DC values can be estimated by di erent techniques. We do
not considersud a situation here,and assumethat the sameestimatorswill be usedto
estimate both the numerator and denominator quartities, though it may be possibleto
obtain improved performanceby varying the estimation technique for the numerator and

the denominator.
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4.3.0.9 The PDI DOLP estimators

A generalPDI DOLP estimator can be mathematically expresseds,

Op , . 1
X <7 I
DOLP pp, = + @ ) 120 p (4.39)
K 7 251 1kn) + 14 (n)

where, I (n) and I, (n) are given by eqns4.32and 4.33. Here, we have assumedN to be

even for mathematical corvenience though this is not a necessarycondition.

Two estimatorswhich represem the extreme casesof the above generalestimator are

P N? 1
DOLP ppi1 = ppo )1 (n) (4.40)
n=o  lk(n) + 12(n)
and
2 X ) ()
DOLPppp = N FOEING] (4.41)

n=0

The latter hasthe form of a chunked estimator of DOLP.

It is clearthat all the estimatorsderived from eqn4.39will be biased,sincethe numer-
ator correspndsto scaledversionsof the polarization intensity data, which was shovn
to be biased. Howewer, if = 5 in eqns4.32and 4.33, or if the relative (rather than the
actual) valuesof DOLP in a sceneare of interest, then, DOLP pp| Can be used. How-
ewer,if | 0, the noisemay completelyobscurethe DOLP information. Henceforth,we

assume = 5, sothat the numerator is an unbiasedestimate of | p,.

The form of D®LP pp: IS that of a ratio estimator, with both the numerator and the
denominator being Gaussianrandom variableswhich are uncorrelatedin casethe noiseis
white, but correlatedin caseof colourednoise. The theoretical analysisof this estimator
Is by no meansan easytask. We can do no better than refer to [70] for an understanding

of the distribution and densitiesof sud ratios. Howewer, to comparethe estimators, we
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needto know the bias and variance of theseestimators. Sud a study hasbeenreported
in [71]. 1t hasbeenfound that

DOLP pp12 €stimator is biasedand DOLP ppI1 IS asymptotically unbiased.

The variances of the estimators are equal and diminish to zero asymptotically.

Hence,both the estimators are consisten.

For thesereasonsit is better to useD®LP ppi1. It canalsobe obsenedthat the mem-
ory requiremerts of DOLP pp11 IS lesserthan that of D&LP pDI2, thereby strengthening
its case.There is alsoa mertion of another ratio estimator in [7]] that is unbiased. But,
it needsprior knowledgeof the noisevariancesand covariances. Sincethis information is

not available in our problem, we do not study that estimator.

4.3.0.10 The PMI DOLP estimator

In our analysisof the PII, we found that, for 6 , we can obtain only ML estimate
of 1y and not its MVU estimate. We also obsened that, the ML estimate of |
also correspndsto its MVU estimate in both colouredand white noise. Hence,we can
obtain MLE of DOLP usingthe invarianceproperty of the MLE [61]. The transformation
BOLP = &—th being non-invertible, the MLE maximizesa modi ed likelihood function,
as explainedin [61]. By the theorem on the asymptotic behaviour of the MLE [61], we
concludethat the MLE adievesthe CRLB asymptotically. The CRLB for DOLP, for

white and colourednoisecaseshave beenderived in AppendicesA and B, respectively.

4.3.1 Comparison of DOLP imaging estimators

As in the caseof Pll, we usedreal noiseand alsoresortedto Monte-Carlo simulations
to study the performanceof the various estimators of DOLP. The parametersfor the
simulations were the sameas we reported for PIl. A commonobsenation that could be
made acrossall estimators is that, their performancein coloured noise was very poor
for SNR from around -15 dB to 5 dB. This is the region of transition from positive to

negative bias for polarization intensity estimators in coloured noise, as we saw in the
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previous section. Howevwer, the performanceof the estimators on real noisedid not shov
sudh droop in performance. This obsenation is perhapsdue to the noise being nearly
white. Hence,estimators of DOLP can still be usedat these SNR. We now mertion the

best estimatorsin ead classfor real and simulated data.

The PDI N and the PMI N showved minimum variance and bias under all noise

conditions and are hencethe best estimatorsin their respective classes.

Among the MLE estimators, the MLE N showed better performanceoverall, com-

paredto all other estimatorsof its class.

APES CB shawved the best performancein white noise. No clear trend could be
obsened in the performanceof the APES estimators in coloured noise. For real
noise, it was obsened that APES N performed better in noise 1 and APES CB
performed better in noise2. We consider APES CB as the represemativ e for its

class,due to its superior performancein white noiseand in noise2.

Among the APESR estimates, APESR CB performed better in white noise. The
estimatorsbeing unreliable in colourednoise,we considerAPESR CB asthe repre-

senativ e of this class.Howewer, in real noise,APES N performedrelatively better.

Figs. 4.10,4.11 and 4.12 shows the bias and variance of the best estimators from eat

classin white, AR1 and noisel, respectively.

We can obsene that PDI N and PMI N estimators seemto be the best for estimating
DOLP too. Though MLE N and APES estimators also perform as good as PMI esti-
mators, their computational costsare much higher. Hence,PDI N or PMI N should be
preferred over them. As merioned in the section on polarization intensity estimation
(section 4.2), the behaviour of the PDI N and PMI N, as reported here, are basedon
certain conditions. The conditions for PDI imaging can be usually satis ed in active
imaging, while the conditions on PMI sdhemecan be satis ed in both active and passiwe

imaging schemes.
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(a) Bias of estimators of DOLP in white noise.

(b) Variance of estimators of DOLP in white noise.

Figure 4.10: Performanceof estimators of DOLP in white noise.
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(a) Bias of estimators of DOLP in AR1 noise.

(b) Variance of estimators of DOLP in AR1 noise.

Figure 4.11: Performanceof estimators of DOLP in AR1 noise.
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Variance

(a) Bias of estimators of DOLP in real noise.
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(b) Variance of estimators of DOLP in real noise.

Figure 4.12: Performanceof estimators of DOLP in real noise.
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We also performed simulations to seeif the APES estimators provide better estimates
of DOLP whenthe frequencyof the sinusoidwasslightly o from the expectedvalue. The
analysiswas similar to that of section4.2.5.4. Howeer, heretoo, we found the PMI N to
perform better than the APES estimatorsat SNR below 25dB, whenthe frequencyof the
sinusoid was 0.115, instead of the usual 0.125. The advantagesof the APES estimators
can only be seenat frequenciesfar away from that resoled by the PMI estimator and

have beendetailed in [62].

4.3.1.1 A case against the chunked PMI DOLP estimator

Dueto the reasonswve cited in section4.2.5.5,it intuitiv ely lookslike, it may be better to
usePMI C insteadof PMI N, whenthe frequencyof the sinusoid canvary slightly around
the expected value. We conducted simulations on the samelines of section 4.2.5.5,to
study the usefulnesof PMI C in sudt cases.Our study shaved that chunking worsened
the performanceof the PMI DOLP estimators. The variance of the estimator increased
with increasein chunk length. Howeer, the bias of the chunked estimators decreaseds
chunk length increased,beyond SNR of -20 dB. But, the gain in terms of bias was found
to be very little. Hence,we concludethat chunking doesnot improve the performanceof
PMI DOLP estimator.

4.3.1.2 Eect of chunking on APES DOLP estimator

To study the e ect of chunking parameterson estimation of DOLP, we chosethe APES
estimator, which shaved positive responseto chunking. We conductedMonte-Carlo simu-
lations on the lines of section4.2.5.6to study the e ects of theseparameters. By the very
nature of de nition of DOLP, we expected the sameresults, as in section4.2.5.6,even
for DOLP imaging. It wasindeedfound to be soin white noise,where, processingsmall
chunks decreasedhe variance up to around 20 dB. The bias was also found to decrease
up to SNR of -5 dB, beyond which, larger chunks shaved lower bias. At high SNR, bias
was found to decreasess chunk length increased,with the least being that of APES N
estimator. However, in colourednoise,the behaviour of the estimators were erratic, due

to the transition of bias from positive to negative values. The APES N seemedo be the
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most stable estimator in colourednoise. Fig. 4.13 shaws the bias and variance of APES

C estimatorswith varying chunk lengthsin white noise.

Increasingthe overlap length gave lower bias and variance in white noise,and hence
overlapping should be useful in estimating DOLP values. Fig. 4.14 shows the results
of simulations conducted to study the e ect of overlapping in white noise. Since the

estimators shaved erratic performancein colourednoise,we do not report thoseresults.

4.3.1.3 Eect of bootstrap length on APES DOLP estimator

We conductedsimulations on the lines of section4.2.5.7to study the e ect of bootstrap
length on the APES DOLP estimator. Fig. 4.15 shows the results of simulations. Here

are the important obsenations related to that study.

Bootstrapping decreasedhe biasand the varianceof APES DOLP estimatorsat low
SNR. Howewer, at high SNR (beyond 10 dB), bootstrapping inducedslight positive
bias. Hence,bootstrapping can be useful for estimating DOLP at low SNR (below
15dB) in white noise.

In coloured noise, due to the unstable behaviour of the APES DOLP estimator,
no clear trend could be obsened and APES N was more stable than the other

estimators.

With this, we concludeour analysisof the various estimators of DOLP. The choice of
suitable frequency should be basedon the considerationsmertioned in section 4.2.5.8.
Varying the number of data points for analysis did not change our obsenations. As
reported in section4.2.5.8,varying did not have much impact on DOLP estimation. One
thing that we hypothesize but did not test is that, onecanperhapsobtain better estimates
of DOLP by estimating |y using chunking, and estimating | s.o; Without chunking and
taking their ratio. Sud a hybrid estimator may yield better results than bootstrapping

alone, or chunking alone.

Next, we study the various estimatorsusedfor Polarization orientation imaging (POI).
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(a) Bias of APES C DOLP estimator in white noise.

(b) Variance of APES C DOLP estimator in white noise.

Figure 4.13:E ect of chunk length on DOLP APES C estimator in white noise.
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(a) Bias of APES C DOLP estimator in white noise.

(b) Variance of APES C DOLP estimator in white noise.

Figure 4.14:E ect of overlap length on APES C estimator in white noise. For all the
casesthe chunk length was 32.
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(a) Bias of APES B DOLP estimator in white noise.

(b) Variance of APES B DOLP estimator in white noise.

Figure 4.15:E ect of bootstrap length on DOLP APES estimator in white noise.
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4.4 Polarization orientation imaging

The received radiation can cortain di erent statesof linear polarization due to various
factors. It could be due to extraneouspolarized sourcesdeployed for other imaging pur-
poses. It could also be due to changesin polarization state induced by re ection. The
latter caseis more commonly encouriered in passive imaging scenarios,where specular
surfacescan changethe orientation of the plane of polarization of incidert linearly polar-
ized, or eveninduce polarization to the incident unpolarizedlight. In any case the ability
to distinguish di erent states of linear polarization adds value to the imaging methodol-
ogy. Further, this canbe obtained at no extra cost, while usingany of the schemes except

the PDI. We next analyzeasto how we can obtain the polarization state information.

Assumethat with the PMI schemeof Fig. 4.1, an experimert is conducted with an
arbitrary orientation of the plane of polarization of the source,yielding data that follows
eqn4.5. With all the parametersbeing the same,we study the e ect of a changein the

orientation of the plane of polarization of the sourceby an angle , on the recordeddata.

In egn 4.4, we assumedthat the angle represems the orientation of the rotating
polaroid with respectto the horizortal. Now, we needto replace by + . This change
essetially leadsto a changein the value of , which correspndsto the changein phase
of the recordedsinusoids. i.e., a changein the orientation of the plane of polarization
manifestsitself asa changein the phaseof the recordedsinusoids,and doesnot a ect the

sinusoidaland DC amplitudes.

The Polarization intensity imagingand the DOLP imaging cannot capture this informa-
tion, sincethey ignorethe estimatedphaseof the sinusoids,eventhough all the estimators
exceptthe PDI estimator can give this information. Thus, we can usethe sameestima-
tors to obtain all the three visualization parameters,namely the polarization intensity,
the DOLP and the polarization orientation (PO), which give distinct information about

the scenebeingimaged.



CHAPTER 4. PROCESSINGPOLARIZATION-RICH DATA 103

4.4.1 Polarization orientation imaging - the case of white noise

The CRLB for estimation of the phaseof a sinusoid in white noise has beenderived
in Appendix A and is given by eqn A.8. Howeer, it hasbeenfound that there doesnot
exist an MVU phaseestimator that attains the CRLB for this casein white Gaussian
noise[61]. This result is applicableto our problemtoo. But, the MLE of phaseexistsdue

to the invariance property, and is given appraximately by [61] (from eqn4.25and 4.26)

! Py 1 !

(bar SIN L H(n) cos A0
AM LE = arctan M = arctan p r'lI—O:L I’( ) : 4|\/| (442)
(bal COS MvU n=o lr(n)sin &

where,M is the periodicity of the rotating polaroid, and N is the number of data points

available for analysis.

"uLe canalsobe obtained asthe argumert of the complexDFT coe cien t correspnd-
ing to the frequencyof the sinusoid. Sincethe PMI estimator obtainsthe DFT coe cien t
from which we can estimate the phaseof the sinusoid, we concludethat the PMI phase
estimator obtains the MLE estimate of phase. The asymptotic varianceof the PMI phase

estimator hasbeenshawvn to reac the CRLB given by eqn A.8.

The transformation function usedto estimate the phaseis not an invertible function,
sincethe transformation mapstwo parameters,namely (\ba| sin vy and f\ba| COS myvu Into
onevariable "\ e . Hence, " e actually maximizesthe modi ed likelihood function in

the manner explainedin [61].

4.4.2 Polarization orientation imaging - the case of coloured

noise

The CRLB for phaseof the sinusoid in colourednoise has beenderived in Appendix
B, and is given by eqn B.18. It can be obsened that the CRLB for dependsnot only
on the amplitude of the sinusoid | ,5 (or the SNR) asin the caseof white noise,but also

on itself. The value of , for which the varianceis minimized, has also beenderived
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in Appendix B. Howeer, the dependenceon was found to be very weak, essetially

making the CRLB invariant to

As in the caseof white noise,the PMI estimate of phaseis given by the argumert of
the complexDFT coe cient correspnding to the frequencyof the sinusoid. The APES,
APESR estimators as given in [62] also give complex amplitude estimates, leading to
estimatesof phase.In the caseof MLE, we needto useegn4.42. Due to the asymptotic
properties of MLE, the estimator achievesthe bound givenin B.18 whenlarge number of
data points are available for analysis. Onceagain, "M LE actually maximizesthe modi ed

likelihood function, asin the caseof white noise.

4.4.3 Comparison of POl estimators

We now comparethe di erent estimators for phasediscussedso far. Before doing so,

we make a few obsenations that are commonto all POI estimators.

All the estimators, irrespective of their class, shaved high and erratic bias up to

5dB in white noise,beyond which they performedbetter. A similar behaviour was
obsenedin noise2 also. In colourednoise,suc a behaviour persistedup to +5 dB,
thereby decreasingthe reliability of the estimators. From these obsenations, we

concludethat reliable phaseestimation is possibleonly at relatively high SNR.

In white noise,the varianceof the estimatorsbehared as expectedand governedby
CRLB. Howeer, in colourednoise,the variance of the estimators remainednearly
constart up to around +5 dB, much below the CRLB, beyond which, they behaved

as expected.
Chunking seemedo help estimatorsin both simulated and real noise.
Next, we proceedto list the best estimator in ead classfor both simulated and real
noise.

The PMI N shoawved the best performancein its classin white and colourednoise.

In real noise,PMI N showed the least variancebut higher biasthan PMI C.
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MLE CB showedthe bestperformanceon simulated data under all noiseconditions.
In noisel, MLE C performed better than MLE N in terms of bias. Howewer, in

terms of variance,MLE N shawved the best performance.

Among the APES estimators, the APES CB showed the best performanceon sim-
ulated data. Howewer, APES C and APES N preformed better in noisel and 2,

respectively. We use APES CB to comparewith the estimators of other classes.

Among the APESR estimators, there was no clear trend in the behaviour, neither
in simulated noisenor in real noise. SinceAPESR CB showed better performance

in white noise,we useit to comparewith estimators of other classes.

Fig. 4.16 shaws the bias and the variance of the phaseestimatorsin white noise. Simi-
larly, Fig. 4.17shaws the biasand varianceof the sameestimatorsin AR1 noise. Fig. 4.18

shows the performanceof the various estimatorsin noisel.

As we can obsene, for POI, there is no clear advantage for any particular estimator.
Sincethe PMI phaseestimator is simpler than the rest and shows the best performance

in white noise,we concludethat PMI estimator should be the preferredchoicefor POI.

4.4.3.1 A casefor the APES POI estimator

We also studied the performanceof the estimatorsin white noisewhen the frequency
of the sinusoid was 0:115, instead of 0.125. Fig. 4.19 shaws the bias and variance of the
estimators under sud conditions. It is obsened that PMI N and MLE N give biased
estimates of phase, which remain constart even at high SNR. Howewer, the APES N
estimator giveslow bias and nearly O bias after an SNR of 5 dB. This is the advantage
of the APES estimator, over the PMI estimator. Howeer, the variance of the APES
estimator is higher than that of the PMI N estimator. This can be reducedby resorting

to chunking and overlapping.

We seea strong dependenceof phaseon the frequencyof the signal. Hence,for phase

estimation, when the frequency could be o by a small margin, the APES estimators
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(a) Bias of phaseestimators in white noise.

(b) Variance of phaseestimators in white noise.

Figure 4.16: Performanceof phaseestimatorsin white noise.
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(a) Bias of phaseestimators in AR1 noise.

(b) Variance of phaseestimators in AR1 noise.

Figure 4.17: Performanceof phaseestimatorsin AR1 noise.
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(a) Bias of phaseestimators in real noise.
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(b) Variance of phaseestimators in real noise.

Figure 4.18: Performanceof phaseestimatorsin real noise.
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(a) Bias of PMI N, APES N and MLE N phaseestimators in white noise.

(b) Varianceof PMI N, APES N and MLE N phaseestimators in white noise.

Figure 4.19: Performanceof PMI, MLE and APES estimatorsin white noise,whenN is
not an integral multiple of M. For this example,f = 0:115.
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shouldbe a good choice. Howewer, the APESR estimator performsextremely poorly under
sud circumstancesas can be seenin Fig. 4.16 and should be avoided. The performance
of all the estimators being erratic in colourednoise,we do not report those results here.
Also PMI C did not perform well in this case. The bias of the PMI estimator in fact

deteriorated with chunking.

4.4.3.2 Eect of chunking on the APES POI estimator

Having found the utilit y of the APES estimator for phaseestimation, we alsostudiedthe
e ect of chunking parameterson the performanceof the APES C estimator. Simulations
wereperformedwith the sameparameters,asin the caseof polarization intensity imaging.
It wasfound that using smaller chunks reducedthe varianceof the APES C estimator at
all SNR and brought down the bias at low SNR. Howeer, at SNR beyond 5 dB, smaller

chunk lengthsinduced greater bias. Fig. 4.20shaw the results of the simulations.

Similarly, we studied the e ect of overlap length on APES C estimator. It could be
obsenedthat with increasedoverlapping, the bias and the varianceof the estimatescame

down by very small amourts.

We alsostudiedthe e ect of bootstrapping on the APES estimator. Simulations shaved

that bootstrapping did not showv any improvemen on the performancein white noise.

4.5 A potpourri of visualization parameters

We de ned three dierent visualization parametersfor polarization basedimaging
sthemes. We also studied the various estimators for ead of these visualization param-
eters and studied their characteristics. In all the schemesdiscussed,the visualization
parametersare represeted as gray scaleimages. If we want to study all the visualiza-
tion parametersof a scene,we needto study three di erent images. In this section, we
proposea new schemeof renderingthe polarization information, where,the visualization
parametersare intuitiv ely mapped to various aspects of a colour image, therehy giving a

holistic view of the scene.We also showv the advantagesof sut a represemation.
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(a) Bias of APES N and variants of APES C phaseestimators in white noise.

(b) Variance of APES N and variants of APES C phaseestimators in white noise.

Figure 4.20:E ect of chunk length on the performanceof APES N and variants of
APES C phaseestimatorsin white noise.
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The polarization magnitude information inherertly hasthe notion of intensity, i.e., the
intensity of polarized light. The DOLP signi es the purity of the polarized radiation
and parallels the idea of saturation in color images. In colour images,the greater the
purity of a colour, higher will be the saturation. The polarization orientation parameter
distinguishesdi erent statesof linear polarization and is akin to di erent huesin a scene.
Thus, the three visualization parameterscorrespnd intuitiv ely to the parametersof a
normal colour image and hencecan be renderedso. We next seesomesimulation results

to illustrate this aspect.

We synthesized32 imagesof size160 100 pixelsto study the suitability of fusing the
visualization parameters. The data at ead pixel location was synthesizedaccordingto
eqn4.5. We consideredthe noiseto be white for thesesimulations, but the resultsfor the

caseof colourednoisewill be no di erent.

The syrnthesized imageswere divided into four quadrarts, as shavn in Fig. 4.21(a).
The value of 1 s.5; Was chosento be 170in quadrarts 1 and 4, and 240in quadrarts 2 and
3. Within ead quadrart, we choserectangular subregionsof size80 50, as shavn in
Fig. 4.21(a). The value of 1, was chosento be 0 at all locations, exceptthe subregions.
It waschosento be 0:2 in the subregionsof every quadrart, thus giving a DOLP of 0:0012
in the subregionsof quadrarns 1 and 4 and 0:008, in the subregionsof quadrarts 2 and
3. Beforethe addition of noise,the imageswere blurred using a Gaussianmask of size
9 9, to simulate the blurring dueto the optical elemeits. Though we have not analyzed
the nature of the blur in the actual experimental setup, we usethe Gaussianblur only to

study the probable e ect of blurring.

To the blurred data, we added white Gaussiannoise, at every pixel location, across
images. The noise at eat pixel location had a variance of 0:05, leading to a SNR of
nearly -4 dB in all the subregions.The reasonfor choosingsud small valuesfor |, and
DOLP is to show the robustnessof the polarization imaging technique even at relatively
low SNR, whenthe individual imagesin the seriesdo not corvey any visual information

about polarization by themseles. The information becomesevidert after processing.
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The phasesof the sinusoidsin the subregionswere chosento be 2 =9;0;5 =18 and
15 =9, respectively. The phaseswere chosenarbitrarily, to illustrate the feasibility of
renderingthe polarization information ascolourimagesand do not have anything specic

to the processingitself.

We have usedthe PMI estimator to estimatethe variousvisualization parameters,since
the PDI schemeis incapable of estimating the phaseinformation. The parameterscan
alsobe obtained using the APES, APESR or the MLE estimator.

Fig. 4.21(b) shows a represenmativ e image of the set of 32 imageswhich looked nearly
alike. Fig. 4.21(c) shows the histogram equalizedversionof the represemativ e image. As
we can obsene, we do not nd any discernibledi erence amongthe subregions,but, we
nd the di erence in gray scalesof the four quadrarts. The samewastrue in the caseof

other imagesin the seriestoo.

Fig. 4.21(d) shaws the result of polarization magnitude analysis. It can be obsened
that the four subregionshave the samepolarization magnitude information. Fig. 4.21(e)
shows the result of DOLP analysis, wherein, we can obsene slightly higher DOLP in
the subregionsof quadrarts 1 and 4, as comparedto those of quadrarts 2 and 3. The
magnitude of DOLP being very small, we perhapscould not have expecteda drastically
di erent result, shoving the quadrarts very di erently. Fig. 4.21(f) shows the result of
polarization orientation analysis. The subregionsare clearly distinguishable from the
badkground. Howewer, only the subregionof the rst quadrant stands apart uniquely
from the others. Thus, though it is very attractiv e to usethe POI to di erentiate regions
with polarization information from othersthat do not, it is not easyto di erentiate the

orientation from theseresults.

Fig. 4.21(g) shaws the result of fusing all the visualization parametersinto a colour
image, as explained earlier. The colour image clearly shows the di erent polarization
orientations of the subregions.A keenobsenation also shaws the lower saturation levels

of the colorsin quadrarts 2 and 3, as comparedto the colours of quadrarts 1 and 4.
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This correspndsto the di erence in DOLP of thesesubregions.It is clearthat rendering
the parametersas a colour image can provide better insight into the various polarization

parameters,as comparedto renderingthem asgray scaleimages.
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@) (b) ()

(d) (e) (f)

(&) Break-up of synthetic images.

(b) A represemativ e of the 32 imagesin the series.
(c) Result of histogram equalizing (b).

(d) PMI N magnitude estimation result.

(e) PMI N DOLP estimation result.

(f) PMI N PO estimation result.

(9) Result of fusing (d), (e) and (f).
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Figure 4.21: Results of fusing the visualization parameters.



Chapter 5

Imaging results

In this chapter, we presen results of the imaging experimerts conductedwith various
scattering media. The experimerts were conducted with the setup explained in sec-
tion 4.2.5.2. Table 5.1 lists the various mediathat we usedfor the experimerts reported
in this chapter. Table 5.2 givesthe statistical information of the correspnding data sets,

obtained by measuringthe di erent quartities mertioned, over a regionof 10 20 pixels.

In all the imaging experimerts mertioned in this chapter, the periodicity of the rotating
polaroid was 16, and hence,the periodicity of | ,o was8, or its frequencywas0.125. Also,
exceptwith data of SET 1, in all the experimerts reported here, the object (shadav of
the object in this case)was not visible in any of the individual imagesobtained, even

after processingby varioustechniques. In SET 1, a very faint shadav of the object could

Table 5.1: Data setsusedfor analysis.

Name | Scattering particles IsC) [1()
SET 1 | Polystyrene spheresof diameter 2297 | 334.7| 1760 | 5.68
SET 2 | Polystyrene spheresof diameter 2297 | 314.0| 1652 | 6.05
SET 3 | Polystyrene spheresof diameter 2:97 - - -
SET 4? | Polystyrene spheresof diameter 2:97 - - -

aThe medium was the sameas for SET 3, but the sourcewas incoherert white light, instead of the
laser, usedin obtaining SET 3.
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Table 5.2: Statistics related to the data setsusedfor analysis.

Name | AverageSNR (dB) | AverageAR coe cien ts
SET 1 1.2 +0:078and +0:023
SET 2 6 0:002and +0:018
SET 3 15 +0:055and +0:052
SET 4 8 +0:109and +0:053

be perceived in someof the imagesthat were closeto co-polarization location. Howewer,
we usedata from SET 1 to illustrate the various aspects of polarization basedimaging,
sincethe visibility of the shadav was very poor. Similar results could be obtained with

other data setstoo.

All the imagesillustrated in this chapter are histogram equalizedversionsof the actual
results obtained, sincethe actual imageshad very low corntrast. We have emphasizedon
the results of PDI and PMI estimators, sincewe found them to be suitable for all imaging

purposes.Processingresults also endorsedthe results of our analysis.

Fig. 5.1 shows the results of polarization intensity imaging using PDI N estimator,
when 8 co-polarized and 8 cross-larized imagesof SET 1 were available for analysis.
The periodicity of | ,; being8, there were4 positions(correspondingto the di erent phases
of I a), that could be usedto obtain polarization intensity information using the PDI N
estimator. Fig. 5.1(a) shows the shadav of the opaquecrosswithout any scattering. This
was the object to be imagedin SET 1. Fig. 5.1(b) shows a represemativ e of a nearly
co-polarized image obtained with scattering medium being presen. Since we did not
know the actual orientation of the polaroid with respect to the sourceradiation, we call
it as nearly co-polarized. We can seethat the shadav of the crossis faintly visible in
Fig. 5.1(b). Howewer, no visible details could be obsened in the nearly cross-mlarized
images. Figs. 5.1(c-f) shav the results obtained by using PDI N estimator, assuming

di erent positions of the rotating polaroid to correspnd to the co-polarized location.

We can obsene considerableimprovemert in the results from Fig. 5.1(c) to 5.1(f). In

Fig. 5.1(c), we obsene that there is no information about the hidden object. This is due
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to the bias of the PDI N estimator. Similar results could be obsened in estimation of

DOLP with the samedata.

Fig. 5.2 shavs the comparisonbetween polarization intensity and DOLP results ob-
tained from SET 1. The gures on the left correspnd to PIl and the oneson the right
areresultsof DOLP imaging. The imagesfrom top to bottom wereobtainedwith N being
8, 32 and 128, respectively. There is a gradual improvemert in the quality of results, as
N increasesfrom 8 to 128. We obsene that the DOLP imageshave a brighter certral
regionthan polarization intensity images. Comparingthe resultswith that of Fig. 5.1(a),
we obsene that the DOLP imagesare closerto the actual image than the polarization

intensity images.

Fig. 5.3shavsthe comparisonof polarization intensity resultsobtained from PDI N and
PMI N with data from SET 1. The imageson the right correspnd to PMI N, while the
others correspnd to PDI N. The resultsin ead row were obtained with the value of N
being 8, 32and 128, respectively. We canobsene that whenfewer imagesare available for
analysis,PDI N givesbetter resultsthan PMI N, and henceshould be preferred. Beyond
N = 256, not much di erence could be obsened in the results. Similar behasiour was

seenin DOLP imagestoo.

Fig. 5.4shavsthe comparisonof resultsobtainedfrom di erent estimatorswith N = 16,
from SET 1 data. We seethat PDI N givesthe bestresult amongall the estimators. PMI
N and MLE N estimators give the next best result, which look very similar. Howewer,
comparing the computational complexity, one should choosePMI N instead of MLE N,
in casePDI N is not suitable for somereason. The results of the APES estimators are
lessencouraging,as we could guessfrom our analysisin the previous chapter. Similar

comparisonsfor data from SET 2 are givenin Fig. 5.5.

We now comparethe results obtained with the scattering medium being the same,but
the sourcebeing a coheren laser beamin one case,and an incoheren white sourcein

another. SET 3 and SET 4 correspnd to sud data sets. Howewer, the medium was not
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calibrated and we could not know the valuesof I and | ofit. Figs.5.6(a)and5.6(b) shov
the shadavs of a opaguecrossobtained without scatteringfrom two di erent sources.The
former was obtained with a monochromatic laser sourceand the latter with an ordinary
white light source. Once the scattering medium was introduced, in both the cases,we
could not obsene any details of the shadav in individual imagesby applying standard
image processingtechniques. The results of processingl28imagesof SET 3 and SET 4
with PDI N DOLP estimator are givenin Figs. 5.6(c) and 5.6(d), respectively. Similarly,
Figs. 5.6(e) and 5.6(f) shav the results of processingl128 imagesof the samesets with

PMI N DOLP estimator. Similar results were obsened with PII.

We seethat the results obtained with the incoheren sourceare far superior to those
obtained with the laser. The main reasonfor this should be the low SNR of SET 3 as
comparedto that of SET 4, asgiven in Table.5.2. The other reasonfor poor resultsin
SET 3 could be due to the spedle noisethat could be presen in SET 3 induced by the
coheren illumination of the laser. Though we do not have a concreteevidencefor this,
it is well known that spedle is formed when scattering occurs due to a coheren source
and that it degradesimaging performance. The other argumern that hints at the same
reasonis the results of SET 2, where, though the SNR was lower than that obsened in
SET 4, the results obtained are inferior to those obtained with SET 4. Both results were
obtained by analyzingthe samenumber of data points. However, this is a open question
to be investigated, and there seemsto be very little literature regardingthis. But, it is
clearthat incoherern sourcesof very high powerswill be neededto imageobjects through
greater optical depths, as comparedto laser sources,sinceincoheren sourceshave high

beamdivergencerates comparedto lasers.

Next, we shov someadvantages of POI imaging using results obtained from SET 4.
To illustrate this, we usethe estimatesobtained by the PMI N estimator. As seenin
section 4.4, POI is useful only if the SNR is relatively high, or a large number of data
points are available for analysis. For illustrating the advantagesof POI, we use512images

of SET 4, wherethe SNR is relatively higher than other data sets.
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If a single linearly polarized sourceis used, then, ideally, the region not blocked by
the object should yield the samephaseinformation at ewvery pixel location. Depending
on the SNR, the valuesof estimated phasewill only uctuate slightly around the mean
value. Howewer, where\er the object blocks the ballistic light, the phaseestimation would
yield random results. Thus, the correlation in the intensity valuesof neighbouring pixels
in regionsreceivingthe ballistic componert should be much higher than that of regions
blocked by the object. As we shaw, this information can be exploited in segmeting the
imageinto target and badground regions. This sort of segmetation and hence,POl is
very useful in defenserelated applications. Moreover, the analogy can be extendedto

regionscortaining di erent polarization orientations also.

For testing the validity of our hypothesis,we consideredrectangular blocks of size9 9
and 15 15, certered around every pixel location, excluding the boundary pixels. We
cross-correlatedhe data in every block with blocks around the adjacert 8 neighbors and
took the maximum of the crosscorrelation valuesas the result for that pixel. We nally
plotted these results as an image. Instead of taking the maximum of the correlation
values, we also took the averageof the correlation values, and obsened similar results.
We found that the resultant imageshad histogramswhich clearly shoved two modes. This
information can be usedto segmeh the imagesinto regionscorrespnding to the hidden
object and the badground.

Fig. 5.7(a) shonvs the imageof the object without scattering. Fig. 5.7(b) shovsthe POI
result obtained from 512imagesof SET 4. Fig. 5.7(c) shows the result obtained from the
cross-correlationtechnique descrilked above, when the block sizewas9 9. Fig 5.7(d)
shows the result with blocks of size21 21. Fig. 5.7(e) shaws the histogram of the image
in Fig. 5.7(d). Fig. 5.7(f) shaws the result of thresholding Fig. 5.7(d) at a value lying in
the valley betweenthe two modesof the histogram. As we can obsene, though the exact
boundary of the object is not visible, we get an idea of the presenceof a hidden object in
the medium. The processingcan be followed by morphological operationsto get better
results. This sort of information is what is most of the time neededn defenseapplications.

This is a very usefulresult, asfar as POl applicationsto defenses concerned.
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Though we cansegmeh polarization intensity and DOLP images,the POl segmetation
Is robust whenthe variation in the estimatesof phasewill be smallerthan the variation in
the intensity of | p5 and I sc5r. Though 1y and 1 sc;c canhave larger distributions naturally,
it is unlikely that the phasehas sud large distributions. This is the advantage of using
POI results for segmetation. It was alsoobsened that the intensities of PIl and DOLP
results did not shav any modesas sud, and hencewe needto do further processingto

be able to get reliable segmetation results.

Many other post processingtechniquescan be applied to the results obtained by PII,
DOPI and POI. We can fuse the three results to obtain colour imagesin casemultiple
statesof linear polarizationsexistin the receivedradiation, asexplainedin section4.5. We
did not have any data set which had multiple statesof linear polarization, and hencewe
do not have sud results. The segmeration schemediscussecearlieris fairly rudimentary.
We can perhapsdewelop many more sud segmetation algorithms, speci cally aimed at

polarization imaging.

We also conducted experimerts with the medium being mist, and could get positive
results after processing. We obsened that for the 2.97 diameter particles, when the
optical thickness readed 6.77,we could not retrieve the shadav, even after processing
512images. This was the limit to which we could image with those particles. Howeer,
with particles of 0:11 diameter, we could image up to optical thicknessof nearly 40.
This obsenation endorseghe result that polarization basedsthemeswork better in media

containing small sizedscatterers,than in mediawith large scatterers[35, 52, 37).
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(@) (b)

(©) (d)

(e) (f)

Figure 5.1: PII to illustrate the bias of PDI N estimator; N = 16.

€) Image of the object without scattering.
(b) A represetativ e image of the series.
(c)-(f) PDI N results obtained with various co-polarization locations.
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(@) (b)

(c) (d)

(e) (f)

Figure 5.2: Comparisonof results of PIl and DOLP imaging.

(@ PllusingPDI N; N =8 (b) DOPI usingPDI N; N = 8
(c) PllusingPDI N; N =32 (d) DOPI usingPDI N; N = 32
(e) PIlusingPDI N; N = 128 (f) DOPI using PDI N; N = 128
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(@) (b)

(c) (d)

(e) (f)

Figure 5.3: Comparisonof PII results obtained using PDI N and PMI N.

(@ PllusingPDI N; N =38 (b) PIlusingPMI N; N =8
(¢) PllusingPDI N; N =32 (d) PIlusingPMI N; N = 32
() PIlusingPDI N; N =128 (f) PII usingPMI N; N = 128
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(a) Actual Image (b) PDI N
(c) PMI N (d) MLE N
(e) APES N (f) APESR N

Figure 5.4: Comparisonof PII results obtained from 16 imagesof SET 1.



CHAPTER 5. IMAGING RESULTS 126

(a) Actual Image (b) PDI N
(c) PMI N (d) MLE N
(e) APES N (f) APESR N

Figure 5.5: Comparisonof DOPI results obtained from 128imagesof SET 2.
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(@) (b)

(c) (d)

(e) (f)

Figure 5.6: Comparisonof results obtained with coheren and incoheren sources.

(a) Image without scattering (Laser) (b) Image without scattering (whitle light)
(c) DOPI using PDI N; N = 128 (Laser) (d) DOPI using PDI N; N = 128 (white light)
(e) DOPI usingPMI N; N = 128(Laser) (f) DOPI using PMI N; N = 128 (white light)
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(@) (b)

(©) (d)

(e) (f)

Figure 5.7: Segmemation of a POI result.

(@ Image without scattering (b) Resutl of PMI N POI; N = 512
() 9 9block processingresult (d) 15 15block processingresult
(e) Histogram of (d) (f) Result of segmetting (e)



Chapter 6

Conclusions and topics for further

research

6.1 Contributions of the thesis

In the previouschapters, we studied various visualization parametersthat can be used
to render polarization information cortained in the received radiation. We also studied
various estimators for measuringthesevisualization parameters. We found that the PDI
and the PMI schemesare suitable for estimating the visualization parametersdiscussed.
Interestingly, they are alsothe simplestof all the estimatorsstudied. Owing to the bias of
the PDI estimator and its inability to capture polarization orientation information, PMI
N is the true all purposeestimator. As we saw, PDI N is a particular caseof the PMI N
estimator. Hence,we concludethat PMI N should be the estimator of choiceto estimate

all the polarization related parametersof the received radiation.

We also studied as to how chunking and bootstrapping can help improve the per-
formance of the estimators. Howewer, the improvemen gained by sud schemeswere
marginal. There was no signi cant di erence in the results obtained. But, their utility
has beenproved using simulations. We also introduced somepost estimation techniques
like segmenation of the POl imagesto segregatearget and badkground regionsand fus-

ing the three visualization parametersto obtain a holistic view of the scene.Due to lack of
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experimertal data, we could not illustrate the techniqueson actual data. To summarize,

here are the main cortributions of the thesis.

We have madean extensiwe literature survey of light scatteringand optical imaging,
to position the problem of cortinuous wave, polarization baseddirect imaging in
its right place among other optical imaging techniques. We have also studied its

advantagesand limitations.

To the best of our knowledge, for the rst time, we have classi ed the imaging
sdhemeshasedon the visualization parameters,and pooledin most of the techniques

in one place and explainedhow and when the various schemesare useful.

We have built a mathematical framework to comparethe various schemesmertioned
in the literature. The framework beginswith modeling the received scatteredradia-
tion and endswith predicting the performanceof the various estimators by making

useof principles of estimation theory.

Through simulations and theoretically, we have analyzedthe performanceof various

estimatorsfor the di erent visualization parametersunder varying noiseconditions.

We have also brie y explainedthe possibility of using post estimation techniques

like segmetration, to derive more usefulinformation from the estimated quartities.

The introduction of polarization orientation imaging, the idea of combining the vi-
sualization parametersin to a colour image and the correlation basel segmentation

of POI resultsare to the best of our knowledge, totally new conaeptsin this eld.

In short, we have been able to leveragethe tools of signal processing,especially
estimation theory, for analyzingand improving cortinuouswave, polarization based,

direct imaging techniques.

6.2 Extension to the case of circular polarization

The emphasisin this thesis has beenon imaging schemeswhich analyzelinearly po-

larized light. Howewer, it can be easily obsened that the sametechniquescan be used
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for P11 and imaging using DOP of circularly polarizedlight. The notion of POI imaging
will have to be modi ed in this case,sincethere can be only two pure states of circular
polarization. We can perhapsallocate two particular huesto denote circularly polarized
states, and the rest can be usedto represen various linear polarization states, in a all
encompassindinear and circular polarization basedimaging scheme. For realizing sud a
sdheme,suitable changeswill have to be madein the imagingsetup[8], in orderto capture
the information correspndingto the circularly polarizedstates. With sud a sdheme,two
colour imagescan be obtained, one correspnding to the visualization parametersof the

linearly polarized states, and the other, to the circularly polarized states.

6.3 Topics for further research

6.3.1 Correlation based pro cessing techniques

We studied the various algorithms for processingpolarization rich data. There is an-
other processingtechnique for the samepurpose,basedon 2-D correlation. Here, a real,
paraxial image of objects hidden behind a multiple-scattering barrier can be obtained
from the light di used through the barrier [26]. The processinginvolves correlating the
spekle pattern producedby a known, referencesourcewith that of the unknown distri-
bution dueto the object. Most of our data setsdid not have prominert spedle patterns,
due to averaging over long periods of time. Moreover, we did not have data with the
sourcealone. Hence,we did not pursuethis algorithm. It has beenreported that high-
resolution imagescan be obtained using this simple technique. We have not addressed

thesesdhemes.

6.3.2 The imaging problem vis-a-vis the image transfer problem

An interesting issuethat needsto be understood well is the relationship betweenthe
imaging problem, vis-a-vis, the image transfer problem. The latter can be imagined to
be an extreme caseof the imaging problem, with the object being outside the scattering
medium, towards the source. If the medium were to be linear, then, irrespective of the

position of the object, the result obtained would be the same. Howewer, sud is not the
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case. Thus, if we can understand the relationship betweenthesetwo problems, we can
usethe point-spread function analysisof the imagetransfer problemto solwe the imaging
problem. Howeer, for the problem of polarized light transfer, we needto know the

vectorial point spreadfunction of light. Next, we shareour ideasabout this problem.

6.3.3 The vectorial point spread function of light

In this thesis, we analyzedthe 1-D signal processingaspects of the problem of direct,
polarization basedimaging schemes.Howewer, aswe obsened, evenwith the bestestima-
tors, usefulresults could be obtained only up to a very small optical thickness. The main
reasonfor this wasobsenedto bethe spreadof scatteredlight, which canbe characterized

by the point spreadfunction.

Fig. 6.1(a) and 6.1(b) show the results of using detection theory to test the presence
of sinusoidsat various pixel locations of SET 2 (seesection5), assumingthe noiseto be
white. The imagesare binary, with dark regionsdenoting regionsof absenceof sinusoids,
and bright regionsdenotingtheir presence.The rst imagecorrespndsto the probability
of falsealarm (pfa) being 10 4, and the second,correspndsto pfa being 10 8. It can
be obsened that despitethe pfa being so low, most of the regionsshav the presenceof
a sinusoid, including regionsof geometricshadav, thereby emphasizingthe spreadin the
ballistic componerts. It has beenreported in [4]], that the least spreadamongthe po-
larization basedsdhemesdiscussedvasthat of the polarization di erence. An interesting
exercisewould be to analyzethe spreadfunction assumingthe ballistic componert to vary
sinusoidally. Sudh an analysiswill establishthe relative strengths of eat of the imaging

schemes.

Detailed analysisof spreadfunction requiresthe knowledge of radiative transfer the-
ory [72]. The point spreadfunction analysisfor transfer of unpolarizedlight (scalarlight)
through scattering media has been covered exhaustively in [9]. For understanding the
spread of polarized light, we needto extend the analysisof [9] to the vectorial nature
of light. If sud an analysiscan be carried out, then the comparisonof various imaging

sthemesin terms of their abilities to resole objects hidden in scattering media can be
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(a) pfa=10 4 (b) pfa=10

Figure 6.1: Results of sinusoidal detection on data of SET 2; N = 512.

carried out. Sud an analysisis essetial to improve the performanceof the polariza-
tion basedsthemes. With the knowledgeof the vectorial point spreadfunction, we can

decorvolve the results obtained using 1-D processingschemes to obtain improved results.

6.3.4 Post processing pro cedures

All the resultsthat we have reported have beenobtainedby plotting the resultsobtained
from 1-D analysisof the data. Howeer, there is enoughscope to improve the rendition
of the results using 2-D processingsthemes,basedon the parametersof interest. e.g., we
can perform colour basedde-noising,followed by segmetation, on the colour image ob-
tained by processingpolarization data, to show the exactregionsof di erent polarization
orientations. Similarly, median Itering can be usedto remove impulsive noisefrom the
images. Segmetation followed by classi cation can be usedto label di erent imagesof a
scene.Sud post-processingsdhemescan aid the usersto pick their parametersof interest
easily We have not delved into sud an analysisof post processingsdiemes,since most

of the time, they are application dependen.

6.3.5 Harmonic based pro cessing scheme

In all the 1-D processingschemesthat we have mentioned, we consideredthe ballistic

componert to shov up at a single particular frequency It was found to be the case,in
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almost all the data setsexcepttwo. In a data set taken with a mixture of 2297 and
0:06 particles, we could obsene a sinusoid at the rst harmonic position of the expected
frequencyaswell. Similarly, in a data settakenwith the scattering medium consistingof
adi erent concenration of the sameparticle, we could obsene a sinusoid at the expected
frequency its rst and alsothe secondharmonics. We could obsene that in the regions
wherethe object blocked the ballistic componerts, the amplitude of the secondharmonic
was less,than in other regions. We usedthe ratio of the amplitude of the rst harmonic

to the fundamertal, asthe visualization parameter, after removing the outliers.

It wasobsenedthat drastically better resultscould be obtained, than the PMI N results.
The PMI N resultsalsoshaved a strangebehaviour, in the senseahat, the shadav regions
looked brighter than the badkground in the nal result. PDI N result alsoshaved similar
behaviour. It could be obsened that the data cortained lot of spedkle, as comparedto
other data sets. The object was also faintly visible before processing. Howewver, none of
theseshould give results as given by PMI N. The new processingschemebasedon ratio
of the amplitudes of the rst harmonic to the fundamertal, which we discussedshoved

expectedresults. We call this schemeasthe harmonic basedprocessingscheme.

Fig. 6.2(a) shaws the image of the object without scattering. Fig. 6.2(b) shows a
represemativ e image of the seriesof imagescaptured. Fig. 6.2(c) shovs the PMI N Pl
result. Fig. 6.2(d) shaws the result obtained with the harmonic basedprocessingscheme,
which we have proposed. We can clearly seethe superiority of the result obtained with
the proposedprocessingscheme,as comparedto the PMI N result. Howewer, we did not
have more data to analyzethe reasonsbehind the ndings. It would be interesting to
know asto under what conditions, the harmonic basedprocessingstheme can cometo

use.
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(a) (b)

(c) (d)

Figure 6.2: Comparisonof results of PMI N PII and the harmonic basedprocessing
scheme. The scattering medium cortained 2:97 and 0:06 patrticles.

(@) Image of the object without scattering

(b) A represemativ e of the 512imagesgrabbed

(c) PMI N PII result; N = 512

(d) Result obtained with harmonic basedprocessing



App endix A

CRLB calculations - The case of

white noise

The equation governing the behaviour of data in polarization imaging is (egn 4.5)

. 4n

[+ (N) = lgeat + Ipa SIN V+ + w(n) n=012::;N 1 (A.1)
wherelgear 0,lpa O

In the above equation, the unknown parametersof interest , arel g, lpa and . The

variance of w(n) is unknown, but it is not of interest to us.

The regularity conditions that the pdf p(l,; ) hasto satisfy for the boundsto exist, is

given by,
@np(l; )
E ——~ =0 f or all
@
where,
I
1 1 X! -
p(ly; )= ﬁ exp ﬁ (Ir(n)  lscat lparSin ) (A.2)
n=0
2 is the noisevarianceof the time series,and = 2N +

M
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It can be easily veri ed that these conditions are satis ed and hence,we proceedto

nd the boundsfor the parameters.

Sincemultiple parametersare unknown, we nd the boundsby nding the elemerns of

the Fisher information matrix [l ( )]ij which are given by [61]:
1 X" @hn; 1@ |

| L= A.3
@IF : e e (A-3)

In this case,we have = [lsat lba |- Before nding the elemers of the Fisher
information matrix, we make the assumptionthat the number of data points available for
analysisis an integral multiple of M, the period of the rotating polaroid. i.e., N = kM,
where k is an integer. Moreover, we also assumethat the periodicity of the rotation
polaroid M itself is suc that, the rotating polaroid makes exactly one rotation in M
steps. Howewer, these assumptionsare neededonly to arrive at easyexpressiondor the
elemerns of the Fisherinformation matrix andthe boundsderivedwill hold even otherwise,

if N is quite large.

Now, we calculate the elemens of the Fisher information matrix, from rst principles,

usingeqnA.3.

1 X N
10, = 27 1= N

n=0

1 X . 4n
['()]12=—2n:0 1 sin -+ =0

1 X 4 n
[I()]13=_2 1 |ba|COS W-'- =0

n=0

1 X ., 4n N
[l()]22:_2 1 sin W+ = —
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%

1 . 4n 4 n
()= — ) sin W+ | hal COS V+ =0
n=0
X 4 n 1N
[1( )]s = _2n=0 | a1 COS ot = 2a2

It can easily be veri ed that

DOz =0 [Oe=0N0s [MO)s2 = 110 s

Thus the Fisher information matrix is given by
2

N0 0
m:E 0% o z (A4)
0 0 L}

It is known from the Cramer-Rao Lower Bound theorem for vector parameters[61],
that

var(h)= [, 1 X)), (A5)

Hence,we obtain the boundson the various parametersas

varfls.ag N (A.6)
2 2

varfl bald W (A7)
22 1

varf g 2N =N (A.8)

where is the SNR.
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Bounds for estimating ta-

I scat

In this section,wetry to nd the bound for estimatesof the transformation

DBLP = b (A.9)

scat

Assumethat it is desiredto estimate = g( ) for g, a r-dimensionalfunction. From

CRLB for transformation of vector parameters,it hasbeenshown in [61], that

@)’

@()
Cr —= @

@

I () 0 (A.10)

In our case,g correspndsto DOLP and it is a one-dimensionaltransformation of
parametersly, and ls.o;. Hence,the variance of DOLP is related to the variance of [ bal

and | ;o asfollows

;

varf DBLP g %| 1 )% (A11)
where,

h i h [

@( )

o - @oe @Be @O - e 0 (A.12)
which leadsto the relation,

varf DOLP e, 27 (A.13)
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App endix B

CRLB calculations - The case of

coloured noise

The equation governing the behaviour of data in polarization imaging is (egn 4.5)

Ir(N) = lscat + lpar SN

4
Vn+ + v(n) n=012::;N 1 (B.1)

wherelgar O, lpa 0 andv(n) represeis colourednoise. The valuesthat we needto

estimate are | ¢cat, | pa and

For analysis, we considerv(n) to be AR1 processwith pdf N (0;C), where C is the

noisecovariance matrix. v(n) is given by
v(n) = av(n 1)+ w(n) (B.2)

where, a is the unknown AR1 co-e cient and w(n) is zero-meanGaussianiid random
variable with unknown variance 2. Although we do not know the valuesof a and 2,
we x thesequartities in simulations. Oncea and 2 are known, C can be calculated as
follows [69].
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We denotethe autocorrelation valuesof the AR1 processby ry(n); n= 0;1;2;

2

ry(0) = T (B.3)
and all other autocorrelation valuescan be found using the relationship
rv(k) = ry(0)a" (B.4)

Oncethe autocorrelation valuesare found, the noisecovariancematrix of sizep p can
be obtained by imposing a toeplitz structure on the matrix, with the valuesof the rst

row beingthe rst p autocorrelation values.

Another important relationshipthat hasbeenusedin our simulations, is the relationship

betweenthe power spectral density P, (€' ) of the noiseprocessand its variance,given by

2

P(d') = (B.5)

jl1+ ael! j2

Next, we derive the CRLB for I s, 1ha @and  from rst principles.

The elemerns of the Fisher information matrix for the generalGaussiancaseare given
by [61]
@) "

O = @ C ()

@()_I_}trcl()

@ @ (B.6)

where

= @i (B.7)

For the problem on hand, the covariance matrix terms C; do not depend on and

hencethe secondterm on the right hand side of the above equation becomeszero. The
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covariancematrix C (N N) canbe obtainedby usingthe knowledgeof the noisevariance
and the AR1 coe cien t asexplainedearlier. With this obsenation, we nd the elemerts

of the Fisher information matrix, after rearrangingeqn B.1 asfollows,

.4 . 4
[r(N) = lgeat+ lpa COS SIN Vn + lpa SIN COS Vn + v(n) n=01,2:::;N
(B.8)
The above equation can be easily represeted in linear form as
2 3 2 3 2 3
l,(0) 1 0 1 5 3 v(0)
I ,—(1) 1 sin 4V I scat V(l)
[, (2) = 1 sin & cos & § | bat COS z+ v(2) (B.9)
: : | bal sin
z—
{N) 1 sin &% cos % { J viN)
| —z—} | {z } | —z—}
Ir H
or, equivalertly, by matrix notation as
l,=H +V (B.10)
We can easily obsene that the quartity correspndingto ( ) ofeqnB.6is, H
Hence
@() _ !
=H @_ B.11
@ @ (81D
Let
2 3
h 0 0
P= & & g— 0 cos | pat SIN (B.12)

0 sin | has COS
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Hence,from eqn B.6, the Fisher information matrix is given by
()= (HP) C *HP = PTHTC *HP (B.13)

Let usdenotethe 3 3 matrix HTC H by A. It caneasilybe obsenedthat A will be
a symmetric matrix. Moreover, due to the nature of the matrix H, we can easily verify
that A,, = Azs. Thus, the generalrepresemation of A will be

2 3
11 a2 i3
A= E a2 A2 a3 z (B.14)
Qi3 Az dxp

Note that the elemerts of A can be theoretically calculated onceC is known.

By substituting for HTC 'H and P in eqn B.13, we obtain the Fisher information

matrix as

3
a1 a1,C0S + aj;3sin |lpy(azcos a;psin ) z

2
e)= § a;,C0S + aj3Sin Ay, + ay3Sin2 a3l pa COS2

lpa(@13C0S  appsin ) Ayl pal COS2 12,(a22  @3sin2 )

Now, we can obtain the bounds on the variancesof | s.4, Iba and by inverting the
Fisher information matrix. We do not nd the inverseof the whole matrix; instead, we

nd only the necessaryelemetts of the inverseof the matrix.

The determinart of [I ( )] canbe obtained asthe product of the determinarts of PT A

and P, dueto the relation B.13. Hence,

det[l ( )] = 12,det(A) (B.15)
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We can seethat

| () .. = a1 gy(a5, aZ;sin’ 2 ) | 51853 COS 2 _ a1(ad, a3;) (B.16)
1 12, det(A) det(A) '

H 2 2 HY]
ajiax + (agza;2;  apds) Sin2 az, cog as, sin

| 1 = B.17
()5 det(A) (B.17)

i) = agay + (a11a03 a12a132) sin2  a?,cod  al;sin? (B.18)

Ibaldet(A)
The boundson the various parametersare given by

varfleag | () (B.19)

varflhag 1 () ,, (B.20)
A 1

varfg | () 44 (B.21)

From the above obsenations, we canimmediately infer the following.
The CRLB for |44 is independert of other parametersof interest.

The CRLB for Iy, is dependent on the phaseof the sinusoid, which is itself an

unknown parameter.

The CRLB for is not only dependert on , but in addition, it also dependson
the amplitude of the sinusoidal componert |y, similar to the caseof CRLB for

in the caseof white noise(seeeqnA.8).

Sincethe phaseof the sinusoiditself is unknown in our casewe nd the global minimum
variancefor the estimation of I, by nding that , which yields minimum variance of

Ipai. This can be found to occur at

2(apa13  a11823)

2
a;p, ags

1
= > arctan (B.22)
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It canbe veri ed that the samevalueof yields the minimum varianceof " too. As we
can see,the value of that yields minimum variance of 5 and " dependson the noise

parameters.

Bounds for estimating b

I scat

The procedurefor estimating the boundsare similar to the analysiscarried out in the

caseof white noise. From eqn A.12, we have the required bound to be
varfBOLPg T(PTHTC 'HP) TT (B.23)
where

T= 1 1 g (B.24)

I Seat I scat
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